FHI
The NOMAD Laboratory

Novel Materials Discovery at the FHI Molecular Physics Department
of the Max Planck Society

Person

Marcel Langer

Langer

Member since 10/2017
Email: langer@fhi.mpg.de

RESEARCH TOPICS

METHODS

2024

Articles

  1. J. Behler, G. Csanyi, L. Foppa, K. Kang, M. F. Langer, J. T. Margraf, Akhil S. Nair, T. A. R. Purcell, P. Rinke, M. Scheffler, 
    Workflows for Artificial Intelligence.
    Submitted for publication in "Roadmap for Advancement of the FHI-aims Software Package", September 5, 2024;
    https://doi.org/10.26434/chemrxiv-2024-vw06p
    Preprint Download (2024): ChemRxiv

2023

Articles

  1. M. F. Langer, F. Knoop. C. Carbogno, M. Scheffler, and M. Rupp, 
    Heat flux for semi-local machine-learning potentials.
    Phys. Rev. B (Letter) 108, L100302 (2023); https://doi.org/10.1103/PhysRevB.108.L100302
    Download: pdf

  2. M. F. Langer, J. T. Frank, F. Knoop,
    Stress and heat flux via automatic differentiation.
    J. Chem. Phys. 159, 174105 (2023); https://doi.org/10.1063/5.0155760 
    Download: pdf

Ph.D. Thesis

  1. M. F. Langer, 
    Machine Learning for Atomistic Modeling: Representations and Thermal Transport.
    TU Berlin, 2023; https://doi.org/10.14279/depositonce-18647
    Download: pdf

2022

Articles

  1. M. F. Langer, A. Goeßmann, and M. Rupp,
    Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning.
    npj Computational Materials 8, 41 (2022); https://doi.org/10.1038/s41524-022-00721-x
    Download: pdf

Within the publication lists the label [abs,src,ps] links to abstract, source file, and postscript version of the respective paper on the e-print archives of xxx.lanl.gov. Source and postscript files are usually transfered as gz-compressed tar-files. If your browser cannot automatically unpack those files you should proceed as follows:

Save the file as paper.tar.gz Execute the following commands (on a UNIX machine): gunzip paper.tar.gz tar -xvf paper.tar

return