Person
Marcel Langer
Member since 10/2017
Email: langer@fhi.mpg.de
RESEARCH TOPICS
- Crystal Structure Prediction
- Materials Property Prediction
METHODS
- Kernel-based Machine Learning
- Active Learning
- Density Functional Theory
2024
Articles
J. Behler, G. Csanyi, L. Foppa, K. Kang, M. F. Langer, J. T. Margraf, Akhil S. Nair, T. A. R. Purcell, P. Rinke, M. Scheffler,
Workflows for Artificial Intelligence.
Submitted for publication in "Roadmap for Advancement of the FHI-aims Software Package", September 5, 2024;
https://doi.org/10.26434/chemrxiv-2024-vw06p
Preprint Download (2024): ChemRxiv
2023
Articles
M. F. Langer, F. Knoop. C. Carbogno, M. Scheffler, and M. Rupp,
Heat flux for semi-local machine-learning potentials.
Phys. Rev. B (Letter) 108, L100302 (2023); https://doi.org/10.1103/PhysRevB.108.L100302
Download: pdfM. F. Langer, J. T. Frank, F. Knoop,
Stress and heat flux via automatic differentiation.
J. Chem. Phys. 159, 174105 (2023); https://doi.org/10.1063/5.0155760
Download: pdf
Ph.D. Thesis
M. F. Langer,
Machine Learning for Atomistic Modeling: Representations and Thermal Transport.
TU Berlin, 2023; https://doi.org/10.14279/depositonce-18647
Download: pdf
2022
Articles
M. F. Langer, A. Goeßmann, and M. Rupp,
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning.
npj Computational Materials 8, 41 (2022); https://doi.org/10.1038/s41524-022-00721-x
Download: pdf
Within the publication lists the label [abs,src,ps] links to abstract, source file, and postscript version of the respective paper on the e-print archives of xxx.lanl.gov. Source and postscript files are usually transfered as gz-compressed tar-files. If your browser cannot automatically unpack those files you should proceed as follows:
Save the file as paper.tar.gz Execute the following commands (on a UNIX machine): gunzip paper.tar.gz tar -xvf paper.tar