FHI
The NOMAD Laboratory

Novel Materials Discovery at the FHI of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universit├Ąt zu Berlin

Publications

2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 Before1990

2021

Articles

  1. C. W. Andersen, R. Armiento, E. Blokhin, G. J. Conduit, S. Dwaraknath, M. L. Evans, Á. Fekete, A. Gopakumar, S. Gražulis, A. Merkys, F. Mohamed, C. Oses, G. Pizzi, G.-M. Rignanese, M. Scheidgen, L. Talirz, C. Toher, D. Winston, R. Aversa, K. Choudhary, P. Colinet, S. Curtarolo, D. Di Stefano, C. Draxl, S. Er, M. Esters, M. Fornari, M. Giantomassi, M. Govoni, G. Hautier, V. Hegde, M. K. Horton, P. Huck, G. Huhs, J. Hummelshøj, A. Kariryaa, B. Kozinsky, S. Kumbhar, M. Liu, N. Marzari, A. J. Morris, A. Mostofi, K. A. Persson, G. Petretto, T. Purcell, F. Ricci, F. Rose, M. Scheffler, D. Speckhard, M. Uhrin, A. Vaitkus, P. Villars, D. Waroquiers, C. Wolverton, M. Wu, and X. Yang,
    OPTIMADE: an API for exchanging materials data.
    Scientific Data 8, 217 (2021); https://doi.org/10.1038/s41597-021-00974-z
    Download: pdf
  2. C. Carbogno and M. Scheffler,
    Identifying novel thermal insulators in material space.
    In: High-Performance Computing and Data Science in the Max Planck Society. Max Planck Computing and Data Facility, Garching, 42–43 (2021).
    Download: pdf
  3. C. Carbogno, V. Blum, S. Kokott, H. Lederer, A. Marek, F. Merz, M. Rampp, X. Ren and M. Scheffler,
    Preparing electronic-structure theory for the exascale.
    In: High-Performance Computing and Data Science in the Max Planck Society. Max Planck Computing and Data Facility, Garching, 47–49 (2021).
    Download: pdf
  4. C. Draxl, M. Scheidgen, T. Zastrow, R. Ritz, H. Lederer, S. Heinzel and M. Scheffler,
    The NOMAD Laboratory
    In: High-Performance Computing and Data Science in the Max Planck Society. Max Planck Computing and Data Facility, Garching, 50–51 (2021).
    Download: pdf
  5. A. Dutta, J. Vreeken, L.M. Ghiringhelli and T. Bereau,
    Data-driven equation for drug-membrane permeability across drugs and membranes.
    The Journal of Chemical Physics 154 (24), 244114 (2021); https://doi.org/10.1063/5.0053931
    Download: pdf
  6. A. Dutta, J. Vreeken, L.M. Ghiringhelli and T. Bereau,
    Publisher’s Note: “Data-driven equation for drug-membrane permeability across drugs and membranes.”
    J. J. chem. Phys. 154, 244114 (2021)]. The Journal of Chemical Physics 155 (3), 039901 (2021); https://doi.org/10.1063/5.0061875
    Download: pdf
  7. T. Esat, M. Knol, P. Leinen, M.F.B. Green, M. Esders, N. Friedrich, M. Maiworm, N. Ferri, P. Chmielniak, S. Sarwar, T. Deilmann, P. Krüger, H.H. Arefi, D. Corken, J. Gardner, K.T. Schütt, J. Rawson, P. Kögerler, M. Rohlfing, R. Findeisen, A. Tkatchenko, K.-R. Müller, R.J. Maurer, C. Wagner, R. Temirov and F.S. Tautz,
    A standing molecule as a coherent single-electron field emitter.
    In: 34th International Vacuum Nanoelectronics Conference (IVNC). (Eds.): S. Purcell and J.-P. Mazellier. IEEE, , 52–53 (2021). ISBN 978-1-6654-2589-6; https://doi.org/10.1109/IVNC52431.2021.9600722
    Download: pdf
  8. M. L. Evans, C. W. Andersen, S. Dwaraknath, M. Scheidgen, Á. Fekete, and D. Winston,
    Optimade-Python-Tools: a Python library for serving and consuming materials data via OPTIMADE APIs.
    Journal of Open Source Software 6 (65), 3458 (2021); https://doi.org/10.21105/joss.03458
    Download: pdf
  9. K. Fidanyan, I. Hamada and M. Rossi,
    Quantum Nuclei at Weakly Bonded Interfaces: The Case of Cyclohexane on Rh(111)
    Advanced Theory and Simulations 4 (4), 2000241 (2021); https://doi.org/10.1002/adts.202000241
    Download: pdf
  10. L. Foppa, L.M. Ghiringhelli, F. Girgsdies, M. Hashagen, P. Kube, M. Hävecker, S. Carey, A. Tarasov, P. Kraus, F. Rosowski, R. Schlögl, A. Trunschke, and M. Scheffler,
    Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence.
    MRS Bulletin 46 (2021); https://doi.org/10.1557/s43577-021-00165-6
    Download: pdf
  11. L. Foppa and L. M. Ghiringhelli,
    Identifying outstanding transition-metal-alloy heterogeneous catalysts for the oxygen reduction and evolution reactions via subgroup discovery.
    Topics in Catalysis, published online 02. September 2021; https://doi.org/10.1007/s11244-021-01502-4
    Download: pdf
  12. L. M. Ghiringhelli,
    An AI-toolkit to develop and share research into new materials.
    Nature Review Physics 3, 724 (2021); https://doi.org/10.1038/s42254-021-00373-8
    Download: pdf
  13. C. Koenig, V. Krewald, M. Roemelt and M. Rossi (Eds.),
    Special Issue: Germany’s Future in Theoretical and Computational Chemistry: a Special Issue Celebrating DEAL.
    International Journal of Quantum Chemistry 121 (3), (2021); https://doi.org/10.1002/qua.26587
    Download: pdf
  14. S. Kokott, I. Hurtado, C. Vorwerk, C. Draxl, V. Blum, and M. Scheffler,
    GIMS: Graphical Interface for Materials Simulations.
    Journal of Open Source Software 6 (57), 2767 (2021); https://doi.org/10.21105/joss.02767
    Download: pdf
  15. M. Krynski and M. Rossi,
    Efficient Gaussian Process Regression for prediction of molecular crystals harmonic free energies.
    npj Computational Materials 7, 169 (2021); https://doi.org/10.1038/s41524-021-00638-x
    Download: pdf
  16. A. Leitherer, A. Ziletti, and L.M. Ghiringhelli,
    Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning.
    Nature Communications 12, 6234 (2021); https://doi.org/10.1038/s41467-021-26511-5
    Download: pdf
  17. D. Maksimov, C. Baldauf and M. Rossi,
    The conformational space of a flexible amino acid at metallic surfaces.
    International Journal of Quantum Chemistry 121 (3), e26369 (2021); https://doi.org/10.1002/qua.26369
    Download: pdf
  18. A. Mazheika, S.V. Levchenko, L.M. Ghiringhelli and M. Scheffler,
    Materials for turning greenhouse gases into useful chemicals and fuels: a route identified by high-throughput calculations and artificial intelligence.
    In: High-Performance Computing and Data Science in the Max Planck Society. Max Planck Computing and Data Facility, Garching, 44–46 (2021).
    Download: pdf
  19. S. Park, H. Wang, T. Schultz, D. Shin, R. Ovsyannikov, M. Zacharias, D. Maksimov, M. Meissner, Y. Hasegawa, T. Yamaguchi, S. Kera, A. Aljarb, M. Hakami, L.-J. Li, V. Tung, P. Amsalem, M. Rossi and N. Koch,
    Temperature-Dependent Electronic Ground-State Charge Transfer in van der Waals Heterostructures.
    Advanced Materials 33 (29), 2008677 (2021); https://doi.org/10.1002/adma.202008677
    Download: pdf
  20. J.N. Pedroza-Montero, I.L. Garzón and H.E. Sauceda,
    On the forbidden graphene’s ZO (out-of-plane optic) phononic band-analog vibrational modes in fullerenes.
    Communications Chemistry 4, 103 (2021); https://doi.org/10.1038/s42004-021-00540-z
    Download: pdf
  21. X. Ren, F. Merz, H. Jiang, Y. Yao, M. Rampp, H. Lederer, V. Blum, and M. Scheffler,
    All-electron periodic G(0)W(0) implementation with numerical atomic orbital basis functions: Algorithm and benchmarks.
    Phys. Rev. Materials 5, 013807 ( 2021); https://doi.org/10.1103/PhysRevMaterials.5.013807
    Download: pdf
  22. H. Seiler, M. Krynski, D. Zahn, S. Hammer, Y.W. Windsor, T. Vasileiadis, J. Pflaum, R. Ernstorfer, M. Rossi and H. Schwoerer,
    Nuclear dynamics of singlet exciton fission in pentacene single crystals.
    Science Advances 7 (26), eabg0869 (2021); https://doi.org/10.1126/sciadv.abg0869
    Download: pdf
  23. L. Schmidt-Mende, V. Dyakonov, S. Olthof, F. Ünlü, K. Moritz, T. Lê, S. Mathur, A. D. Karabanov, D. C. Lupascu, L. Herz, A. Hinderhofer, F. Schreiber, A. Chernikov, D. A. Egger, O. Shargaieva, C. Cocchi, E. Unger, M. Saliba, M. Malekshahi Byranvand, M. Kroll, F. Nehm, K. Leo, A. Redinger, J. Höcker, T. Kirchartz, J. Warby, E. Gutierrez-Partida, D. Neher, M. Stolterfoht, U. Würfel, M. Unmüssig, J. Herterich, C. Baretzky, J. Mohanraj, M. Thelakkat, C. Maheu, W. Jaegermann, T. Mayer, J. Rieger, T. Fauster, D. Niesner, F. Yang, S. Albrecht, T. Riedl, A. Fakharuddin, M. Vasilopoulou, Y. Vaynzof, D. Moia, J. Maier, M.Franckevi ̆cius, V. Gulbinas, R. A. Kerner, L. Zhao, B. P. Rand, N. Glück, T. Bein, F. Matteocci, L. Angelo Castriotta, A. Di Carlo, C. Draxl, and M. Scheffler,
    Roadmap: Organic-inorganic hybrid perovskite semiconductors and devices.
    APL Mater. 9, 109202 (2021); https://doi.org/10.1063/5.0047616
    Download: pdf
  24. L. Talirz, L.M. Ghiringhelli and B. Smit,
    Trends in Atomistic Simulation Software Usage.
    [Articlev1.0]. Living Journal of Computational Molecular Science 3 (1), 1–12 (2021); https://doi.org/10.33011/livecoms.3.1.1483
    Download: pdf
  25. M.Oehlers,
    Identifying exceptional data points inmaterials science using machine learning.
    TU Berlin, 2021.
    Reprint download: pdf
  26. L. Bruce,
    Discussion, implementation, and demonstration of AI-guided active workflows.
    TU Berlin, 2021.
    Reprint download: pdf

Master Thesis

  1. M.Oehlers,
    Identifying exceptional data points inmaterials science using machine learning.
    TU Berlin, 2021.
    Reprint download: pdf
  2. L. Bruce,
    Discussion, implementation, and demonstration of AI-guided active workflows.
    TU Berlin, 2021.
    Reprint download: pdf

Within the publication lists the label [abs,src,ps] links to abstract, source file, and postscript version of the respective paper on the e-print archives of xxx.lanl.gov. Source and postscript files are usually transfered as gz-compressed tar-files. If your browser cannot automatically unpack those files you should proceed as follows:

Save the file as paper.tar.gz Execute the following commands (on a UNIX machine): gunzip paper.tar.gz tar -xvf paper.tar