

Metadata towards FAIR data sharing for

data-driven materials science: achievements and open challenges

Big Data Summer A summer school of the BiGmax Network Platja d'Aro, Spain, September 9 - 13, 2019

NOVEL MATERIALS DISCOVER

NOVEL MATERIALS DISCOVER

Mark D. Wilkinson, Michel Dumontier, et al. The FAIR Guiding Principles for scientific data management and stewardship Scientific Data 3, 160018 (2016)

"Data" includes "algorithms, tools, and workflows that led to that data".

NOVEL MATERIALS DISCOVER

NOVEL MATERIALS DISCOVER

NOVEL MATERIALS DISCOVER

www.youtube.com/watch?v=5Mf0JpTI_gg

NOVEL MATERIALS DISCOVER

Mark D. Wilkinson, Michel Dumontier, et al. The FAIR Guiding Principles for scientific data management and stewardship Scientific Data 3, 160018 (2016)

Findable Accessible Interoperable Reusable

NOVEL MATERIALS DISCOVER

Mark D. Wilkinson, Michel Dumontier, et al. The FAIR Guiding Principles for scientific data management and stewardship Scientific Data 3, 160018 (2016)

Indable Accessible

Compared to the compared t

nteroperable

epurposable ecycable eusable

NOVEL MATERIALS DISCOVERY

Mark D. Wilkinson, Michel Dumontier, et al. The FAIR Guiding Principles for scientific data management and stewardship Scientific Data 3, 160018 (2016)

indable

Metadata are unique

Accessible

(Meta)data can be accessed somewhere nteroperable

Useful ontologies are defined

epurposable ecycable eusable

Metadata are "rich"

NOVEL MATERIALS DISCOVER'

Working group at the

NOMAD-FAIRDI workshop: "Shared metadata and data formats for Big-Data Driven Materials Science." Berlin, July 2019.

Participants:

(data scientists) Javad Chamanara, Patrick Lambrix, Tatyana Sheveleva, (materials scientists) Carsten Baldauf, Stefano Cozzini, Christoph Koch, Astrid Schneidewind, Christof Wöll.

NOVEL MATERIALS DISCOVERY

Working group at the

NOMAD-FAIRDI workshop: "Shared metadata and data formats for Big-Data Driven Materials Science." Berlin, July 2019.

Participants:

(data scientists) Javad Chamanara, Patrick Lambrix, Tatyana Sheveleva, (materials scientists) Carsten Baldauf, Stefano Cozzini, Christoph Koch, Astrid Schneidewind, Christof Wöll.

Metadata are data about data.

NOVEL MATERIALS DISCOVERY

Working group at the

NOMAD-FAIRDI workshop: "Shared metadata and data formats for Big-Data Driven Materials Science." Berlin, July 2019.

Participants:

(data scientists) Javad Chamanara, Patrick Lambrix, Tatyana Sheveleva, (materials scientists) Carsten Baldauf, Stefano Cozzini, Christoph Koch, Astrid Schneidewind, Christof Wöll.

Metadata are data about data.

Data object (information resource): a row in the data table.

UID	Structure	Method	Total energy
31415	Graphite.xyz	DFT, PBE +TS	-2718281.828 eV

Columns are attributes of the data objects.

NOVEL MATERIALS DISCOVER'

UID	Structure	Method	Total energy	New structure
31415	Graphite.xyz	DFT, PBE +TS	-2718281.828 eV	Graphite_2.xyz

Columns are attributes of the data objects.

These attributes are data or metadata depending on context.

Description: who, when, where.

Provenance: how

Administrative: location, access privileges

NOVEL MATERIALS DISCOVER'

UID	Structure	Method	Total energy	New structure
31415	Graphite.xyz	DFT, PBE +TS	-2718281.828 eV	Graphite_2.xyz

Columns are attributes of the data objects.

These attributes are data or metadata depending on context.

Description: who, when, where.

Provenance: how

Administrative: location, access privileges

Definition: The attributes that are necessary to locate, fully characterize, and – ultimately – **reproduce** other attributes that are identified as data. The metadata include a clear and unambiguous description of the data, and their full provenance.

The NOMAD Laboratory A European Centre of Excellence

PROJECT INDUSTRY TEAM RELATED PROJECTS NEWS PRESS KIT CONTACT US

https://nomad-coe.eu/ **NO**vel **MA**terials **D**iscovery Laboratory

NOMAD Scope and Overview

Data is a crucial raw material of the 21st century.

NOMAD Success Stories

NOVEL MATERIALS DISCOVERY

Live since 12.2014

CONVERSION LAYER

NOVEL MATERIALS DISCOVERY

Live since 12.2014

CONVERSION LAYER

NOVEL MATERIALS DISCOVERY

Live since 12.2014

CONVERSION LAYER

NOVEL MATERIALS DISCOVERY

Atomistic-simulation code

NOVEL MATERIALS DISCOVERY

Atomistic-simulation code

- Code name
- Version
- Libraries

- Code name
- Version
- Libraries

NOVEL MATERIALS DISCOVERY

Input structure

- Coordinates

- Cell vectors

- (Topology)

 $Z_i x_i y_i z_i$

- Code name
- Version
- Libraries

NOVEL MATERIALS DISCOVERY

Atomistic-simulation code

- Code name
- Version
- Libraries

<u>Input structure</u> - Coordinates

 $Z_i x_i y_i z_i$

- Cell vectors
- (Topology)

Input model

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

Input model

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

- Coordinates

 $Z_i x_i y_i z_i$

- Cell vectors
- (Topology)

Atomistic-simulation code

- Code name
- Version
- Libraries

Output

- Total energy
- Forces
- Electron density
- Electrostatic pot.
- El. band structure
- Self energy

Input model

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

Input model

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

More complex input model

- $Model_1$ (scf) \rightarrow $Model_2$ (perturbative)
- QM/MM (space partitioning of models)
- ...

NOVEL MATERIALS DISCOVERY

Input structure

- Coordinates
- Cell vectors
- (Topology)

- Code name
- Version
- Libraries

Input model

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

Output

- Total energy
- Forces
- Electron density
- Electrostatic potential
- Electronic band structure
- Self energy

Our solution: NOMAD MetaInfo

NOVEL MATERIALS DISCOVER'

Metadata: in general dictionaries of key:value pairs, e.g.:

UID: 3141593

Structure: Graphite128_5775defect_final.xyz

Method: DFT, PBE, TS correction, NAO basis set, tier 1, light194 settings

Our solution: NOMAD MetaInfo

NOVEL MATERIALS DISCOVER

Metadata: in general dictionaries of key:value pairs, e.g.:

UID: 3141593

Structure: Graphite128_5775defect_final.xyz

Method: DFT, PBE, TS correction, NAO basis set, tier 1, light194 settings

NOMAD MetaInfo, basic elements:

```
Key:
```

```
type: section
name [section_run, section_method, ...]
description
```


NOVEL MATERIALS DISCOVER

Metadata: in general dictionaries of key:value pairs, e.g.:

UID: 3141593

Structure: Graphite128_5775defect_final.xyz

Method: DFT, PBE, TS correction, NAO basis set, tier 1, light194 settings

```
Key:

type: section

name [section_run, section_method, ...]

description

Key:

type: concrete value

name [energy_total, atom_forces, ...]

description
```


NOVEL MATERIALS DISCOVER

Metadata: in general dictionaries of key:value pairs, e.g.:

UID: 3141593

Structure: Graphite128_5775defect_final.xyz

Method: DFT, PBE, TS correction, NAO basis set, tier 1, light194 settings

```
Key:

type: section

name [section_run, section_method, ...]

description

parent_section

ID parent section: ...

Unique

type: concrete value

name [energy_total, atom_forces, ...]

description

description

parent section: ...
```



```
NOVEL MATERIALS DISCOVER
```

```
Metadata: in general dictionaries of key:value pairs, e.g.:
```

UID: 3141593

Structure: Graphite128_5775defect_final.xyz

Method: DFT, PBE, TS correction, NAO basis set, tier 1, light194 settings

```
Unique
Key:
                                           Key:
                                               type: concrete value
    type: section
    name [section_run, section_method, ...]
                                               name [energy_total, atom_forces, ...]
    description
                                               description
                                                parent_section
    parent section
ID parent section: ...
                                               abstract type
                                                units
                                           Value: ...
                                           ID parent section: ...
```


NOVEL MATERIALS DISCOVER

Metadata: in general dictionaries of key:value pairs, e.g.:

UID: 3141593

Structure: Graphite128_5775defect_final.xyz

Method: DFT, PBE, TS correction, NAO basis set, tier 1, light194 settings

A posteriori, hierarchical scheme

A posteriori, hierarchical scheme

NOVEL MATERIALS DISCOVERY

Section_system

- Coordinates
- Cell vectors
- (Topology)

Section_run

- Code name
- Version
- Libraries

Section_method

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

Section_single_configuration_calculation

Total energy

Forces

Electron density

Electrostatic potential

Electronic band structure

LMG *et al*. NPJ Comp. Materials **3**, 46 (2017).

A posteriori, hierarchical scheme

NOVEL MATERIALS DISCOVERY

Section_system

- Coordinates
- Cell vectors
- (Topology)

Section_run

- Code name
- Version
- Libraries

"Is contained in"

Section_method

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

Section_single_configuration_calculation

Total energy

Forces

Electron density

Electrostatic potential

Electronic band structure

LMG et al. NPJ Comp. Materials 3, 46 (2017).

NOVEL MATERIALS DISCOVERY

NOMAD Meta Info @ • •

energy_electrostatic

Type: Concrete Value

Description: Total electrostatic energy (nuclei + electrons), defined consistently

with calculation method

Data Type: floating point value

Shape: [

Units: joule

NOVEL MATERIALS DISCOVERY

The NOMAD team wrote 40+ parsers.

NOVEL MATERIALS DISCOVERY

The NOMAD team wrote 40+ parsers. Raw input+output → NOMAD MetaInfo

NOVEL MATERIALS DISCOVER

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

NOVEL MATERIALS DISCOVERY

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

```
ison
   section run
       program name
                                          FHI-aims
       program version
                                          081912
       section system
          simulation cell
                                          [[1.4e-9 ...]]
          atom positions
                                         [[0.0,...]...]
          atom labels
                                          ["Cu",...]
      section method
          basis set
                                          fhi aims tight
          XC method
                                          DFT GGA PBE
       section single configuration calculation
          section scf iteration
              energy_total_scf_iteration
                                         -1.326e-20
         section scf iteration
              energy total scf iteration
                                         -1.344e-20
       energy_total
                                          -1.344e-20
```


NOVEL MATERIALS DISCOVERY

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

```
ison
   section run
       program_name
                                          FHI-aims
       program version
                                          081912
       section system
          simulation cell
                                          [[1.4e-9 ...]]
          atom positions
                                          [[0.0,...]...]
          atom labels
                                          ["Cu",...]
      section method
          basis set
                                          fhi aims tight
          XC method
                                          DFT GGA PBE
       section single configuration calculation
          section_scf_iteration
              energy_total_scf_iteration
                                         -1.326e-20
         section scf iteration
              energy total scf iteration
                                         -1.344e-20
       energy_total
                                          -1.344e-20
```

hdf5

- Binary file format
- Storing of vectors, matrices,
- Efficient for non-sequential reading

NOVEL MATERIALS DISCOVER'

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

NOVEL MATERIALS DISCOVERY

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

Standardization

Raw input+output → NOMAD MetaInfo "as they are" (except unit conversion)

NOVEL MATERIALS DISCOVER

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

Standardization

Raw input+output → NOMAD MetaInfo "as they are" (except unit conversion)

Normalization

Standardized NOMAD MetaInfo → derived MetaInfo

NOVEL MATERIALS DISCOVER

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

Standardization

Raw input+output → NOMAD MetaInfo "as they are" (except unit conversion)

Normalization

Standardized NOMAD MetaInfo → derived MetaInfo

e.g., number density = #atoms / volume

NOVEL MATERIALS DISCOVER

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

Standardization

Raw input+output → NOMAD MetaInfo "as they are" (except unit conversion)

Normalization

Standardized NOMAD MetaInfo → derived MetaInfo

e.g., number density = #atoms / volume Actual examples:

- band structure along path defined in W. Setyawan and S. Curtarolo, Comput. Mater. Sci. 49, 299-312 (2010).
- space group calculated from structure via spglib library

NOVEL MATERIALS DISCOVER

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

Standardization

Raw input+output → NOMAD MetaInfo "as they are" (except unit conversion)

Normalization

Standardized NOMAD MetaInfo → derived MetaInfo

e.g., number density = #atoms / volume Actual examples:

- Useful for: annotated storage of "good" descriptors
- band structure along path defined in W. Setyawan and S. Curtarolo, Comput. Mater. Sci. 49, 299-312 (2010).
- space group calculated from structure via spglib library

NOVEL MATERIALS DISCOVERY

Perspective paper:

L.M. Ghiringhelli, C. Carbogno, S. Levchenko, F. Mohamed, G. Huhs, M. Lueders,

M. Oliveira, and M. Scheffler

Towards efficient data exchange and sharing for big-data driven materials science: Metadata and data formats.

NPJ Computational Materials 3, 46 (2017). DOI: 10.1038/s41524-017-0048-5.

After CECAM-Psi-k workshop:

Towards a Common Format for Computational Materials Science Data Lausanne, Switzerland, January 25 to January 27 2016

Update:

NOMAD-FAIRDI workshop:

Shared metadata and data formats for Big-Data Driven Materials Science. Berlin, Germany, July 2019.

NOVEL MATERIALS DISCOVERY

- A common energy zero for total energies

NOVEL MATERIALS DISCOVERY

- A common energy zero for total energies

Atomistic approach

- build a database of isolated, spherical atom energies, for each xc functional, relativistic treatment, (pseudopotential), numerical setting

Thermodynamic approach

- build a database of elemental, (binary?) materials energies

Consider machine-learning model(s) to fill in the blanks in the database See, e.g., Daniel Speckhard's poster

- A common energy zero for total energies
- Electronic and vibrational properties of solids

- A common energy zero for total energies
- Electronic and vibrational properties of solids
- Compact representation of scalar fields: density, wavefunction, xc potentials, etc. S.V. Levchenko and M. Scheffler, Compact representation of one-particle wavefunctions and scalar fields obtained from electronic-structure calculations. Comput. Phys. Comm. 237, 42-46 (2019).

- A common energy zero for total energies
- Electronic and vibrational properties of solids
- Compact representation of scalar fields: density, wavefunction, xc potentials, etc. S.V. Levchenko and M. Scheffler, Compact representation of one-particle wavefunctions and scalar fields obtained from electronic-structure calculations. Comput. Phys. Comm. 237, 42-46 (2019).
- Quantities related to excited-state calculations many-body perturbation theory (MBPT) calculations (GW, Bethe-Salpeter equation, etc.)

- A common energy zero for total energies
- Electronic and vibrational properties of solids
- Compact representation of scalar fields: density, wavefunction, xc potentials, etc. S.V. Levchenko and M. Scheffler, Compact representation of one-particle wavefunctions and scalar fields obtained from electronic-structure calculations. Comput. Phys. Comm. 237, 42-46 (2019).
- Quantities related to excited-state calculations many-body perturbation theory (MBPT) calculations (GW, Bethe-Salpeter equation, etc.)
- Sampling of potential energy surfaces (Molecular dynamics, Monte Carlo, ...)
- Workflows

- A common energy zero for total energies
- Electronic and vibrational properties of solids
- Compact representation of scalar fields: density, wavefunction, xc potentials, etc. S.V. Levchenko and M. Scheffler, Compact representation of one-particle wavefunctions and scalar fields obtained from electronic-structure calculations. Comput. Phys. Comm. 237, 42-46 (2019).
- Quantities related to excited-state calculations many-body perturbation theory (MBPT) calculations (GW, Bethe-Salpeter equation, etc.)
- Sampling of potential energy surfaces (Molecular dynamics, Monte Carlo, ...)
- Workflows
- Experiments

NOMAD MetaInfo, accessibility

NOVEL MATERIALS DISCOVER'

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

NOMAD MetaInfo, accessibility

NOVEL MATERIALS DISCOVERY

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

Access: via URL

https://analytics-toolkit.nomad-coe.eu/api/resolve/ N-TULHlZnc9cnbg7ihzUALIISdyww/ C-DWGvyqvK2g_1yLyJf8nN3j_M-xd/ section_run/0c/ section_single_configuration_calculation/0c/ energy_total/0c

NOMAD MetaInfo, accessibility

NOVEL MATERIALS DISCOVERY

The NOMAD team wrote 40+ parsers. Raw input+output \rightarrow NOMAD MetaInfo \rightarrow json + hdf5 file format \rightarrow Archive

Access: via URL https://analytics-toolkit.nomad-coe.eu/api/resolve/

N-TULHIZnc9cnbg7ihzUALIISdyww/

C-DWGvyqvK2g_1yLyJf8nN3j_M-xd/

section_run/0c/

section_single_configuration_calculation/0c/

energy_total/0c

```
▼uri: "nmd://N-TULHlZnc9cnbg7ihzUALIlSdyww/C-DWGvyqvK2g_1yLyJf8nN3j_M-xd/section_run/0c/section_single_configuration_calculation/0c/energy_total/0c"
```

type: "value"
dtypeStr: "f"

value: -4.535646058456239e-18

Computational MatSci: from basics...

Input model

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

More complex input model

- Model₁ (scf) → Model₂ (perturbative)
- QM/MM (space partitioning of models)
- ...

NOVEL MATERIALS DISCOVER

Type of *sampling*

- forces/stress relaxation
- molecular dynamics
- Monte Carlo
- replica exchange
- phonons
- equation of state, e.g., E(V)
- "high-throughput"

time step temperature pressure

- output obs.
 - structure₁

 $A_1, B_1, ...$

- output obs.
- structure₂

 $A_2, B_2, ...$

Type of *sampling*

- forces/stress relaxation
- molecular dynamics
- Monte Carlo
- replica exchange
- phonons
- equation of state, e.g., E(V)
- "high-throughput"

Initial Struct. Coordinates Cell (Topology)

time step temperature pressure

- output obs.

- structure₁

- output obs.

 $A_2, B_2, ...$

- structure₂

Type of *sampling*

- forces/stress relaxation
- molecular dynamics
- Monte Carlo
- replica exchange
- phonons
- equation of state, e.g., E(V)
- "high-throughput"

Ensemble Output

- Average <*A*>
- Momenta of distribution of A
- Correlation functions $\langle A_i, B_i \rangle$
- $A_i,B_i,f(A_i,B_i),...$

... and the related hierarchical scheme

Keywords and Acknowledgments

NOVEL MATERIALS DISCOVERY

Metadata for FAIR scientific-data management and stewardship:

- Hierarchical (sections, concrete values, ...)
- Structured (name, description, ...)
- Extensible

Acknowledgments:

<u>Fawzi Mohamed</u>, Pasquale Pavone, Henning Glawe, Micael Olivera, Benjamin Regler, Bryan Goldsmith, Ádám Fekete, Markus Scheidgen.

NOMAD PIs: <u>Matthias Scheffler</u>, Claudia Draxl, Angel Rubio, Risto Nieminen, Francesc Illas, Daan Frenkel, Alessandro De Vita, Kristian Thygesen; Kimmo Koski, Stefan Heinzel, Jose Maria Cela, Dieter Kranzlmüller; Ciaran Clissman.

NOMAD continues via FAIR – Data Infrastructure (https://fairdi.eu/)

• Extension to experimental metadata

- Extension to experimental metadata
- Challenge of reproducibility: "What about artificial-intelligence models?". Al training and learned models need to be fully annotated.

NOVEL MATERIALS DISCOVER'

- Extension to experimental metadata
- Challenge of reproducibility: "What about artificial-intelligence models?". Al training and learned models need to be fully annotated.
- Challenge or reusability: "Is the (set of) calculation(s) I need already in some FAIR db? Is something <u>close</u> to what I need already there?"

Section_system

- Coordinates
- Cell vectors
- (Topology)

Section_method

- xc treatment / force field
- Relativity treatment
- Basis set, ...

NOVEL MATERIALS DISCOVER

- Extension to experimental metadata
- Challenge of reproducibility: "What about artificial-intelligence models?". Al training and learned models need to be fully annotated.
- Challenge or reusability: "Is the (set of) calculation(s) I need already in some FAIR db? Is something <u>close</u> to what I need already there?"

How?

We need well-calibrated **datasets** (diverse <u>structures</u> and <u>quantities</u>), recalculated with different codes, xc treatments, basis sets, etc. in order to assess the quality and "relative distance" in the stored data.