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We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

From the Hamiltonian of a physical system, in principle we can 
derive all properties (observables).
But in practice, the Hamiltonian is often not the starting point.

For instance, given a class of chemical compositions 
(e.g., via prototype formula, such as ABX

3
):

- what is the most stable crystal structure of each material in the 
class?

- which materials are metals / topological insulators / 
superconductors ?

- which material has the highest melting point?
- which materials has a surface optimal for catalysing some 

chemical reaction?

Building maps of materials properties
A quantum many-body problem
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● Design of new materials: 
preparation, synthesis, and characterization is complex and costly 

● About 240 000 inorganic materials are known to exist (Springer 
Materials) 

● Basic properties determined for very few of them

● Number of possible materials: practically infinite

⇨ New materials with superior properties exist but not yet known

 

● Data analytics  tools  will help to identify trends and anomalies in 
data and guide discovery of new materials

The Big Picture
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Mendeleev's 1871 periodic table

From the periodic table of the elements 
to charts of materials

Ga=69.7    Ge=72.6

We have a dream



  

Suppose 
to know the trajectories of all planets in the solar system, 
from accurate observations (experiment)
or
by numerically integrating general relativity equations 
(calculations at the highest level of theory)
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  (Orbital period)² = C (orbit's major 
axis)³

Learning → Discovery

Suppose 
to know the trajectories of all planets in the solar system, 
from accurate observations (experiment)
or
by numerically integrating general relativity equations 
(calculations at the highest level of theory)

Data 
(collected by 
Tycho Brahe)

Statistical learning
(performed by 

Johannes Kepler)

Physical law
(assessed by 
Isaac Newton)

(

)
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What’s “big”, then?

● Volume
● Velocity
● Variety
● Veracity issue

Supervised big-data analysis: a flow chart



  

Fast Prediction
Calculate properties 

and functions for 
new values of d 
(new materials)

Descriptor? Don’t we know it from the start?

{RI,ZI} → Hamiltonian

{RI} → Geometry
- translational, rotational, permutational invariant
- coarse graining {RI}?

{ZI} → Chemistry

Training set
Calculate properties and functions 

Pi, for many materials, i
E.g., Density-Functional Theory

Descriptor
Find the appropriate 

descriptor di, 
build a table:  

| i | di | Pi | 

Learning
Find the function P(d) for the table.

Build a chart for the property
Statistical learning
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“Zincblende/Wurtzite or Rocksalt?”

J. A. van Vechten, Phys. 
Rev. 182, 891 (1969).
J. C. Phillips, Rev. Mod. 
Phys. 42, 317 (1970).
J. John and A.N. Bloch, 
Phys. Rev. Lett. 33, 1095 
(1974)
J. R. Chelikowsky and J. 
C. Phillips, Phys. Rev. B 
33, 2453 (1978)
A. Zunger, Phys. Rev. B 
22, 5839 (1980).
D. G. Pettifor, Solid 
State Commun. 51, 31 
(1984).
Y. Saad, D. Gao, T. Ngo, 
S. Bobbitt, J. R. 
Chelikowsky, and W. 
Andreoni, Phys. Rev. B 
85, 104104 (2012).
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d1

d2

The descriptor proposed by 
Phillips and van Vechten in 
1969-70 depends on:
- lattice parameter
- electrical conductivity
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structures from the composition
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Systematic construction of the feature space: EUREQA

Descriptor (candidates: 242)
a The largest distance between a H atom and its nearest Si neighbor
b The shortest distance between a Si atom and its sixth-nearest Si neighbor
c The maximum bond valence sum on a Si atom
d The smallest value for the fifth-smallest relative bond length around a Si atom
e The fourth-shortest distance between a Si atom and its eighth-nearest neighbor
f The second-shortest distance between a Si atom and its fifth-nearest neighbor
g The third-shortest distance between a Si atom and its sixth-nearest neighbor
h The H-Si nearest-neighbor distance for the hydrogen atom with the fourth-
smallest difference between the distances to the two Si atoms nearest to a H atom

T. Müller et al. PRB 89 115202 (2014):
Data: ~1000 amorphous structures of 216 
Si atoms (saturated)

Property: hole trap depth

EUREQA: genetic programming software. 
Global optimization (genetic algorithm).
Schmidt M., Lipson H., Science, Vol. 324, No. 5923, (2009)

(Linear) dimensionality reduction: principal componentsSystematic construction of the feature space: EUREQA
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● Electron Affinity
● Radius of valence s orbital
● Radius of valence p orbital
● Radius of valence d orbital
● Billions of non-linear 

functions of the above

Ansatz: atomic features

● HOMO
● LUMO
● Ionization Potential
● Electron Affinity
● Radius of valence s orbital
● Radius of valence p orbital
● Radius of valence d orbital
● Billions of non-linear 

functions of the above

E(Rock salt) – E(Zinc blende)E(Rock salt) – E(Zinc blende)

Rock salt

Zinc blende

RS / ZB

d1

d2

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

P = c
1
d

1
 + c

2
d

2
 + … c

n
d

n

Compressed sensing: the quest for
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Local-optimum solution  
Huge # columns in D

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

From orthogonal matching pursuit ….

Property
Residual

feature

feature
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Local-optimum solution  
Huge # columns in D

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Property
Residual1

features
S

0

features
S

1

From orthogonal matching pursuit ….

… to Sure Independence Screening + Sparsifying Operator (SISSO)

Proxy of 
global-optimum solution  
Huge # columns in D

Property
Residual

feature

feature

R. Ouyang et al. PRM 2, 083802 (2018), published 7 August 2018)

Compressed sensing: the quest for
descriptors and predictive models



  

Structure map 
with SISSO, 
starting from 
7 atomic + 
6 dimer features
Feature space: 
1011 features

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”Compressed sensing: the quest for
descriptors and predictive models

R. Ouyang et al. PRM (2018)



We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Compressed-sensing-based model identification:
Shares concepts with 

Regularized regression. But: Massive sparsification.

Dimensionality reduction. But supervised, and yielding sparse, 
“inspectable” descriptors

Feature/Basis-set selection/extraction. But: non-greedy solver.

Symbolic regression. But: deterministic solver.

Compressed sensing: the quest for
descriptors and predictive models



  

d1

d2 RS

Octet 
binaries

d'1

d'2

Insulator

Metal

AxBy 
binaries

d''1

d''2

Topological
insulator

Trivial
insulator

Metal

2D honeycomb materials

d*1

d*2

Eads(CO2) on oxides (TH21)

New cost function to be minimized: 
overlap of convex domains

1. # points in the convex overlap domain
2. Area of the domain overlap 
3. Distance between domains

Good also for multi-categorical problems
(see A. F. Bialon et al., Chem. Mater. 28, 2550 (2016))

P (property)
Δ1D (residual)

S2D S1D

Iterative generation of feature subspaces

Charts/maps of materials



  

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”
Perovskites’ stability: an improved
Goldschmidt Tolerance Factor

Ionic radius

Goldschmidt* stable perovskites: 0.825 < t < 1.059, accuracy 79%

ABX3



  

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Ionic radius

Oxidation state

1 / μ = Octahedral factor

Goldschmidt* stable perovskites: 0.825 < t < 1.059, accuracy 79%

Our stable perovskites: τ < 4.18, accuracy 92%

Bartel, Sutton, Goldsmith, Ouyang, Musgrave, LMG &Scheffler, Sci. Adv. 5, eaav0693 (2019)

ABX3

Perovskites’ stability: an improved
Goldschmidt Tolerance Factor



  

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Ionic radius

Oxidation state

1 / μ = Octahedral factor

Goldschmidt* stable perovskites: 0.825 < t < 1.059, accuracy 79%

Our stable perovskites: τ < 4.18, accuracy 92%

τ < 3.31 or τ > 5.92, 99% accuracy (1/3 of the training data)

τ < 3.31 or τ > 12.08, 100% accuracy (1/4  of the training data)

ABX3

Perovskites’ stability: an improved
Goldschmidt Tolerance Factor

Bartel, Sutton, Goldsmith, Ouyang, Musgrave, LMG &Scheffler, Sci. Adv. 5, eaav0693 (2019)



  

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”Improved Goldschmidt Tolerance Factor:
Materials design



  

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”Improved Goldschmidt Tolerance Factor:
Extension of the materials space

La2BB’O6

Cs2BB’Cl6



  

Prototype formula:
AB-LNM
AB = {As,Sb,Bi}
LNM = {S, Se,Te}

SISSO: predicting new tetradymite
topological insulators

Cao, Liu, Ouyang, LMG, Zhou, Scheffler, Zhang, Carbogno, submitted (2019)
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