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Self assembly of soft-matter materials
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photonicswiki.org

Liquid crystals

Life: The science of Biology., Freeman (2007)

Amphiphiles (Bio)polymers

Colloidal crystals

Stein, Schroden, Curr Opin Solid State Mater Sci (2001)

Thermal fluctuations lead to 
spontaneous self-assembly, 

mesoscale structuresE ⇠ kBT
Weak interactions:

⟨"⟩ ∝ ∫ dx "(x) e− βE(x)

Configurational average Stability criterion

F = E − TS



Multiscale simulations

�4Bradley and Radhakrishnan, Polymers 5 (2013)

time

length

ℋψ = Eψ

F = ma

Ebend = ∫membrane
dA { 1

2 κK2 − κ̄KG}
Helfrich, Z. Naturforsch. C 28 (1973)

Coupled hierarchy of kinetic processes leading to 
structure formation



Fundamental challenges for soft matter modeling
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Sampling

AnalysisModel

Experiment

force field development 
coarse-grained modeling

enhanced sampling 
high throughput studies

bayesian reweighting 
force field refinement

kinetic modeling 
(dimensionality reduction / clustering)



Bayesian inference
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Prediction { Prior beliefs 

Sampled data

M model

D data

Bayes’ theorem

p(M |D) ∝ p(D |M) p(M)
likelihood priorposterior

Embed data-driven techniques in physics-based models



Fundamental challenges for soft matter modeling
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Emergent complexity

Molecular dynamics

�8fs ps ns sµ ms s

integration 
time step Timescales of interest

F = ma
Specify interparticle 
forces: “force field”

Numerically integrate 
particle positions

Durrant & McCammon, BMC Biol 9 (2011)



The craftsmanship of force-field parametrization

�9Durrant & McCammon, BMC Biol 9 (2011)

Every new molecule requires 
parameter optimization

Cl



Transferable model for intermolecular interactions
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Any small molecule made of H, C, O, N
neutral compounds

Physics-based models

• Encode laws, symmetries 
• Little chemical information

Data-driven models

• Need to learn laws, symmetries 
• Interpolate across chemistry



Kernel methods are vintage
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Kernel

Deep learning

- needs a representation 
- linear algebra 
- can be efficient with small 

data
{

{- learns the representation 
- complex mathematical 

structure 
- data hungry



Linear-ridge vs kernel-ridge regression
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Linear-ridge regression kernel-ridge regression (ML)

Ax = b K↵ = p

N m

m

N

in general: m ⌧ N

N N

N

N

Kij =Kij(xi,xj)

=Kij(|xi � xj |)

= exp

✓
� |xi � xj |

�

◆



Bayesian inference
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Bayes’ formula

p( f, f* |y) = p(y | f ) p( f, f*)
p(y)

likelihood
prior

posterior
normalization
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(a) Prior distribution. 15 samples (thin lines)
drawn from a Gaussian process with zero
mean and Gaussian covariance function with
unit length scale.
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(b) Posterior distribution with mean function
(thick line). 15 samples (thin lines) drawn
from the posterior distribution after condi-
tioning on three training data (red crosses).

Figure 6: Idea of Gaussian process regression. Starting from the prior distribution (a), one
conditions on the training data. Mean and variance of the posterior distribution (b) are used
as predictor and confidence estimate. Shaded regions denote two standard deviations.

are determined via Eq. 17, given a training set. This leaves the choice of kernel k and
regularization hyperparameter �, plus any hyperparameters of the kernel, with the optimal
choice depending on the dataset. A general guiding principle is Occam’s razor,⇤ which for
our purposes states that among models with equal performance, the simplest one should be
preferred. Many approaches to model selection are in use;94 here, the focus is on performance
estimation as selection criterion. As a specific example, given similar performance, for the
models presented in this tutorial one should prefer (i) the linear kernel over the Gaussian and
the Laplacian kernel, (ii) the Gaussian over the Laplacian kernel, (iii) higher regularization
strengths, and (iv) larger length scales, the reason for (ii)–(iv) being smoothness of the
estimator.

Estimating model performance. Ideally, we would like to know the error of our model on
new data—predicting those is its purpose, after all. In statistical learning theory,19,95,96 this
is measured by the risk of the model f ,

R(f) =

Z
L
�
y, f(x)

�
dP (x, y) = EP

⇥
L(y, f(x))

⇤
(20)

where P is the joint distribution of inputs and labels, and L : Y ⇥ Y ! R is a loss function
measuring the error of a prediction. Eq. 20 is the expected error of f . Unfortunately, P
is usually not known, and R has to be estimated from a finite set of training data as the
empirical risk

Rn(f) =
1

n

nX

i=1

L
�
yi, f(xi)

�
. (21)

⇤ Attributed to William of Ockham (early 14th century), but already known to Aristotle and Ptolemy
in classical antiquity.

18

Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)



Extrapolation in machine learning
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Optimizing the representation links to the physics

�15Huang and von Lilienfeld, J Chem Phys 145 (2016)

Learning a Gaussian function Learning atomization energies

Non-unique 
representation!

ULJ(r) = 4✏
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Static multipole electrostatics

�16
Stone, The Theory of Intermolecular Forces  
Bereau and Meuwly, Many-Body Effects and Electrostatics in Biomolecules

VCoulomb(r) =
1

4⇡✏0

qiqj
r

terms of reproducing pure-liquid density, heat of vaporization,
and hydration free energy. They underline that a careful PC
parametrization can go a long way in reproducing the
thermodynamic properties of many simple liquids (e.g., PhH,
PhF), in which case MTPs are unlikely to play a significant role.
When switching from PC to MTP electrostatics, one should

expect force-field reparametrization: standard parametrization
protocols (including this one) make LJ coefficients inherently
dependent on the force field’s electrostatics. Lee and Meuwly
recently reparametrized a MTP model of cyanide in water and
showed that merely scaling the distance term, Rmin, allowed to
reproduce experimentally determined hydration free energies,
vibrational relaxation times, and 1D/2D spectroscopies.34−36 In
the present work, however, we kept the protocol applied to PC

electrostatics both for consistency and to best reproduce both
sterics and energetics. The results are shown in Table 3. We find
that most LJ coefficients remain similar across electrostatic
representations, except for a comparatively large change for the
well depth of N: 0.20 kcal/mol. The magnitude of these changes
do not correlate with the impact on the hydration free energies:
PhCl, PhBr, and PhI show the largest improvement in ΔGhyd,
though the changes in LJ parameters are modest. On the
contrary, the large change of εN did not improve ΔGhyd.
For all halobenzene compounds, MTP electrostatics allows us

to reproduce hydration free energies within ≈0.15 kcal/mol of
the experimental values. Naturally, we find the most significant
improvements on PhCl, PhBr, and PhI, which carry strong σ
holes. Jorgensen and Schyman introduced a correction for the
OPLS-AA force field to better describe halogenated compounds
by means of off-site point charges, which reproduces the
hydration free energies of halobenzene compounds within
0.4 kcal/mol.26 Other efforts to better reproduce σ holes in
computer modeling include the work of Ibrahim on off-site point
charges,37 as well as careful electrostatic calculations from the
SIBFA model38 and a recently published polarizable ellipsoidal
force field.39

Our PC and MTP parametrizations of pyrrole did not
reproduce the experimental hydration free energy as well as for
the other compounds, mostly due to the use of benzene’s
hydrogen atom type for pyrrole’s amine. Clearly, the two types of
hydrogens generate very different types of chemistry, which our
PC and MTP force fields do distinguish (to the extent of the
methods’ resolutions). Using benzene’s apolar hydrogen on the
amine is a stretch of transferability that shows its limits. Likewise,
distinguishing the carbons of benzene and pyrrole could prove
more accurate, as pyrrole is more reactive. However, the sole
purpose of the present pyrrole parametrization was to describe
the amine group of the brominated ligand studied below (Section
3.6). Because the conclusions drawn in that application do not
depend much on the quality of the amine’s parametrization (we
focus instead on the bromines), we decided against a careful, but
more expensive, LJ parametrization of both atom types of that
chemical group.

3.3. Structural Properties.We studied structural properties
of the PhX compounds solvated in a box of 500 water molecules.
NPT simulations were run for 1 ns, including 100 ps of
equilibration. Figure 3 shows the radial distribution functions,
g(r), between the Br atom of PhBr with water oxygens for both
PC and MTP electrostatics. The small changes in LJ parameters
for Br led to virtually no difference in g(r) between PC and MTP
electrostatics, despite the large change inΔGhyd (Table 4). While

Figure 2. Isosurfaces of the difference between ab initio and (a) PC and
(b)MTPESPs of PhBr. Blue and red regions denote an error of +0.5 and
−0.5 kcal/mol, respectively. The plots only show points within the first
interaction belt.

Table 3. LJ Parameters ε and Rmin/2 Parametrized Against PC
and MTP Electrostaticsa

PC elec. MTP elec.

compound atom name ε Rmin/2 ε Rmin/2

PhH C −0.05 2.00 −0.08 2.00
H −0.05 1.30 −0.01 1.20

PhF F −0.15 1.10 −0.07 1.70
PhCl Cl −0.44 1.90 −0.29 2.00
PhBr Br −0.50 2.17 −0.46 2.30
PhI I −0.57 2.33 −0.53 2.43
pyrrole N −0.31 2.00 −0.11 2.20

aAll units are in kcal/mol and Å.

Table 4. Comparison between Experimental Results25,31,40,41 and PC/MTP Calculations of Pure-Liquid Densities, ρ, Heats of
Vaporization, ΔHvap, and Hydration Free Energies, ΔGhyd

a

exptl. PC MTP

cmpd. ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd

PhH 0.88 7.89 −0.86 0.505 0.86 7.53 −0.77 ± 0.12 0.254 0.90 7.88 −0.89 ± 0.11
PhF 1.02 8.26 −0.80 1.215 1.05 7.95 −0.48 ± 0.30 0.502 1.05 8.60 −0.75 ± 0.08
PhCl 1.11 9.79 −1.12 0.929 1.11 9.68 −0.66 ± 0.01 0.464 1.14 10.13 −1.11 ± 0.26
PhBr 1.50 10.65 −1.46 1.173 1.44 10.54 −0.55 ± 0.04 0.682 1.47 11.98 −1.40 ± 0.10
PhI 1.83 11.85 −1.83 0.978 1.76 11.39 −1.35 ± 0.15 0.581 1.84 12.43 −1.97 ± 0.16
pyrrole 0.97 10.78 −4.78 1.212 1.00 11.11 −4.11 ± 0.04 1.092 0.99 10.87 −3.74 ± 0.20

aRoot-mean squared errors (RMSEs) of gas-phase dimer energies (see ref 10) are also shown. All units are in kcal/mol, Å, and g/cm3. The errors of
the mean on the computed densities and heats of vaporization are 0.01 g/cm3, and 0.05 kcal/mol, respectively, while they are mentioned explicitly
for the hydration free energies.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400803f | J. Chem. Theory Comput. 2013, 9, 5450−54595454
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pairs, hydrogen bonding, p-electron density—may require more elaborate schemes.
Going beyond the simple PC approximation can be approached both naturally and
systematically by considering the integral for the electrostatic potential (ESP)

4pe0F(r) =
Z

dr
0 r(r0)
|r� r0| , (1.1)

where r and r
0 are spatial variables. For a charge distribution confined to a sphere

of radius r0 around an arbitrary origin and an observation point outside the sphere
(r > r0), one can expand 1/|r� r

0| in powers of r0/r < 1 [30]. The ESP can thereby
be represented by an expansion in spherical harmonics Ylm(q ,f)—a set of orthonor-
mal functions that depends on the order l and its projection m, and the spherical
coordinates q and f—to yield

4pe0F(r) =
•

Â
l=0

l

Â
m=�l

Qlm

rl+1

r
4p

2l +1
Ylm(q ,f), (1.2)

while the spherical MTP moments are defined by

Qlm =
Z

dr
0r(r0)(r0)l

r
4p

2l +1
Y ⇤

lm(q 0,f 0) (1.3)

and can therefore be determined from the density r . For l  2, the Qlm coefficients
reduce to linear combinations of the familiar q (monopole scalar), µ (dipole vector),
and Qab (quadrupole second-rank tensor) expressed in Cartesian coordinates (see
field-line representations in Figure 1.1). A more convenient linear combination of
Cartesian coordinates expresses the spherical MTP moments in terms of cosmf
and sinmf , rather than the original exp±imf [31]. The new linear combination,
indexed by k = {0,1c,1s, . . . , lc, ls} for index l (c and s refer to cos and sin), has the
added advantage of containing only real components. While the spherical harmonics
and MTP moments can be found elsewhere (e.g., [31, 30]), the coefficients up to
quadrupole are summarized in Table 1.1.

An explicit development of Equation 1.2 in terms of the Cartesian coordinates
from Table 1.1 yields

Fig. 1.1 Representations of
the (a) monopole, (b) dipole,
and (c) quadrupole fields.
The anisotropy of the higher
MTPs provides the means for
an improved description of
the ESP.

(a) (b) (c)

4 Tristan Bereau and Markus Meuwly

Table 1.1 List of spherical harmonics and MTP moments expressed in Cartesian coordinates—up
to quadrupole (i.e., l = 2) [31].

l k rl
q

4p
2l+1Ylk (q ,f) Qlk

0 0 1 q
1 0 z µz
1 1c x µx
1 1s y µy
2 0 1

2 (3z2 � r2) Qzz
2 1c

p
3xz 2p

3
Qxz

2 1s
p

3yz 2p
3
Qyz

2 2c 1
2

p
3(x2 � y2) 1p

3
(Qxx �Qyy)

2 2s
p

3xy 2p
3
Qxy

4pe0F(r) =
q
R
+

µa Ra
R3 +

1
3

Qab
3Ra Rb �R2dab

R5 + . . . , (1.4)

F(r) = qT �µa Ta +
1
3

Qab Tab + . . . , (1.5)

where 1/R ⌘ 1/|r� r
0|, the Einstein summation convention is applied, and Kro-

necker delta, dab , is 1 only if a = b , 0 otherwise. The total ESP can be partitioned
into a sum of multipolar potentials Fl (e.g., F0 is the monopolar potential), leading
to the concept of a “distributed multipole” expansion. Equation 1.5 provides a more
compact notation in terms of the T tensors describing the geometry of the multipo-
lar potential. A simple Taylor expansion of the original formulation of the ESP (i.e.,
Equation 1.1) shows that the T tensors correspond to the various partial derivatives
of 1/R.

In terms of running a molecular dynamics (MD) simulation, the quantity of in-
terest is the interaction potential, U . This quantity is defined by the work done on an
MTP Qlk brought from infinity to a point r in a region populated by the (multipo-
lar) potential F , U = FQlk (derived from first-order perturbation theory [31, 30]).
Thus, the interaction energy between sites (e.g., atoms, molecules) a and b can be
written as

Uab =

✓
qaT �µa

a Ta +
1
3

Q a
ab Tab + . . .

◆✓
qb +µb

a +
1
3

Q b
ab + . . .

◆
, (1.6)

where the superscripts a and b over the MTP parameters refer to the interaction site
(usually an atom) they belong to. Evidently, a truncation of the MTP expansions to
l = 0 reduces to the familiar Coulomb interaction, Uab = qaqb/4pe0R. In general,
the interaction energy can be compactly written as Uab = (Qa)TT abQb, where Qa

is a vector containing all MTP moments of site a and T ab forms a matrix of T
tensors—as elegantly presented in the AMOEBA implementation [32].

For a given interaction between two MTP moments Qa
t and Qb

u on sites a and
b, respectively, the tensor element describing the geometry as T ab

tu (q) is required,

dipoles, quadrupoles rotate with the sample



Representation: the Coulomb matrix

�17

The main diagonal of the Coulomb matrix 0.5 Zi
2.4 consists of

a polynomial fit of the nuclear charges to the total energies of
the free atoms,2 while the remaining elements contain the
Coulomb repulsion for each pair of nuclei in the molecule.
Except for homometric structures (not present in the data set)
the Coulomb matrix is a unique representation of molecules.
The fact that rotations, translations, and symmetry

operations such as mirror reflections of a molecule in 3D
space keep the total energy constant is reflected by the
invariance of the Coulomb matrix with respect to these
operations.
However, there are two problems with the representation of

molecules by their Coulomb matrices, which make it difficult to
use this representation in a vector-space model. First, different
numbers of atoms d result in different dimensionalities of the
Coulomb matrices, and second there is no well-defined
ordering of the atoms in the Coulomb matrix; therefore, one
can obtain up to d! different Coulomb matrices for the same
molecule by simultaneous permutation of rows and columns,
while the energies of all these configurations remain unchanged.
In order to solve the first problem we introduce “dummy

atoms” with zero nuclear charge and no interactions with the
other atoms. In the Coulomb matrix representation this is
achieved by padding each matrix with zeros,2 which causes all
matrices to have size d × d (where d is the maximal number of
atoms per molecule).
The ambiguity in the ordering of the atoms is more difficult

as there is no obvious physically plausible solution. To
overcome this problem we investigate three candidate
representations derived from the Coulomb matrix. They are
depicted in Figure 2: (a) the eigenspectrum representation
consisting of the sorted eigenvalues of C, (b) a sorted variant of
the Coulomb matrix based on a sorting of the atoms, and (c) a

set of Coulomb matrices, which all follow a slightly different
sorting of atoms. All of them are explained in more detail
below.

2.2.1. Eigenspectrum Representation. In the eigenspectrum
representation the eigenvalue problem Cv = λv for each
Coulomb matrix C is solved to represent each molecule as a
vector of sorted eigenvalues (λ1,...,λd), λi ≥ λi+1. This
representation (first introduced by Rupp et al.2) is invariant
with respect to permutations of the rows and columns of the
Coulomb matrix.
Computing the eigenspectrum of a molecule reduces the

dimensionality from (3d−6) degrees of freedom to just d. In
machine learning, dimensionality reduction can sometimes
positively influence the prediction accuracy by providing some
regularization. However, such a drastic dimensionality reduc-
tion can cause loss of information and introduce unfavorable
noise (see Moussa35 and Rupp et al.36), like any coarse-grained
approach.

2.2.2. Sorted Coulomb Matrices. One way to find a unique
ordering of the atoms in the Coulomb matrix is to permute the
matrix in such a way that the rows (and columns) Ci of the
Coulomb matrix are ordered by their norm, i.e. ||Ci|| ≥ ||Ci+1||.
This ensures a unique Coulomb matrix representation. As a
downside, this new representation makes the problem much
higher-dimensional than it was when choosing only eigenvalues.
The input space has now dimensionality Natoms

2 compared to
Natoms for the eigenspectrum representation. Also, slight
variations in atomic coordinates or identities may cause abrupt
changes in the Coulomb matrix ordering, thereby impeding the
learning of structural similarities.

2.2.3. Random(-ly Sorted) Coulomb Matrices. The problem
of discontinuities due to abrupt changes in the matrix ordering
can be mitigated by considering for each molecule a set of

Figure 1. Coulomb matrix representation of ethene: A three-dimensional molecular structure is converted to a numerical Coulomb matrix using
atomic coordinates Ri and nuclear charges Zi. The matrix is dominated by entries resulting from heavy atoms (carbon self-interaction 0.5·62.4 = 36.9,
two carbon atoms in a distance of 1.33 Å result in ((6.6)/(1.33/0.529)) = 14.3). The matrix contains one row per atom, is symmetric, and requires
no explicit bond information.

Figure 2. Three different permutationally invariant representations of a molecule derived from its Coulomb matrix C: (a) eigenspectrum of the
Coulomb matrix, (b) sorted Coulomb matrix, (c) set of randomly sorted Coulomb matrices.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400195d | J. Chem. Theory Comput. 2013, 9, 3404−34193406

Hansen et al., J Chem Theory Comput, 9 (2013)

Symmetries of the representation should emulate symmetries of the system 
that keep the total energy constant

1. Translation 
2. Rotations 
3. Mirror reflection

Problems:
1. Dimensionality from # atoms
2. Ordering of the atoms

~ Coulomb’s law E =
qiqj

|ri − rj |



Covariant kernels

�18Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Encode rotational properties of the target property in the kernel

“Build kernel so as to encode the rotational 
properties of the target property”



Covariant kernels
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Encode rotational properties of the target property in the kernel

2

VECTORIAL GAUSSIAN PROCESS

REGRESSION

We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the

Descriptor
Training data

Transformation (rotation/inversion)

Force prediction

Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)



Covariant kernels

�20

Encode rotational properties of the target property in the kernel

2

VECTORIAL GAUSSIAN PROCESS

REGRESSION

We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the

Configurations

Transformations (rotation/inversion)

Kernel

Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

1. Derivative of energy kernel 
2. Integrate over all relevant orientations 
3. Local axis system



Multipoles: Learning curves
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Fundamental challenges for soft matter modeling
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Sampling

AnalysisModel

Experiment

force field development 
coarse-grained modeling

bayesian reweighting 
force field refinement

kinetic modeling 
(dimensionality reduction / clustering)

enhanced sampling 
high throughput studies



Coarse-graining as an inverse problem

�24reproduce Boltzmann distribution at CG level

high-resolution coarse-grained

simulate with u(r)

CG mapping

simulate with U(R)

CG mapping



Coarse-graining as an inverse problem
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Coarse-graining as an inverse problem
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The Many-body Potential of Mean Force

Many-body potential 
of mean force

Approximate 
CG potential

Kirkwood J Chem Phys (1935); Noid et al. J Chem Phys (2008)

Basis expansion
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The Multiscale Coarse-graining 
(MS-CG) Method

Geometric interpretation

Izvekov, Voth J Chem Phys (2005); Noid et al. J Chem Phys (2008); Rudzinski, Noid J Phys Chem B (2012)

Many-body mean force

Force field basis representation

Force-matching
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The Multiscale Coarse-graining 
(MS-CG) Method

Geometric interpretation

Izvekov, Voth J Chem Phys (2005); Noid et al. J Chem Phys (2008); Rudzinski, Noid J Phys Chem B (2012)

Many-body mean force

Force field basis representation

  

The Multiscale Coarse-graining 
(MS-CG) Method

Geometric interpretation

Izvekov, Voth J Chem Phys (2005); Noid et al. J Chem Phys (2008); Rudzinski, Noid J Phys Chem B (2012)

Many-body mean force

Force field basis representation

  

The Multiscale Coarse-graining 
(MS-CG) Method

Geometric interpretation

Izvekov, Voth J Chem Phys (2005); Noid et al. J Chem Phys (2008); Rudzinski, Noid J Phys Chem B (2012)

Many-body mean force

Force field basis representation

interaction type
basis function 

index

parameter
basis 

function



Force-matching
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The Multiscale Coarse-graining 
(MS-CG) Method

Geometric interpretation

Izvekov, Voth J Chem Phys (2005); Noid et al. J Chem Phys (2008); Rudzinski, Noid J Phys Chem B (2012)

Many-body mean force

Force field basis representation

  

The Multiscale Coarse-graining 
(MS-CG) Method

Geometric interpretation

Izvekov, Voth J Chem Phys (2005); Noid et al. J Chem Phys (2008); Rudzinski, Noid J Phys Chem B (2012)

Many-body mean force

Force field basis representation

  

The Multiscale Coarse-graining 
(MS-CG) Method

Geometric interpretation

Izvekov, Voth J Chem Phys (2005); Noid et al. J Chem Phys (2008); Rudzinski, Noid J Phys Chem B (2012)

Many-body mean force

Force field basis representation
Variational Functional



Relative Entropy Method
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Entropy lost during coarse-graining

Variational Functional

Minimization procedure

Shell J. Chem. Phys. (2008); Rudzinski and Noid J. Chem. Phys. (2011)



Relative Entropy Method

�30Shell J. Chem. Phys. (2008); Rudzinski and Noid J. Chem. Phys. (2011)

Information Functional



CGnet: a neural network based force matching

�31Wang et. al. ACS Central Science (2019) “Machine Learning of Coarse-Grained Molecular Dynamics Force Fields”



Fundamental challenges for soft matter modeling
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Sampling

AnalysisModel

Experiment

force field development 
coarse-grained modeling

enhanced sampling 
high throughput studies

bayesian reweighting 
force field refinement

kinetic modeling 
(dimensionality reduction / clustering)



Slow processesFast processes

Scale separation

Characterizing the hierarchy of kinetic processes from simulation 
trajectories

�33

integration 
time step

time [s]10− 15 10− 12 10− 9 10− 6

folding
process?

Lack of insight

side-chain 
reorientation

Eigenvalue decomposition 
of the Master equation

Work from Pande, Noé, Chodera, Schütte, 
Dill, Swope, Bowman, Keller, and others

Markov state models



Markov State Models
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τ

i
j

i j
microstates

micro-trajectory

maximum likelihood 
optimization

transition probabilities

Bowman et al. “An introduction to Markov state models…” Springer (2014)

eigenvalues
(hierarchy of kinetic processes)

eigenvectors
(probability flux for kinetic processes)

diagonalize

MSMs link 
microtrajectories with 
long timescale kinetic 

processes

+ detailed balance
p(T|C) ∝ p(C|T) p(T)

p(C|T) = ∏
ij

TCij
ij

πiTij = πjTji



Biased MSMs for dynamical reweighting
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MD Simulation of 
Dynamical Process

biased MSM

microstates
m

ic
ro

st
at

es

CG ( (Maximum
Likelihood
Estimation ( (

unbiased MSM

Biased Metropolis MC

transition probabilities

Simulation 
data

datamodel
Bayesian approach

Rudzinski, Kremer, Bereau J Chem Phys (2016)
Bowman et al. “An introduction to Markov state models…” Springer (2014)



Biased MSMs for dynamical reweighting
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MD Simulation of 
Dynamical Process

biased MSM

microstates
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CG ( (Maximum
Likelihood
Estimation ( (

unbiased MSM

Biased Metropolis MC

Reference Data

transition probabilities

Simulation 
data

Exp. 
data

Best 
combination

Bayesian approach

Rudzinski, Kremer, Bereau J Chem Phys (2016)



Biased MSMs for dynamical reweighting

�37Reference Data

MD Simulation of 
Dynamical Process

biased MSM

microstates
m

ic
ro

st
at

es

CG ( (Maximum
Likelihood
Estimation ( (

unbiased MSM

Biased Metropolis MC

transition probabilities

Exp. 
data

Simulation 
data

Best 
combination

Bayesian approach

Rudzinski, Kremer, Bereau J Chem Phys (2016)

See Also:

Olsson et al. PNAS “Combining experimental and simulation data of molecular processes via augmented Markov models” (2017)

Dixit and Dill, J. Chem. Theory Comput. “Caliber Corrected Markov Modeling (C2M2): Correcting Equilibrium Markov 
Models” (2018)



Transfer Operators
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Perron-Frobenius operator - “propagator”

probability density

pt+ τ(x) = 'τ pt(x)

Koopman operator

(τ ft(x) = ∫)
dy pτ(y ∣x) ft(y) = +[ ft(Xt+ τ) ∣ Xt = x]

Klus et al. Int. J. Nonlinear Sci. (2018) “Data-Driven Model Reduction and Transfer Operator Approximation”



Transfer Operators
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Detailed balance

Equilibrium

Klus et al. Int. J. Nonlinear Sci. (2018) “Data-Driven Model Reduction and Transfer Operator Approximation”

π(x) pτ(y ∣x) = π(y) pτ(x ∣y)
Stationary distribution'τ π = π

Spectral properties

Eigenvalues

Characteristic timescales

,τ φl = λl(τ) φl

1 = λ1 ≥λ2 ≥λ3 ≥…

λl(τ) = exp(− κlτ)



Transfer Operators

�40

Detailed balance

Equilibrium

Klus et al. Int. J. Nonlinear Sci. (2018) “Data-Driven Model Reduction and Transfer Operator Approximation”

π(x) pτ(y ∣x) = π(y) pτ(x ∣y)
Stationary distribution'τ π = π

Spectral properties

Eigenvector representation

(τ f =
∞

∑
l= 1

λl(τ) ⟨f, φl⟩π φl f =
∞

∑
l= 1

⟨f, φl⟩π φl

Separation of timescales?!



Koopman Theory

�41
S. Brunton et al. PLoS ONE (2016) “Koopman invariant subspaces and finite linear 
representations of nonlinear dynamical systems for control” 



Data driven approaches to transfer operators
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Variational Approach to Conformational dynamics (VAC)

Basis function representation

Klus et al. Int. J. Nonlinear Sci. (2018) “Data-Driven Model Reduction and Transfer Operator Approximation”

ΨX = [ψ(x1) ψ(x2) ⋯ ψ(xm)] and ΨY = [ψ(y1) ψ(y2) ⋯ ψ(ym)]

Covariance

C0 = 1
m − 1

m

∑
k= 1

ψ(xk) ψ(xk)⊤= 1
m − 1 ΨX Ψ⊤

X

Cτ = 1
m − 1

m

∑
k= 1

ψ(xk) ψ(yk)⊤= 1
m − 1 ΨX Ψ⊤

Y

Eigenvalue problem

MVAC = C+
0 Cτ

MVAC ξl = λl ξl

φl(x) = ξ*l ψ(x)



Data driven approaches to transfer operators
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Variational Approach to Conformational dynamics (VAC)

Rayleigh trace is maximized by first M 
eigenvectors of the Koopman operator

Klus et al. Int. J. Nonlinear Sci. (2018) “Data-Driven Model Reduction and Transfer Operator Approximation”

M

∑
l= 1

λl = sup
M

∑
l= 1

⟨(τ vl, vl⟩π

⟨vl, vl′ �
⟩π = δll′�

Solution to VAC eigenvalue problem 
maximizes Rayleigh traceMVAC ξl = λl ξl



Data driven approaches to transfer operators

�444Klus et al. Int. J. Nonlinear Sci. (2018) “Data-Driven Model Reduction and Transfer Operator Approximation”



Data driven approaches to transfer operators

�454Klus et al. Int. J. Nonlinear Sci. (2018) “Data-Driven Model Reduction and Transfer Operator Approximation”



Variational Autoencoders
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Mohammadi et al. IEEE Commun. Surv. Tutor (2017) “Deep 
Learning for IoT Big Data and Streaming Analytics: A Survey”

Kingma, Welling ArXiv (2017) “An Introduction to Variational Autoencoders”

pθ(z ∣x) = pθ(x, z)
pθ(x)

pθ(z ∣x) ≈ qϕ(z ∣x)

marginal likelihood

pθ(x) = ∫dz pθ(x, z)

intractable 

pθ(x ∣z) = pθ(x, z)
pθ(z)

prior

pθ(x ∣z)



Data driven approach to Koopman Theory
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Lusch et al. Nat Comm (2018) “Deep learning for 
universal linear embeddings of nonlinear dynamics”

7

Data driven approach to Koopman Theory

Chen, Ferguson J Comp Chem (2018) “Molecular 
enhanced sampling with autoencoders: On-the-fly 
collective variable discovery and accelerated free 

energy landscape exploration” 

Data driven approach to collective variable discovery



VAEs for MD analysis

�48Noe ArXiv (2019) “Machine Learning for Molecular Dynamics on Long Timescales”

Learn propagator directly

Find latent space representation 
that characterises dynamics

Focus on generation of samples



Fundamental challenges for soft matter modeling
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Sampling

AnalysisModel

Experiment

force field development 
coarse-grained modeling

enhanced sampling 
high throughput studies

bayesian reweighting 
force field refinement

kinetic modeling 
(dimensionality reduction / clustering)



High-throughput screening
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Chemistry Material properties

Forward

Systematic measurements, Automated sample preparation



Mullard,  
Nature, 549 (2017)

Interpolation (chemical) space is large

�51

Dobson, Nature, 432 (2004)
~1060 compounds

Drug-like chemical space



Drug permeability
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Flux of drug permeation 
across a lipid membrane

Swift & Amaro, Chem Biol & Drug 
Design 81 (2013)

z

�G(z)

Potential of mean force

z

P�1 =

Z
dz

exp (�G(z)/kBT )

Dz(z)

Permeability coefficient

Fokker-Planck; 
Smoluchoswki

Sample the potential of mean 
force from computer 
simulations



Coarse-graining the thermodynamics of partitioning
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Marrink, Tieleman, Chem Soc Rev 42 (2013) 
Periole, Marrink, Biomolecular Simulations (2013)

…

18 bead types: chemical fragments

Bereau & Kremer, J Chem Theory Comput 11 (2015)

cheminformatics &
machine learning

Automated parametrization for small molecules

Chemical group: 
• net charge 
• hydrogen bond 
• water/octanol partitioning



Identifying simple thermodynamic relations
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Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)



Generating databases of drug-membrane PMFs

�55Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

450,000 
compounds



Building a surface of permeabilities

�56Menichetti, Kanekal, Bereau, ACS Cent. Sci.  5 (2019)

P�1 =

Z
dz

exp (�G(z)/kBT )

Dz(z)

Permeability coefficient

between compounds that reduce to CG molecules made of a single bead (“unimers”) from

those made of two beads (“dimers”) amounts to a segregation between molecular weights.5

We populate the permeability surfaces with these compounds—projecting them onto the

two molecular descriptors: pKa and partitioning free energy. By coarse-graining every sin-

gle compound, we establish a map between chemical structure and its CG thermodynamic

property.
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Figure 3: Chemical-space coverage of GDB projected onto pKa and water/octanol parti-
tioning free energies, �GW!Ol. Acidic and basic pKa are shown in panels (a,b) and (c,d),
respectively. Panels (a,c) and (b,d) describe the coverage corresponding to coarse-grained
unimers and dimers, respectively. Regions highlighted in light blue display several represen-
tative chemical groups. Substitutions denoted by “?” correspond to H, alkyl, or aryl groups,
while “?*” only correspond to alkyl groups.

10

Analysis of 500,000+ 
compounds

Impact of chemical group on permeability



Connecting structure and kinetics
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H(R) = H0(R)+ H1(R)

x

F(x)

structure

ki
ne

tic
s

model I model J model K

x x



Investigation of structural-kinetic relationships for helix-coil transitions
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Simple energetics

Probing the role of steric interactions in the 
formation of free-energy barriers

Detailed sterics

Systematic characterization of kinetics through 
network description

JFR, Bereau Computation (2018); JFR, Bereau J Chem Phys (2018)



Investigation of structural-kinetic relationships for helix-coil transitions
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Simple energetics

Probing the role of steric interactions in the 
formation of free-energy barriers

Detailed sterics

ki
ne

tic
s

structure

Steric interactions alone determine a simple 
relationship between structure and kinetics

JFR, Bereau Computation (2018); JFR, Bereau J Chem Phys (2018)



Data-driven methods for soft matter
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Thank you for your attention!
Slides posted @ RudzinskiResearch.com
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