

FRITZ-HABER-INSTITUT MAX-PLANCK-GESELLSCHAFT

Big Data Summer

A summer school of the BiGmax Network Platja d'Aro, Spain, September 9 – 13, 2019

Clean data acquisition in oxidation catalysis

Annette Trunschke

Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Pl<mark>anck-</mark>Gesellschaft, Berlin, Germany

Data: Raw material to generate understanding

- Data will have to be
 - Well documented by meta data
 - Stored in a findable way
 - Documented and stored in a re-useable form
 - Clean enough to be interoperable with later and external analysis
 - Complete enough to allow reconstruction of the experiment

Challenges and chances – types of data

Active site

Journal of Catalysis 2015, 326, 560-573.

Catalytic cycle / mechanism

Dynamics

Challenges and chan

Active site

Chracterization of activated and and spent catalysts

- Bulk and surface analysis of powders
- Synthesis conditions including raw materials and history

Model investiagtions

- Surface science analysis
- DFT calculations

Operando spectroscopy

Simultaneous Big* data measurement of chemical/physical properties and functional properties in one experiment

c cycle / mechanism

Reaction kinetics

- Process conditions and reactor type
- Analitical methods of Neurock, Het.Catal.
 concentration determination
- Method of calculations
 A applied in activity/selectivity
 determination

Reproducible synthesis

- Automated synthesis reactors deliver synthesis metadata
- Difficulties in automation:
 - Separation and washing steps
 - Activation procedures

Reproducible synthesis

Simulations: Frank Girgsdies

"Reproducible" synthesis

SN	m (g)	XRD lattice parameter			XRD		XRF			
	Before testing	а	b	С	M1 phase (%)	Мо	V	Те	Nb	
29200	130.11		Precursor		-	0.4474	0.0978	0.0813	0.0997	
29258 ^A	1.69	21.1682790	26.6586529	4.0158877	97.69	0.4579	0.0994	0.0837	0.0873	
29350 ^B	8.59	21.1667252	26.6579321	4.0164262	97.74	0.4546	0.0979	0.0835	0.0913	
29425 ^A	1.71	21.1713859	26.6656641	4.0171937	97.57	0.4566	0.1004	0.0840	0.0877	
29611 ^B	8.10	21.1723662	26.6627860	4.0170173	97.96	0.4575	0.0995	0.0840	0.0874	
29632 ^B	8.34	21.1715227	26.6655441	4.0171018	97.66	0.4522	0.1006	0.0829	0.0924	
29666 ^B	8.30	21.1699864	26.6621774	4.0164017	97.89	0.4522	0.1010	0.0828	0.0924	

Sequence of catalytic test experiment

Same TOS at highest T

- Sequence matters due to the chemical memory of catalysts
- Catalysts needs to be equilibrated at first

Heat and mass transport phenomena

Pressure drops, carbon balance,...

Calculation of activity

$$X_i = \frac{n_{i,0} - n_i}{n_{i,0}}$$

Reaction rate r

$$r = \frac{1}{v_i} \frac{dn_i}{m_{cat} dt}$$

Turn over frequency
$$TOF[s^{-1}] = \frac{N_i}{N_{sites} \cdot t}[s^{-1}]$$

- Nature and number of active sites usually unknown
- Difficult / impossible to measure TOF in heterogeneous catalysis !!!

Calculation of selectivity

	key compound consumed	sum of products
stochiometric factors	formally correct, requires high knowledge level S _{cf}	S _{pf}
number of carbon atoms	S _{cn}	most convenient, requires minimum of knowledge S _{pn}

$$S_{cf}(product) = \frac{\frac{\nu(key\ compound)}{\nu(product)} \cdot c(product)_{out}}{\frac{c(key\ compound)_{in} - c(key\ compound)}{c(key\ compound)} \cdot c(product)}$$

$$S_{pn}(product) = \frac{\frac{n_{carbon\ atoms}(product)}{n_{carbon\ atoms}(key\ compound)} \cdot c(product)}{\frac{n_{carbon\ atoms}(product)}{n_{carbon\ atoms}(key\ compound)} \cdot c(product)}$$

Preferred raw data is the concentration as a function of time

Developing quality control

- Definition of clear rules to test and characterize catalysts in form of an experimental handbook
- 2. Synthesis of 10 well-known catalysts in selective oxidation that show diversity

Data Science Project in Oxidation
Catalysis

Generation of a Reference Data Set

- Testing (C2-C4 oxidation) and characterization of the catalysts according to the workflow described in the handbook involving activated and spent catalysts
- 4. Data evaluation finding a continuous function $P(\mathbf{d})$ that generalizes the discrete data sets $\{P_i, \mathbf{d}_i\}$

Catalyst platform for training in ethane, propane, *n*-butane oxidation

10 g of each, pressed and sieved

Kinetic data

	Catalyst preparation			Characterization					Catalysis					
	Synthesis Activation		XRD	XRD				n-butane oxidation						
Catalyst ID	Synthesis technique		T _{max} [°C]		ICSD	a [Å]		:		Feed	r (300°C) [mmol g ⁻¹ h ⁻¹]	r (300°C) [mmol m ⁻² h ⁻¹]	E _a [kJ mol ⁻¹]	
1	HT		650							Standard				
										Less O ₂	-	-	-	
										ODH	-	-	-	
										Fuel rich	-	-	-	
										5% water	-	-	-	
										10%	-	-	-	
										water				
										20% water	-	-	-	
2	P									Standard				
										Less O ₂	-	-	-	
										ODH	-	-	-	
										Fuel rich	-	-	-	
										5% water	-	-	-	
										10%	-	-	-	
										water				
										20% water	-	-	-	

- Single rate not useful
- Broad parameter space and different reactions increase the number of data
- How to optimize selectivity? For example:

$$\frac{1}{r_{C_3H8}} = f(r_{CO_2})$$

Chemical and physical properties

Property	Physical value	Methods
Bulk crystal structure (ICSD#)	Lattice constants a , b , c [Å], α , β , γ [°] Unit cell volume V [nm³] crystallographic density $\rho_{crystal}$ [g/cm³]	XRD, TEM
Bulk chemical composition	c _M , c _O [at%]	XRF, ICP-OES, EDX
Surface composition	$c_{\rm M}$, $c_{\rm O}$ [at%] surface active site density [nm ⁻²]	XPS
Binding energy, surface oxidation state	B.E. [eV], M ⁿ⁺	XPS
Valence band onset, M nd onset, E secondary electron cutoff, work function, maximum band bending at the surface "s" (surface potential barrier), change in electron affinity	E_{VB} , E_{nd} , E_{cutoff} , Φ , eV_s , ΔX [eV]	XPS, NAP- XPS, ResPES
Absorption edge energy	O K-Edge, V L ₃ -Edge [eV]	NEXAFS

Chemical and physical properties

Property	Physical value	Methods
Specific surface area (BET) Total pore volume, mesopore volume	S_{BET} [m ² /g] V_{total} , V_{mp} [m ³ /g]	Nitrogen adsorption
Heat of adsorption Ads. capacity of reactants (C_nH_{2n+2} , O_2)	ΔH_{ads} [kJ mol ⁻¹] n [mol/g]	Microcalorimetry
Conductivity, real part of permittivity ε' , imaginary part of permittivity ε'' , Apparent activation energy of conduction	σ [S/m], $arepsilon'$, $arepsilon''$, E_c [eV]	MCPT
Optical edge energy	E_{edge} [eV]	UV/Vis
Oxidation/reduction equivalents	Oxygen defect density [V _o /nm ²]	TPR/TPD
Desorption temperature	T [K]	TPD
¹⁸ O exchange temperature as function of feed, M-O stretching frequencies	Τ[K] ν[eV]	Raman
Activity CO oxidation	T ₁₀ , T ₅₀ [K]	Fixed bed reactor 1

Hardware Pierre Kube

- Kinetic reaction experiments in steady state and pulse operation with temperature-programmed reactions / desorption experiments allows to investigate the very same specimen without the need to transfer the material
- Advanced programing operation of the central unit allows the generation of experiment trains in recipe style probing relevant properties in consecutive order
- Kinetic experiments with pre-programmed parameters are interlaced with activation steps and determination steps of redox/acid-base properties; Fully automated operation allows the execution of long-term experiment series (typically up to 100 hours)

Data management Peter Kraus

Tree based structure

- Sample numbers as nodes
- Treatments as paths

Samples

- Provenance: synthesis, pre-treatment, parent species
- Characterisation: "standard methods"
- Performance: catalytic testing
- Tags: "MoVTeNbOx" or "Clean Data"
- Spent samples get a new sample number

Treatments

- Steps in synthesis, pre-treatment
- Processes with attached data: Catalytic testing, BESSY XPS, Conductivity, Microcalorimetry...

Data management Peter Kraus

NoSQL database

- JSON-based structures for structure and metadata
 - Human- and machine- readable
 - Non-rigid, extensible
- Allows "binary" and textfile attachments
 - CSV files have to be annotated
- MongoDB a good initial choice

October: Collect all available data for 30574

- Estimate overall size of the archive
- First implementation of data structure

```
"id": ,
"sn": 30574,
"provenance": {
    parents": [29345],
    "treatment": |
        {"calcination": {"T": , "unit": "°C"}},
        {"pressing": {"pressure": 1, "unit": "ton"}},
        {"sieving": {"size": [100, 200], "unit": "µm"}},
    "data": [
        {"id": [...], "format": "Pico Technology logs"}
    "a": {"value": 21.1733, "error": 0.0011, "unit": "Å"},
    "b": {"value": 26.6574, "error": 0.0017, "unit": "Å"},
    "c": {"value": 4.01639, "error": 0.00018, "unit": "Å"},
    "V": {"value": 2266.9, "error": 0.2, "unit": "Å3"},
    "crystal system": "orthorhombic",
    "space group": {"symbol": "Pba2", "number": 32}
    "data": [
        {"id": [...], "format":, "hash": }
```

Conclusion

- Clean experimental data reveal the complexity of describing "the function" of a material
- The handbook and the resulting clean data will serve as input base for discussion in the community
- In addition to metadata storage, some compulsory procedures need to be established and control mechanisms need to be introduced
- Minimum requirements, conditions, descriptive metadata, and benchmark standards will be defined while ensuring the necessary flexibility and freedom of research

