FRITZ-HABER-INSTITUT MAX-PLANCK-GESELLSCHAFT #### Big Data Summer A summer school of the BiGmax Network Platja d'Aro, Spain, September 9 – 13, 2019 # Clean data acquisition in oxidation catalysis Annette Trunschke Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Pl<mark>anck-</mark>Gesellschaft, Berlin, Germany ### Data: Raw material to generate understanding - Data will have to be - Well documented by meta data - Stored in a findable way - Documented and stored in a re-useable form - Clean enough to be interoperable with later and external analysis - Complete enough to allow reconstruction of the experiment ## Challenges and chances – types of data Active site Journal of Catalysis 2015, 326, 560-573. #### Catalytic cycle / mechanism Dynamics ## Challenges and chan Active site Chracterization of activated and and spent catalysts - Bulk and surface analysis of powders - Synthesis conditions including raw materials and history Model investiagtions - Surface science analysis - DFT calculations Operando spectroscopy Simultaneous Big* data measurement of chemical/physical properties and functional properties in one experiment c cycle / mechanism Reaction kinetics - Process conditions and reactor type - Analitical methods of Neurock, Het.Catal. concentration determination - Method of calculations A applied in activity/selectivity determination ### Reproducible synthesis - Automated synthesis reactors deliver synthesis metadata - Difficulties in automation: - Separation and washing steps - Activation procedures ## Reproducible synthesis Simulations: Frank Girgsdies # "Reproducible" synthesis | SN | m (g) | XRD lattice parameter | | | XRD | | XRF | | | | |--------------------|-------------------|-----------------------|------------|-----------|--------------|--------|--------|--------|--------|--| | | Before
testing | а | b | С | M1 phase (%) | Мо | V | Те | Nb | | | 29200 | 130.11 | | Precursor | | - | 0.4474 | 0.0978 | 0.0813 | 0.0997 | | | 29258 ^A | 1.69 | 21.1682790 | 26.6586529 | 4.0158877 | 97.69 | 0.4579 | 0.0994 | 0.0837 | 0.0873 | | | 29350 ^B | 8.59 | 21.1667252 | 26.6579321 | 4.0164262 | 97.74 | 0.4546 | 0.0979 | 0.0835 | 0.0913 | | | 29425 ^A | 1.71 | 21.1713859 | 26.6656641 | 4.0171937 | 97.57 | 0.4566 | 0.1004 | 0.0840 | 0.0877 | | | 29611 ^B | 8.10 | 21.1723662 | 26.6627860 | 4.0170173 | 97.96 | 0.4575 | 0.0995 | 0.0840 | 0.0874 | | | 29632 ^B | 8.34 | 21.1715227 | 26.6655441 | 4.0171018 | 97.66 | 0.4522 | 0.1006 | 0.0829 | 0.0924 | | | 29666 ^B | 8.30 | 21.1699864 | 26.6621774 | 4.0164017 | 97.89 | 0.4522 | 0.1010 | 0.0828 | 0.0924 | | ### Sequence of catalytic test experiment #### Same TOS at highest T - Sequence matters due to the chemical memory of catalysts - Catalysts needs to be equilibrated at first # Heat and mass transport phenomena Pressure drops, carbon balance,... ### Calculation of activity $$X_i = \frac{n_{i,0} - n_i}{n_{i,0}}$$ Reaction rate r $$r = \frac{1}{v_i} \frac{dn_i}{m_{cat} dt}$$ Turn over frequency $$TOF[s^{-1}] = \frac{N_i}{N_{sites} \cdot t}[s^{-1}]$$ - Nature and number of active sites usually unknown - Difficult / impossible to measure TOF in heterogeneous catalysis !!! # Calculation of selectivity | | key compound
consumed | sum of products | |--------------------------|---|---| | stochiometric
factors | formally correct,
requires high
knowledge level
S _{cf} | S _{pf} | | number of carbon atoms | S _{cn} | most convenient,
requires minimum
of knowledge
S _{pn} | $$S_{cf}(product) = \frac{\frac{\nu(key\ compound)}{\nu(product)} \cdot c(product)_{out}}{\frac{c(key\ compound)_{in} - c(key\ compound)}{c(key\ compound)} \cdot c(product)}$$ $$S_{pn}(product) = \frac{\frac{n_{carbon\ atoms}(product)}{n_{carbon\ atoms}(key\ compound)} \cdot c(product)}{\frac{n_{carbon\ atoms}(product)}{n_{carbon\ atoms}(key\ compound)} \cdot c(product)}$$ Preferred raw data is the concentration as a function of time # Developing quality control - Definition of clear rules to test and characterize catalysts in form of an experimental handbook - 2. Synthesis of 10 well-known catalysts in selective oxidation that show diversity Data Science Project in Oxidation Catalysis Generation of a Reference Data Set - Testing (C2-C4 oxidation) and characterization of the catalysts according to the workflow described in the handbook involving activated and spent catalysts - 4. Data evaluation finding a continuous function $P(\mathbf{d})$ that generalizes the discrete data sets $\{P_i, \mathbf{d}_i\}$ #### Catalyst platform for training in ethane, propane, *n*-butane oxidation 10 g of each, pressed and sieved #### Kinetic data | | Catalyst preparation | | | Characterization | | | | | Catalysis | | | | | | |----------------|------------------------|--|--------------------------|------------------|------|----------|--|--------------------|-----------|---------------------|--|--|---|--| | | Synthesis Activation | | XRD | XRD | | | | n-butane oxidation | | | | | | | | Catalyst
ID | Synthesis
technique | | T _{max}
[°C] | | ICSD | a
[Å] | | : | | Feed | r
(300°C)
[mmol
g ⁻¹ h ⁻¹] | r
(300°C)
[mmol
m ⁻² h ⁻¹] | E _a
[kJ mol ⁻¹] | | | 1 | HT | | 650 | | | | | | | Standard | | | | | | | | | | | | | | | | Less O ₂ | - | - | - | | | | | | | | | | | | | ODH | - | - | - | | | | | | | | | | | | | Fuel rich | - | - | - | | | | | | | | | | | | | 5% water | - | - | - | | | | | | | | | | | | | 10% | - | - | - | | | | | | | | | | | | | water | | | | | | | | | | | | | | | | 20%
water | - | - | - | | | 2 | P | | | | | | | | | Standard | | | | | | | | | | | | | | | | Less O ₂ | - | - | - | | | | | | | | | | | | | ODH | - | - | - | | | | | | | | | | | | | Fuel rich | - | - | - | | | | | | | | | | | | | 5% water | - | - | - | | | | | | | | | | | | | 10% | - | - | - | | | | | | | | | | | | | water | | | | | | | | | | | | | | | | 20%
water | - | - | - | | | | | | | | | | | | | | | | | | - Single rate not useful - Broad parameter space and different reactions increase the number of data - How to optimize selectivity? For example: $$\frac{1}{r_{C_3H8}} = f(r_{CO_2})$$ # Chemical and physical properties | Property | Physical value | Methods | |--|---|--------------------------| | Bulk crystal structure
(ICSD#) | Lattice constants a , b , c [Å], α , β , γ [°] Unit cell volume V [nm³] crystallographic density $\rho_{crystal}$ [g/cm³] | XRD, TEM | | Bulk chemical composition | c _M , c _O [at%] | XRF, ICP-OES,
EDX | | Surface composition | $c_{\rm M}$, $c_{\rm O}$ [at%] surface active site density [nm ⁻²] | XPS | | Binding energy, surface oxidation state | B.E. [eV], M ⁿ⁺ | XPS | | Valence band onset, M nd onset, E secondary electron cutoff, work function, maximum band bending at the surface "s" (surface potential barrier), change in electron affinity | E_{VB} , E_{nd} , E_{cutoff} , Φ , eV_s , ΔX [eV] | XPS, NAP-
XPS, ResPES | | Absorption edge energy | O K-Edge, V L ₃ -Edge [eV] | NEXAFS | # Chemical and physical properties | Property | Physical value | Methods | |--|--|------------------------| | Specific surface area (BET) Total pore volume, mesopore volume | S_{BET} [m ² /g] V_{total} , V_{mp} [m ³ /g] | Nitrogen
adsorption | | Heat of adsorption Ads. capacity of reactants (C_nH_{2n+2} , O_2) | ΔH_{ads} [kJ mol ⁻¹]
n [mol/g] | Microcalorimetry | | Conductivity, real part of permittivity ε' , imaginary part of permittivity ε'' , Apparent activation energy of conduction | σ [S/m], $arepsilon'$, $arepsilon''$, E_c [eV] | MCPT | | Optical edge energy | E_{edge} [eV] | UV/Vis | | Oxidation/reduction equivalents | Oxygen defect density [V _o /nm ²] | TPR/TPD | | Desorption temperature | T [K] | TPD | | ¹⁸ O exchange temperature as function of feed, M-O stretching frequencies | Τ[K]
ν[eV] | Raman | | Activity CO oxidation | T ₁₀ , T ₅₀ [K] | Fixed bed reactor 1 | #### Hardware Pierre Kube - Kinetic reaction experiments in steady state and pulse operation with temperature-programmed reactions / desorption experiments allows to investigate the very same specimen without the need to transfer the material - Advanced programing operation of the central unit allows the generation of experiment trains in recipe style probing relevant properties in consecutive order - Kinetic experiments with pre-programmed parameters are interlaced with activation steps and determination steps of redox/acid-base properties; Fully automated operation allows the execution of long-term experiment series (typically up to 100 hours) #### Data management Peter Kraus #### Tree based structure - Sample numbers as nodes - Treatments as paths #### Samples - Provenance: synthesis, pre-treatment, parent species - Characterisation: "standard methods" - Performance: catalytic testing - Tags: "MoVTeNbOx" or "Clean Data" - Spent samples get a new sample number #### Treatments - Steps in synthesis, pre-treatment - Processes with attached data: Catalytic testing, BESSY XPS, Conductivity, Microcalorimetry... #### Data management Peter Kraus #### NoSQL database - JSON-based structures for structure and metadata - Human- and machine- readable - Non-rigid, extensible - Allows "binary" and textfile attachments - CSV files have to be annotated - MongoDB a good initial choice #### October: Collect all available data for 30574 - Estimate overall size of the archive - First implementation of data structure ``` "id": , "sn": 30574, "provenance": { parents": [29345], "treatment": | {"calcination": {"T": , "unit": "°C"}}, {"pressing": {"pressure": 1, "unit": "ton"}}, {"sieving": {"size": [100, 200], "unit": "µm"}}, "data": [{"id": [...], "format": "Pico Technology logs"} "a": {"value": 21.1733, "error": 0.0011, "unit": "Å"}, "b": {"value": 26.6574, "error": 0.0017, "unit": "Å"}, "c": {"value": 4.01639, "error": 0.00018, "unit": "Å"}, "V": {"value": 2266.9, "error": 0.2, "unit": "Å3"}, "crystal system": "orthorhombic", "space group": {"symbol": "Pba2", "number": 32} "data": [{"id": [...], "format":, "hash": } ``` #### Conclusion - Clean experimental data reveal the complexity of describing "the function" of a material - The handbook and the resulting clean data will serve as input base for discussion in the community - In addition to metadata storage, some compulsory procedures need to be established and control mechanisms need to be introduced - Minimum requirements, conditions, descriptive metadata, and benchmark standards will be defined while ensuring the necessary flexibility and freedom of research