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Does Chocolate Consumption cause Nobel Prizes?
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Reichenbach

If X and Y are statistically dependent then either

7
X Y )AY X
O >0 O<€

How can we distinguish these cases?

o<

(Reichenbach, 1956)
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Conditional Independence Tests

If we have measured everything relevant
then testing X_ Il Y|Z for all possible Z
lets us decide whether

Z

AY o 2 y

Problem: It's impossible to measure everything relevant




Why not just find a confounder?

We would like to be able to infer a Z such that

XY|Z
if and only if X and Y are actually confounded

Problem: Finding such a Z is too easy
Z = X always works



Kolmogorov Complexity
K (P) is the length of the shortest program computing P
1
K(P) = mpin{lplr p €101}, [U(p,x,q) = P(x)| < 5}

This shortest program p* is the best compression of P

o~ K




From the Markov...

An admissible causal network for X;, ..., X, is G satisfying
m
P(Xqy, .., X) = HP(Xi | PA;)
i=1

Problem: How do we find a factorization?



..to the Algorithmic Markov Condition

The simplest causal network for X, ..., X,,, Is G* satisfying
m
K(P(Xy, . X)) = ) K(P(X; | PA})
i=1

Postulate: G* corresponds to the true generating process

(Janzing & Scholkopf, 2010) 8



AMC with Confounding

We can also include latent variables

K(P(X,Z)) = i K(P(X; | PA))) + z K (P(2))



We don't know P(+)

P(X,Z) = P(Z) HP(Xi | Z)
=1

In particular, we will use probabilistic PCA
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Kolmogorov is not computable

For data X, the Minimum Description Length principle
identifies the best model M € M by minimizing

L(X,M) = L(M) + L(X | M)

which provides a computable and
statistically sound approximation to K

(Griinwald 2007) 11



Decisions, decisions

If
LX,Y, | M,,) <L(X,Y | M,,)

then we consider X,Y to be confounded
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Decisions, decisions

|f
LX,Y,| M) > L(X,Y | M)

then we consider X, Y to be causal

The difference can be interpreted as confidence
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Confounding in Synthetic Data



Synthetic Data: Results

There are only two other works directly related to ours

SA: Confounding strength in linear models using spectral analysis
ICA: Confounding strength using independent component analysis
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Confounding in Genetic Networks

More realistically, we consider gene regulation data
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Optical Data

@\\"

micro controller
generating
random voltage Z

TV providing the noise E

webcam

laptop showing
low resolution image X
from webcam

[ lightsensor measuring

intensity Y

(Janzing & Scholkopf, 2017)
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Optical Data
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Wait! What about...

Nobel Laureates per 10 Million Population
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(Messerli 2012)
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Conclusions

We looked into distinguishing causal from confounded

In particular, we

= generalized the AMC to include latent variables

= used a linear factor model and MDL to instantiate it

= showed that we obtain good results on synthetic and real data

In the future, we will

= work on a significance test for our score

= |ook into using more complex factor models
= apply our method to real-world data
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