Telling Causal from Confounded

David Kaltenpoth

Jilles Vreeken

10 September 2019

Does Chocolate Consumption cause Nobel Prizes?

Reichenbach

If X and Y are statistically dependent then either

How can we distinguish these cases?

Conditional Independence Tests

If we have measured everything relevant then testing $X_{\bot \bot Y}|Z$ for all possible Z lets us decide whether

Problem: It's impossible to measure everything relevant

Why not just find a confounder?

We would like to be able to infer a \hat{Z} such that

$$X_{\perp \mid \mid} Y \mid \hat{Z}$$

if and only if X and Y are actually confounded

Problem: Finding such a \hat{Z} is **too easy** $\hat{Z} = X$ always works

Kolmogorov Complexity

K(P) is the length of the shortest program computing P

$$K(P) = \min_{p} \left\{ |p| : p \in \{0,1\}^*, |\mathcal{U}(p,x,q) - P(x)| < \frac{1}{q} \right\}$$

This shortest program p^* is the **best compression** of P

From the Markov...

An admissible causal network for $X_1, ..., X_m$ is G satisfying

$$P(X_1, ..., X_m) = \prod_{i=1}^m P(X_i | PA_i)$$

Problem: How do we find a simple factorization?

...to the Algorithmic Markov Condition

The simplest causal network for $X_1, ..., X_m$ is G^* satisfying

$$K(P(X_1,...,X_m)) = \sum_{i=1}^m K(P(X_i \mid PA_i^*))$$

Postulate: G^* corresponds to the true generating process

AMC with Confounding

We can also include latent variables

$$K(P(\boldsymbol{X},\boldsymbol{Z})) = \sum_{i=1}^{m} K(P(X_i \mid PA'_i)) + \sum_{j=1}^{l} K(P(Z_j))$$

We don't know $P(\cdot)$

$$P(X,Z) = P(Z) \prod_{i=1}^{m} P(X_i \mid Z)$$

In particular, we will use probabilistic PCA

Kolmogorov is not computable

For data X, the Minimum Description Length principle identifies the best model $M \in \mathcal{M}$ by minimizing

$$L(X,M) = L(M) + L(X \mid M)$$

which provides a computable and statistically sound approximation to *K*

Decisions, decisions

If

$$L(X,Y,\mid \mathcal{M}_{co}) < L(X,Y\mid \mathcal{M}_{ca})$$

then we consider X, Y to be confounded

Decisions, decisions

If

$$L(X,Y,\mid \mathcal{M}_{co}) > L(X,Y\mid \mathcal{M}_{ca})$$

then we consider X, Y to be causal

The difference can be interpreted as confidence

Confounding in Synthetic Data

Synthetic Data: Results

There are only two other works directly related to ours SA: Confounding strength in linear models using spectral analysis ICA: Confounding strength using independent component analysis

Confounding in Genetic Networks

More realistically, we consider gene regulation data

Optical Data

Optical Data

Wait! What about...

Conclusions

We looked into distinguishing causal from confounded

In particular, we

- generalized the AMC to include latent variables
- used a linear factor model and MDL to instantiate it
- showed that we obtain good results on synthetic and real data

In the future, we will

- work on a significance test for our score
- look into using more complex factor models
- apply our method to real-world data

Thank you!

We looked into distinguishing causal from confounded

In particular, we

- generalized the AMC to include latent variables
- used a linear factor model and MDL to instantiate it
- showed that we obtain good results on synthetic and real data

In the future, we will

- work on a significance test for our score
- look into using more complex factor models
- apply our method to real-world data