EXERCISE I

THE HARMONIC APPROXIMATION

Static Equilibrium Position

Taylor expansion: $E \approx$

 $E(\mathbf{R}_0) + \frac{1}{2} \sum_{i,j} \Phi^{i,j} \left(\Delta \mathbf{R}_i \right) (\Delta \mathbf{R}_j)$

Determine the Hessian via finite differences:

$$\Phi_{ij} = \frac{\partial^2 E}{\partial \mathbf{R}_i \partial \mathbf{R}_j} \Big|_{\mathbf{R}^0} = -\frac{\partial}{\partial \mathbf{R}_i} \mathbf{F}_j \Big|_{\mathbf{R}^0} \approx -\frac{\mathbf{F}_j(\mathbf{R}_i^0 + \varepsilon)}{\varepsilon}$$

SUPERCELL EXPANSION

Periodic Boundary Conditions \Rightarrow Reciprocal Space **q**

Eigenvalue problem:

 $\mathbf{D}(\mathbf{q}) \left[\boldsymbol{\nu}(\mathbf{q}) \right] = \boldsymbol{\omega}^2(\mathbf{q}) \left[\boldsymbol{\nu}(\mathbf{q}) \right]$

SUPERCELL EXPANSION

k_grid	88	8		1				
phonon supercell 2 2 2 phonon displacement 0.01								
phonon band 0.0 phonon band 0.5 phonon band 0.375 phonon band 0.0	0.0 0.5 0.375 0.0	0.0 1.0 0.75 0.0	0.5 0.375 0.0 0.5	0.5 0.375 0.0 0.5	0.0 0.75 0.0 0.5	100 100 100 100	Gamma X K Gamma	X K Gamma L
phonon dos	0 800	0 800	1	40				

RESULTS

EXERCISE 11

(a) Change into directory exercise_2_a and run phonopy-FHI-aims by typing

cd exercise_2/exercise_2_a
phonopy-FHI-aims

(b) Change into the directory phonopy-FHI-aims-displacement-01 and run FHI-aims:

cd phonopy-FHI-aims-displacement-01
mpirun -np 4 aims.x > phonopy-FHI-aims-displacement-01.out

(c) Change into parent directory and run phonopy-FHI-aims again

cd .. phonopy-FHI-aims

SUPERCELL EXPANSION

k_grid	6 6 6	evercise 2 a/control in
phonon supercell	-1 1 1 1 -1 1	1 1 -1

$$\hat{\mathbf{a}}_{i} = \begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{pmatrix} \cdot \mathbf{a}_{i} \implies \mathbf{a}_{1} = \begin{pmatrix} 0\\ a/2\\ a/2 \end{pmatrix} \rightarrow \hat{\mathbf{a}}_{1} = \begin{pmatrix} a\\ 0\\ 0 \end{pmatrix}$$

SUPERCELL EXPANSION

k_grid 3 3 3 phonon supercell -2 2 2 2 -2 2 2 2 -2 exercise_2_b/control.in

$$\mathbf{\hat{a}}_{i} = \begin{pmatrix} -2 & 2 & 2\\ 2 & -2 & 2\\ 2 & 2 & -2 \end{pmatrix} \cdot \mathbf{a}_{i} \implies \mathbf{a}_{1} = \begin{pmatrix} 0\\ a/2\\ a/2 \end{pmatrix} \rightarrow \mathbf{\hat{a}}_{1} = \begin{pmatrix} 2a\\ 0\\ 0 \end{pmatrix}$$

WORKFLOW

(a) Change into directory exercise_2_b and run phonopy-FHI-aims by typing

cd exercise_2/exercise_2_b
phonopy-FHI-aims

(b) Change into the directory phonopy-FHI-aims-displacement-01 and run FHI-aims:

cd phonopy-FHI-aims-displacement-01
mpirun -np 4 aims.x > phonopy-FHI-aims-displacement-01.out

(c) Change into parent directory and run phonopy-FHI-aims again

cd .. phonopy-FHI-aims

BAND STRUCTURE

THE HARMONIC FREE ENERGY

$$F^{ha}(T) = E(\{\mathbf{R}_0\})$$

$$+ \int d\omega \ g(\omega) \frac{\hbar\omega}{2} \longrightarrow \text{Zero-point vibration}$$

$$+ \int d\omega \ g(\omega) \ k_B T \ln\left(1 - e^{\left(-\frac{\hbar\omega}{k_B T}\right)}\right)$$

Thermally induced vibrations

FREE ENERGY AND HEAT CAPACITY

EXERCISE III

HARMONIC MOLECULAR DYNAMICS

Numerical Integration of the equations of motion L.Verlet, Phys. Rev. 159, 98 (1967).

 $M_I \mathbf{R}_I(t) =$ $\mathbf{F}_I(\mathbf{R}_1(t),\cdots,\mathbf{R}_N(t))$

Harmonic potential orders of magnitude faster, but the more inaccurate the higher the temperature! cp exercise_1/phonopy-FHI-aims-force_constants.dat exercise_3/

mpirun -np 4 aims.x > aims.out

Exercise 4 and 5 - electronic conductivity of Al

tutorial4 files are located in:

/afs/ictp.it/public/shared/smr2475/
 tutorials/tutorial4/skeleton

Central equation: Kubo-Greenwood optical conductivity

Exercise 4: optical conductivity of Al

•Calculation of $\sigma(\omega)$ for a primitive AI unit-cell (I atom)

geometry.in

lattice_vector 1.9943 1.9943 0.0000
lattice_vector 0.0000 1.9943 1.9943
lattice_vector 1.9943 0.0000 1.9943

atom_frac 0.00 0.00 0.00 Al

control.in (to be added)

compute_kubo_greenwood 0.1 0.025 -11 -1 0.0 2.0 1000 a a

$$\sigma(\omega) = \frac{2\pi e^2}{3V m_e^2 \omega} \sum_{\mathbf{k},m,n,m\neq n} |\langle \Psi_{\mathbf{k}n} | \hat{\mathbf{p}} | \Psi_{\mathbf{k}m} \rangle|^2 \cdot (f_{\mathbf{k}n} - f_{\mathbf{k}m}) \,\delta\left(\epsilon_{\mathbf{k}n} - \epsilon_{\mathbf{k}m} - \hbar\omega\right)$$
$$\sigma(\omega) = \frac{2\pi e^2}{3V m_e^2 \omega} \left\langle \sum_{\mathbf{k},m,n,m\neq n} |\langle \Psi_{\mathbf{k}n} | \hat{\mathbf{p}} | \Psi_{\mathbf{k}m} \rangle|^2 \cdot (f_{\mathbf{k}n} - f_{\mathbf{k}m}) \,\delta\left(\epsilon_{\mathbf{k}n} - \epsilon_{\mathbf{k}m} - \hbar\omega\right) \right\rangle_{\mathbf{T}}$$

• Calculation of $\sigma(\omega)$ for a thermodynamic average at temperature T in an Al supercell

•low-ω contributions

 \rightarrow information on σ_{DC}

many different perturbed _____
 supercell spectra from MD

thermodynamic averaged spectra including electron-phonon interaction

Exercise 4 and 5: electronic conductivity of

•Exercise 4:

•calculate $\sigma(\omega)$ spectrum for a primitive AI unit-cell (I atom)

•Exercise 5.a:

•calculate $\sigma(\omega)$ of 16 perturbed configurations (snapshots) of an 8-atom supercell from the MD-run of exercise 3! (one or two different temperatures)

•Exercise 5.b:

 take the average of 240 snapshots (provided by us) for 4 temperatures

- •extrapolate the spectra to $\omega \rightarrow 0$ (i.e. obtain σ_{DC})
- •study the temperature behaviour: $\sigma_{DC}(T)$

20³ KP and converged spectrum ...

... is only coincidental

Comparison to experiment holds well

Origin of peaks: particular, parallel transition regions in the BS

Results ex. 5.a: electronic conductivity of Al

First look at the results:

Low ω -peak due to perturbed supercell

Results ex. 5.b: electronic conductivity of Al

Snapshot-converged spectra

Results ex. 5.b: electronic conductivity of Al T-dependence of ρ Experiment •Linear resistivity √ 108atom, 1000KP, ab initio MD 0.000014 -8atom, 8KP, ab initio MD 8atom, 8KP, harm.MD 0.000012 •Increase with T \checkmark 0.000010 (Ohm*cm) 0.000008 -•Order of magn. of experiment \checkmark 0.000006 -Q. 0.000004 0.000002 **Tutorial-Results** 0.000000 400 600 800 1200 200 1000 1400 0

T (K)

