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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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Fig. 9. Dark field image of initially cold worked Pt 14 at.% Cu after heat
treatment at 200 !C for one week.

Fig. 10. Dark field image of initially quenched Pt 14 at.% Cu after heat
treatment at 200 !C for one week.
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 4. Electron diffraction pattern of Pt 14 at.% Cu viewed along the [103] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 5. Hardness vs. heat treatment temperature for initially cold worked
and initially quenched Pt 14 at.% Cu after heat treatment for 3 h.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.
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Fig. 5. Hardness vs. heat treatment temperature for initially cold worked
and initially quenched Pt 14 at.% Cu after heat treatment for 3 h.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.
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A second example

http://en.wikipedia.org/wiki/Superalloy

Nickel superalloy jet engine turbine blade
http://www.tms.org/meetings/specialty/
superalloys2000/superalloyshistory.html

ordered Ni3(Al,Ti)disordered fcc Ni+(Co,Cr,Mo,W,...)
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Configurational problems

•Precipitate hardening (Pt-Cu, Al-Cu)
•New phases in metallic alloys (8:1)
•Vacancies in TiC, ScS, etc.
•Oxygen diffusion in fuel cell materials
•Hydrogen in storage materials
•Li in battery materials
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•Precipitate hardening (Pt-Cu, Al-Cu)
•New phases in metallic alloys (8:1)
•Vacancies in TiC, ScS, etc.
•Oxygen diffusion in fuel cell materials
•Hydrogen in storage materials
•Li in battery materials

Can you think of other problems that are 
configurational in nature? 
Other lattice problems?

Interrupt me, 
please!
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If we had a fast 
lattice Hamiltonian...

1. Search for new phases (step through millions 
of candidate configurations)

2. Apply thermodynamic modeling
(to identify phase transitions)

3. Build a kinetic simulation
(to model time evolution)
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One-Dim. configurational problem

f( )

f( )
f( )

f( )

Thursday, August 15, 13



Expanding in a power series

optimize {a0, a1, a2, . . . } to minimize error

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·
0 1 2 3 4 50

1

2

3

4

5

Thursday, August 15, 13



Expanding in a power series

optimize {a0, a1, a2, . . . } to minimize error

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·
0 1 2 3 4 50

1

2

3

4

5

How do we find the coefficients?
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Expanding configurational functions

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·

f( ) =
J0

N

�����

i

1 + J1

�����

i
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�����

i

�i�i+1 +J3

�����
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�i�i+1�i+2 + · · ·

f( ) = J0 + J1�̄� + J2�̄�� + J3�̄��� + · · ·
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Expanding configurational functions
f( ) =

J0

N

�����

i

1 + J1

�����

i

�i + J2

�����

i

�i�i+1 +J3

�����

i

�i�i+1�i+2 + · · ·

f( ) = J0 + J1�̄� + J2�̄�� + J3�̄��� + · · ·

f( ) = J0 + J1 + J2 + J3 + · · ·

These are the “clusters” or 
“figures” (basis functions)

These are the 
“effective cluster interactions”
(unknown expansion coefficients)

{J0, J1, J2, J3, · · · }
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Cluster Expansion: Example
f( ) =

J0

N

�����
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�i�i+1 +J3

�����

i

�i�i+1�i+2 + · · ·

f( ) = J0 + J1�̄� + J2�̄�� + J3�̄��� + · · ·

f( ) = J0 + J1 + J2 + J3 + · · ·

Calculate the correlations...
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Expanding in a power series
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Compressive sensing: It’s like magic

More info at the end of the talk
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Once you have a good physical 
model, what can you do with it?
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Once you have a good physical 
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Calculate the energy of 
millions of configurations

700 A Zunger et al

Figure 11. Ground state search for Cu–Au (see caption of figure 10).

Ground state search for ScS - S

ScS - S

Figure 12. Ground state search for Sc1−x !xS (see caption of figure 10).
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700 A Zunger et al

Figure 11. Ground state search for Cu–Au (see caption of figure 10).
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700 A Zunger et al

Figure 11. Ground state search for Cu–Au (see caption of figure 10).

Ground state search for ScS - S

ScS - S

Figure 12. Ground state search for Sc1−x !xS (see caption of figure 10).

A ground state search

Tells us which configurations are lowest
in energy, but doesn’t tell us anything about
how the materials behaves as a function of 
temperature...
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Alloy phase diagrams: Ordering
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Monte Carlo, phase transitions...
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Recap: with a fast lattice 
Hamiltonian we can...
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Recap: with a fast lattice 
Hamiltonian we can...

1. Search for new phases (try millions of trial 
configurations) Ground State Search

2. Apply thermodynamic modeling
(to identify phase transitions) Monte Carlo

3. Build a kinetic simulation
(to model time evolution) Kinetic MC
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In a nutshell: Better models, faster

Basic idea:

Instead of adding complexity (terms) to a model 
until it fits the data and predicts well...(normal 
approach)...

...start with an infinite set of models (containing 
all possible terms). Discard all models except 
the simplest one (Compressive Sensing 
approach). Surprisingly perhaps, this is really 
efficient.
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Going beyond a linear model fit (adding terms)
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“Solving” an under-determined problem
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In more than one dimension...
f( ) = J0 + J1 + J2 + J3 + · · ·
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In more than one dimension...
f( ) = J0 + J1 + J2 + J3 + · · ·
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Models built via Compressive Sensing

NELSON, HART, ZHOU, AND OZOLIŅŠ PHYSICAL REVIEW B 87, 035125 (2013)

Unit of cluster radius Unit of cluster radius Unit of cluster radius

FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding

035125-10

Pairs
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Note that the mathematical framework of CS has no
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functions. Remarkably, the dominant expansion coefficients,
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In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
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Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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which are represented by the black dotted lines in Fig. 3. We
see that the RMS errors for the prediction set largely follow
the same behavior as the LOOCV scores, reaching minima at
nearly identical µ values.

As expected, fitting errors for the training set (not shown
here) decrease monotonically with decreasing µ and are sig-
nificantly smaller than either the LOOCV scores or prediction
errors for the holdout set. The leveling off in both the prediction
errors and the LOOCV score at small values of µ can be
explained by noting that CSCE fits the training set perfectly
and further decrease of µ does not bring about noticeable
changes in the calculated ECI’s. We note that this behavior
is different from the short-ranged pair model in the previous
section, where decreasing µ below the optimal range caused
a rapid deterioration in the accuracy of the calculated ECI’s.
We attribute this difference to the lower level of noise in the
Ag-Pt case, so that the range of µ’s that leads to acceptable
ECI’s is much wider than at the 20–50% noise level for the
short-ranged pair model.

To compare the performance of CSCE with other es-
tablished methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22

was used. Note that the ATAT program is capable of employing
advanced algorithms beyond minimization of the LOOCV
score to ensure that the ground-state line is reproduced
correctly and to determine which structures should be used as
input. In order to make a straightforward comparison between
CSCE and DO and to ensure a reasonable fit construction
time for this problem, we only used the LOOCV-based DO
functionality of ATAT. Since the DO method for N = 986
clusters on a training set of a few hundred structures takes
several days to complete, averages were taken over only ten
training sets of size M (except for M = 400 when we used
42 different training sets to perform statistical analysis of the
calculated ECI’s). In order to simulate building a complicated
unknown model, we deliberately avoided applying physical
intuition (e.g., picking short-range interactions) and simply
performed the optimizations with minimal restrictions. The
maximum number of reported ECI’s was capped to M/4 for
ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom
and computed solutions for 500 randomly chosen training sets
of M structures.

Figure 4 shows a box and whisker plot of the RMS errors
over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used
for DO solutions due to the small number of DO fits). Each
box and whisker represents RMS values for approximately
500 different fits. We see that CSCE achieves an RMS error
value much lower (2.8 meV/atom) than LOOCV-based DO
(6.8 meV/atom). Furthermore, Fig. 4 shows that the !1 norm
of the solution increases almost linearly for the DO fit, while
it levels off for the CSCE fit, indicating that the latter is
converging towards a stable solution, while the former keeps
adding large ECI’s, a behavior suggestive of overfitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different
training sets can be computed in a few minutes. The results of
all these fits can be analyzed statistically to determine which
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FIG. 4. (Color online) Results from compressive sensing and
leave-one-out cross validation for the fcc-based, Ag-Pt alloy system.
The solid line gives the root-mean-square (RMS) errors for predic-
tions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross validation (squares). The dashed lines give the
!1-norm of the solution vector for both methods.

coefficients are consistently identified as contributors and to
eliminate artifacts due to a particular choice of the training
set. This functionality, the ability to gather enough data in a
reasonable amount of time to perform statistical analyses, is a
significant advantage of CSCE over (slower) DO methods that
can be used to gain insight into the probability distributions
for the cluster interactions. These distributions can be used to
quantify the uncertainty in the CSCE predictions for physical
properties that go beyond a simple LOOCV score or an RMS
prediction error. For instance, one can draw ECI’s from the
calculated distributions and generate ground state convex hulls
with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were
computed for Ag-Pt. Most of the resulting distributions had
only one sharp peak at zero, indicating that, independently of
the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s
exhibited a unimodal distribution with nonzero mean, which
were interpreted as strongly significant nonzero interactions.
Finally, a fraction of the ECI’s showed bimodal distributions
with two peaks of comparable weight and one of the peaks
centered at zero energy. Since the latter ECI’s were selected
by CSCE with an approximately 50% probability, they belong
to the class of “marginal” interactions, which were counted as
significant only if their distribution mean was greater than one
standard deviation. To make a fair comparison between CSCE
and the DO methods implemented in the ATAT program, the
same statistical criteria for determining relevant coefficients
was used for the DO fits, even though data for only 42 fits
were available.

Figure 5 gives a comparison of the CS-determined coef-
ficients and those found by DO. The upper pane compares a
typical DO fit with a typical CSCE fit, while the lower pane
gives a comparison of statistically relevant ECI’s from both
methods. The CSCE-derived ECI’s appear to evolve towards
one specific solution as the size of the fitting set increases,
indicating convergence of the solution. Notice also that the
magnitudes of the CSCE coefficients decrease as the spatial
extent of the cluster increases and as the number of cluster
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which are represented by the black dotted lines in Fig. 3. We
see that the RMS errors for the prediction set largely follow
the same behavior as the LOOCV scores, reaching minima at
nearly identical µ values.

As expected, fitting errors for the training set (not shown
here) decrease monotonically with decreasing µ and are sig-
nificantly smaller than either the LOOCV scores or prediction
errors for the holdout set. The leveling off in both the prediction
errors and the LOOCV score at small values of µ can be
explained by noting that CSCE fits the training set perfectly
and further decrease of µ does not bring about noticeable
changes in the calculated ECI’s. We note that this behavior
is different from the short-ranged pair model in the previous
section, where decreasing µ below the optimal range caused
a rapid deterioration in the accuracy of the calculated ECI’s.
We attribute this difference to the lower level of noise in the
Ag-Pt case, so that the range of µ’s that leads to acceptable
ECI’s is much wider than at the 20–50% noise level for the
short-ranged pair model.

To compare the performance of CSCE with other es-
tablished methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22

was used. Note that the ATAT program is capable of employing
advanced algorithms beyond minimization of the LOOCV
score to ensure that the ground-state line is reproduced
correctly and to determine which structures should be used as
input. In order to make a straightforward comparison between
CSCE and DO and to ensure a reasonable fit construction
time for this problem, we only used the LOOCV-based DO
functionality of ATAT. Since the DO method for N = 986
clusters on a training set of a few hundred structures takes
several days to complete, averages were taken over only ten
training sets of size M (except for M = 400 when we used
42 different training sets to perform statistical analysis of the
calculated ECI’s). In order to simulate building a complicated
unknown model, we deliberately avoided applying physical
intuition (e.g., picking short-range interactions) and simply
performed the optimizations with minimal restrictions. The
maximum number of reported ECI’s was capped to M/4 for
ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom
and computed solutions for 500 randomly chosen training sets
of M structures.

Figure 4 shows a box and whisker plot of the RMS errors
over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used
for DO solutions due to the small number of DO fits). Each
box and whisker represents RMS values for approximately
500 different fits. We see that CSCE achieves an RMS error
value much lower (2.8 meV/atom) than LOOCV-based DO
(6.8 meV/atom). Furthermore, Fig. 4 shows that the !1 norm
of the solution increases almost linearly for the DO fit, while
it levels off for the CSCE fit, indicating that the latter is
converging towards a stable solution, while the former keeps
adding large ECI’s, a behavior suggestive of overfitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different
training sets can be computed in a few minutes. The results of
all these fits can be analyzed statistically to determine which
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FIG. 4. (Color online) Results from compressive sensing and
leave-one-out cross validation for the fcc-based, Ag-Pt alloy system.
The solid line gives the root-mean-square (RMS) errors for predic-
tions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross validation (squares). The dashed lines give the
!1-norm of the solution vector for both methods.

coefficients are consistently identified as contributors and to
eliminate artifacts due to a particular choice of the training
set. This functionality, the ability to gather enough data in a
reasonable amount of time to perform statistical analyses, is a
significant advantage of CSCE over (slower) DO methods that
can be used to gain insight into the probability distributions
for the cluster interactions. These distributions can be used to
quantify the uncertainty in the CSCE predictions for physical
properties that go beyond a simple LOOCV score or an RMS
prediction error. For instance, one can draw ECI’s from the
calculated distributions and generate ground state convex hulls
with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were
computed for Ag-Pt. Most of the resulting distributions had
only one sharp peak at zero, indicating that, independently of
the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s
exhibited a unimodal distribution with nonzero mean, which
were interpreted as strongly significant nonzero interactions.
Finally, a fraction of the ECI’s showed bimodal distributions
with two peaks of comparable weight and one of the peaks
centered at zero energy. Since the latter ECI’s were selected
by CSCE with an approximately 50% probability, they belong
to the class of “marginal” interactions, which were counted as
significant only if their distribution mean was greater than one
standard deviation. To make a fair comparison between CSCE
and the DO methods implemented in the ATAT program, the
same statistical criteria for determining relevant coefficients
was used for the DO fits, even though data for only 42 fits
were available.

Figure 5 gives a comparison of the CS-determined coef-
ficients and those found by DO. The upper pane compares a
typical DO fit with a typical CSCE fit, while the lower pane
gives a comparison of statistically relevant ECI’s from both
methods. The CSCE-derived ECI’s appear to evolve towards
one specific solution as the size of the fitting set increases,
indicating convergence of the solution. Notice also that the
magnitudes of the CSCE coefficients decrease as the spatial
extent of the cluster increases and as the number of cluster
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which are represented by the black dotted lines in Fig. 3. We
see that the RMS errors for the prediction set largely follow
the same behavior as the LOOCV scores, reaching minima at
nearly identical µ values.

As expected, fitting errors for the training set (not shown
here) decrease monotonically with decreasing µ and are sig-
nificantly smaller than either the LOOCV scores or prediction
errors for the holdout set. The leveling off in both the prediction
errors and the LOOCV score at small values of µ can be
explained by noting that CSCE fits the training set perfectly
and further decrease of µ does not bring about noticeable
changes in the calculated ECI’s. We note that this behavior
is different from the short-ranged pair model in the previous
section, where decreasing µ below the optimal range caused
a rapid deterioration in the accuracy of the calculated ECI’s.
We attribute this difference to the lower level of noise in the
Ag-Pt case, so that the range of µ’s that leads to acceptable
ECI’s is much wider than at the 20–50% noise level for the
short-ranged pair model.

To compare the performance of CSCE with other es-
tablished methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22

was used. Note that the ATAT program is capable of employing
advanced algorithms beyond minimization of the LOOCV
score to ensure that the ground-state line is reproduced
correctly and to determine which structures should be used as
input. In order to make a straightforward comparison between
CSCE and DO and to ensure a reasonable fit construction
time for this problem, we only used the LOOCV-based DO
functionality of ATAT. Since the DO method for N = 986
clusters on a training set of a few hundred structures takes
several days to complete, averages were taken over only ten
training sets of size M (except for M = 400 when we used
42 different training sets to perform statistical analysis of the
calculated ECI’s). In order to simulate building a complicated
unknown model, we deliberately avoided applying physical
intuition (e.g., picking short-range interactions) and simply
performed the optimizations with minimal restrictions. The
maximum number of reported ECI’s was capped to M/4 for
ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom
and computed solutions for 500 randomly chosen training sets
of M structures.

Figure 4 shows a box and whisker plot of the RMS errors
over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used
for DO solutions due to the small number of DO fits). Each
box and whisker represents RMS values for approximately
500 different fits. We see that CSCE achieves an RMS error
value much lower (2.8 meV/atom) than LOOCV-based DO
(6.8 meV/atom). Furthermore, Fig. 4 shows that the !1 norm
of the solution increases almost linearly for the DO fit, while
it levels off for the CSCE fit, indicating that the latter is
converging towards a stable solution, while the former keeps
adding large ECI’s, a behavior suggestive of overfitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different
training sets can be computed in a few minutes. The results of
all these fits can be analyzed statistically to determine which
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FIG. 4. (Color online) Results from compressive sensing and
leave-one-out cross validation for the fcc-based, Ag-Pt alloy system.
The solid line gives the root-mean-square (RMS) errors for predic-
tions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross validation (squares). The dashed lines give the
!1-norm of the solution vector for both methods.

coefficients are consistently identified as contributors and to
eliminate artifacts due to a particular choice of the training
set. This functionality, the ability to gather enough data in a
reasonable amount of time to perform statistical analyses, is a
significant advantage of CSCE over (slower) DO methods that
can be used to gain insight into the probability distributions
for the cluster interactions. These distributions can be used to
quantify the uncertainty in the CSCE predictions for physical
properties that go beyond a simple LOOCV score or an RMS
prediction error. For instance, one can draw ECI’s from the
calculated distributions and generate ground state convex hulls
with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were
computed for Ag-Pt. Most of the resulting distributions had
only one sharp peak at zero, indicating that, independently of
the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s
exhibited a unimodal distribution with nonzero mean, which
were interpreted as strongly significant nonzero interactions.
Finally, a fraction of the ECI’s showed bimodal distributions
with two peaks of comparable weight and one of the peaks
centered at zero energy. Since the latter ECI’s were selected
by CSCE with an approximately 50% probability, they belong
to the class of “marginal” interactions, which were counted as
significant only if their distribution mean was greater than one
standard deviation. To make a fair comparison between CSCE
and the DO methods implemented in the ATAT program, the
same statistical criteria for determining relevant coefficients
was used for the DO fits, even though data for only 42 fits
were available.

Figure 5 gives a comparison of the CS-determined coef-
ficients and those found by DO. The upper pane compares a
typical DO fit with a typical CSCE fit, while the lower pane
gives a comparison of statistically relevant ECI’s from both
methods. The CSCE-derived ECI’s appear to evolve towards
one specific solution as the size of the fitting set increases,
indicating convergence of the solution. Notice also that the
magnitudes of the CSCE coefficients decrease as the spatial
extent of the cluster increases and as the number of cluster
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which are represented by the black dotted lines in Fig. 3. We
see that the RMS errors for the prediction set largely follow
the same behavior as the LOOCV scores, reaching minima at
nearly identical µ values.

As expected, fitting errors for the training set (not shown
here) decrease monotonically with decreasing µ and are sig-
nificantly smaller than either the LOOCV scores or prediction
errors for the holdout set. The leveling off in both the prediction
errors and the LOOCV score at small values of µ can be
explained by noting that CSCE fits the training set perfectly
and further decrease of µ does not bring about noticeable
changes in the calculated ECI’s. We note that this behavior
is different from the short-ranged pair model in the previous
section, where decreasing µ below the optimal range caused
a rapid deterioration in the accuracy of the calculated ECI’s.
We attribute this difference to the lower level of noise in the
Ag-Pt case, so that the range of µ’s that leads to acceptable
ECI’s is much wider than at the 20–50% noise level for the
short-ranged pair model.

To compare the performance of CSCE with other es-
tablished methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22

was used. Note that the ATAT program is capable of employing
advanced algorithms beyond minimization of the LOOCV
score to ensure that the ground-state line is reproduced
correctly and to determine which structures should be used as
input. In order to make a straightforward comparison between
CSCE and DO and to ensure a reasonable fit construction
time for this problem, we only used the LOOCV-based DO
functionality of ATAT. Since the DO method for N = 986
clusters on a training set of a few hundred structures takes
several days to complete, averages were taken over only ten
training sets of size M (except for M = 400 when we used
42 different training sets to perform statistical analysis of the
calculated ECI’s). In order to simulate building a complicated
unknown model, we deliberately avoided applying physical
intuition (e.g., picking short-range interactions) and simply
performed the optimizations with minimal restrictions. The
maximum number of reported ECI’s was capped to M/4 for
ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom
and computed solutions for 500 randomly chosen training sets
of M structures.

Figure 4 shows a box and whisker plot of the RMS errors
over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used
for DO solutions due to the small number of DO fits). Each
box and whisker represents RMS values for approximately
500 different fits. We see that CSCE achieves an RMS error
value much lower (2.8 meV/atom) than LOOCV-based DO
(6.8 meV/atom). Furthermore, Fig. 4 shows that the !1 norm
of the solution increases almost linearly for the DO fit, while
it levels off for the CSCE fit, indicating that the latter is
converging towards a stable solution, while the former keeps
adding large ECI’s, a behavior suggestive of overfitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different
training sets can be computed in a few minutes. The results of
all these fits can be analyzed statistically to determine which
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FIG. 4. (Color online) Results from compressive sensing and
leave-one-out cross validation for the fcc-based, Ag-Pt alloy system.
The solid line gives the root-mean-square (RMS) errors for predic-
tions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross validation (squares). The dashed lines give the
!1-norm of the solution vector for both methods.

coefficients are consistently identified as contributors and to
eliminate artifacts due to a particular choice of the training
set. This functionality, the ability to gather enough data in a
reasonable amount of time to perform statistical analyses, is a
significant advantage of CSCE over (slower) DO methods that
can be used to gain insight into the probability distributions
for the cluster interactions. These distributions can be used to
quantify the uncertainty in the CSCE predictions for physical
properties that go beyond a simple LOOCV score or an RMS
prediction error. For instance, one can draw ECI’s from the
calculated distributions and generate ground state convex hulls
with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were
computed for Ag-Pt. Most of the resulting distributions had
only one sharp peak at zero, indicating that, independently of
the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s
exhibited a unimodal distribution with nonzero mean, which
were interpreted as strongly significant nonzero interactions.
Finally, a fraction of the ECI’s showed bimodal distributions
with two peaks of comparable weight and one of the peaks
centered at zero energy. Since the latter ECI’s were selected
by CSCE with an approximately 50% probability, they belong
to the class of “marginal” interactions, which were counted as
significant only if their distribution mean was greater than one
standard deviation. To make a fair comparison between CSCE
and the DO methods implemented in the ATAT program, the
same statistical criteria for determining relevant coefficients
was used for the DO fits, even though data for only 42 fits
were available.

Figure 5 gives a comparison of the CS-determined coef-
ficients and those found by DO. The upper pane compares a
typical DO fit with a typical CSCE fit, while the lower pane
gives a comparison of statistically relevant ECI’s from both
methods. The CSCE-derived ECI’s appear to evolve towards
one specific solution as the size of the fitting set increases,
indicating convergence of the solution. Notice also that the
magnitudes of the CSCE coefficients decrease as the spatial
extent of the cluster increases and as the number of cluster

035125-9

CSCE: Compressive sensing-based CE

UNCLE   

U

Minutes

Days

•Faster(!)
•Better predictions

Thursday, August 15, 13



COMPRESSIVE SENSING AS A PARADIGM FOR . . . PHYSICAL REVIEW B 87, 035125 (2013)

which are represented by the black dotted lines in Fig. 3. We
see that the RMS errors for the prediction set largely follow
the same behavior as the LOOCV scores, reaching minima at
nearly identical µ values.

As expected, fitting errors for the training set (not shown
here) decrease monotonically with decreasing µ and are sig-
nificantly smaller than either the LOOCV scores or prediction
errors for the holdout set. The leveling off in both the prediction
errors and the LOOCV score at small values of µ can be
explained by noting that CSCE fits the training set perfectly
and further decrease of µ does not bring about noticeable
changes in the calculated ECI’s. We note that this behavior
is different from the short-ranged pair model in the previous
section, where decreasing µ below the optimal range caused
a rapid deterioration in the accuracy of the calculated ECI’s.
We attribute this difference to the lower level of noise in the
Ag-Pt case, so that the range of µ’s that leads to acceptable
ECI’s is much wider than at the 20–50% noise level for the
short-ranged pair model.

To compare the performance of CSCE with other es-
tablished methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22

was used. Note that the ATAT program is capable of employing
advanced algorithms beyond minimization of the LOOCV
score to ensure that the ground-state line is reproduced
correctly and to determine which structures should be used as
input. In order to make a straightforward comparison between
CSCE and DO and to ensure a reasonable fit construction
time for this problem, we only used the LOOCV-based DO
functionality of ATAT. Since the DO method for N = 986
clusters on a training set of a few hundred structures takes
several days to complete, averages were taken over only ten
training sets of size M (except for M = 400 when we used
42 different training sets to perform statistical analysis of the
calculated ECI’s). In order to simulate building a complicated
unknown model, we deliberately avoided applying physical
intuition (e.g., picking short-range interactions) and simply
performed the optimizations with minimal restrictions. The
maximum number of reported ECI’s was capped to M/4 for
ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom
and computed solutions for 500 randomly chosen training sets
of M structures.

Figure 4 shows a box and whisker plot of the RMS errors
over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used
for DO solutions due to the small number of DO fits). Each
box and whisker represents RMS values for approximately
500 different fits. We see that CSCE achieves an RMS error
value much lower (2.8 meV/atom) than LOOCV-based DO
(6.8 meV/atom). Furthermore, Fig. 4 shows that the !1 norm
of the solution increases almost linearly for the DO fit, while
it levels off for the CSCE fit, indicating that the latter is
converging towards a stable solution, while the former keeps
adding large ECI’s, a behavior suggestive of overfitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different
training sets can be computed in a few minutes. The results of
all these fits can be analyzed statistically to determine which
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FIG. 4. (Color online) Results from compressive sensing and
leave-one-out cross validation for the fcc-based, Ag-Pt alloy system.
The solid line gives the root-mean-square (RMS) errors for predic-
tions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross validation (squares). The dashed lines give the
!1-norm of the solution vector for both methods.

coefficients are consistently identified as contributors and to
eliminate artifacts due to a particular choice of the training
set. This functionality, the ability to gather enough data in a
reasonable amount of time to perform statistical analyses, is a
significant advantage of CSCE over (slower) DO methods that
can be used to gain insight into the probability distributions
for the cluster interactions. These distributions can be used to
quantify the uncertainty in the CSCE predictions for physical
properties that go beyond a simple LOOCV score or an RMS
prediction error. For instance, one can draw ECI’s from the
calculated distributions and generate ground state convex hulls
with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were
computed for Ag-Pt. Most of the resulting distributions had
only one sharp peak at zero, indicating that, independently of
the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s
exhibited a unimodal distribution with nonzero mean, which
were interpreted as strongly significant nonzero interactions.
Finally, a fraction of the ECI’s showed bimodal distributions
with two peaks of comparable weight and one of the peaks
centered at zero energy. Since the latter ECI’s were selected
by CSCE with an approximately 50% probability, they belong
to the class of “marginal” interactions, which were counted as
significant only if their distribution mean was greater than one
standard deviation. To make a fair comparison between CSCE
and the DO methods implemented in the ATAT program, the
same statistical criteria for determining relevant coefficients
was used for the DO fits, even though data for only 42 fits
were available.

Figure 5 gives a comparison of the CS-determined coef-
ficients and those found by DO. The upper pane compares a
typical DO fit with a typical CSCE fit, while the lower pane
gives a comparison of statistically relevant ECI’s from both
methods. The CSCE-derived ECI’s appear to evolve towards
one specific solution as the size of the fitting set increases,
indicating convergence of the solution. Notice also that the
magnitudes of the CSCE coefficients decrease as the spatial
extent of the cluster increases and as the number of cluster
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which are represented by the black dotted lines in Fig. 3. We
see that the RMS errors for the prediction set largely follow
the same behavior as the LOOCV scores, reaching minima at
nearly identical µ values.

As expected, fitting errors for the training set (not shown
here) decrease monotonically with decreasing µ and are sig-
nificantly smaller than either the LOOCV scores or prediction
errors for the holdout set. The leveling off in both the prediction
errors and the LOOCV score at small values of µ can be
explained by noting that CSCE fits the training set perfectly
and further decrease of µ does not bring about noticeable
changes in the calculated ECI’s. We note that this behavior
is different from the short-ranged pair model in the previous
section, where decreasing µ below the optimal range caused
a rapid deterioration in the accuracy of the calculated ECI’s.
We attribute this difference to the lower level of noise in the
Ag-Pt case, so that the range of µ’s that leads to acceptable
ECI’s is much wider than at the 20–50% noise level for the
short-ranged pair model.

To compare the performance of CSCE with other es-
tablished methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22

was used. Note that the ATAT program is capable of employing
advanced algorithms beyond minimization of the LOOCV
score to ensure that the ground-state line is reproduced
correctly and to determine which structures should be used as
input. In order to make a straightforward comparison between
CSCE and DO and to ensure a reasonable fit construction
time for this problem, we only used the LOOCV-based DO
functionality of ATAT. Since the DO method for N = 986
clusters on a training set of a few hundred structures takes
several days to complete, averages were taken over only ten
training sets of size M (except for M = 400 when we used
42 different training sets to perform statistical analysis of the
calculated ECI’s). In order to simulate building a complicated
unknown model, we deliberately avoided applying physical
intuition (e.g., picking short-range interactions) and simply
performed the optimizations with minimal restrictions. The
maximum number of reported ECI’s was capped to M/4 for
ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom
and computed solutions for 500 randomly chosen training sets
of M structures.

Figure 4 shows a box and whisker plot of the RMS errors
over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used
for DO solutions due to the small number of DO fits). Each
box and whisker represents RMS values for approximately
500 different fits. We see that CSCE achieves an RMS error
value much lower (2.8 meV/atom) than LOOCV-based DO
(6.8 meV/atom). Furthermore, Fig. 4 shows that the !1 norm
of the solution increases almost linearly for the DO fit, while
it levels off for the CSCE fit, indicating that the latter is
converging towards a stable solution, while the former keeps
adding large ECI’s, a behavior suggestive of overfitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different
training sets can be computed in a few minutes. The results of
all these fits can be analyzed statistically to determine which
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FIG. 4. (Color online) Results from compressive sensing and
leave-one-out cross validation for the fcc-based, Ag-Pt alloy system.
The solid line gives the root-mean-square (RMS) errors for predic-
tions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross validation (squares). The dashed lines give the
!1-norm of the solution vector for both methods.

coefficients are consistently identified as contributors and to
eliminate artifacts due to a particular choice of the training
set. This functionality, the ability to gather enough data in a
reasonable amount of time to perform statistical analyses, is a
significant advantage of CSCE over (slower) DO methods that
can be used to gain insight into the probability distributions
for the cluster interactions. These distributions can be used to
quantify the uncertainty in the CSCE predictions for physical
properties that go beyond a simple LOOCV score or an RMS
prediction error. For instance, one can draw ECI’s from the
calculated distributions and generate ground state convex hulls
with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were
computed for Ag-Pt. Most of the resulting distributions had
only one sharp peak at zero, indicating that, independently of
the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s
exhibited a unimodal distribution with nonzero mean, which
were interpreted as strongly significant nonzero interactions.
Finally, a fraction of the ECI’s showed bimodal distributions
with two peaks of comparable weight and one of the peaks
centered at zero energy. Since the latter ECI’s were selected
by CSCE with an approximately 50% probability, they belong
to the class of “marginal” interactions, which were counted as
significant only if their distribution mean was greater than one
standard deviation. To make a fair comparison between CSCE
and the DO methods implemented in the ATAT program, the
same statistical criteria for determining relevant coefficients
was used for the DO fits, even though data for only 42 fits
were available.

Figure 5 gives a comparison of the CS-determined coef-
ficients and those found by DO. The upper pane compares a
typical DO fit with a typical CSCE fit, while the lower pane
gives a comparison of statistically relevant ECI’s from both
methods. The CSCE-derived ECI’s appear to evolve towards
one specific solution as the size of the fitting set increases,
indicating convergence of the solution. Notice also that the
magnitudes of the CSCE coefficients decrease as the spatial
extent of the cluster increases and as the number of cluster
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which are represented by the black dotted lines in Fig. 3. We
see that the RMS errors for the prediction set largely follow
the same behavior as the LOOCV scores, reaching minima at
nearly identical µ values.

As expected, fitting errors for the training set (not shown
here) decrease monotonically with decreasing µ and are sig-
nificantly smaller than either the LOOCV scores or prediction
errors for the holdout set. The leveling off in both the prediction
errors and the LOOCV score at small values of µ can be
explained by noting that CSCE fits the training set perfectly
and further decrease of µ does not bring about noticeable
changes in the calculated ECI’s. We note that this behavior
is different from the short-ranged pair model in the previous
section, where decreasing µ below the optimal range caused
a rapid deterioration in the accuracy of the calculated ECI’s.
We attribute this difference to the lower level of noise in the
Ag-Pt case, so that the range of µ’s that leads to acceptable
ECI’s is much wider than at the 20–50% noise level for the
short-ranged pair model.

To compare the performance of CSCE with other es-
tablished methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22

was used. Note that the ATAT program is capable of employing
advanced algorithms beyond minimization of the LOOCV
score to ensure that the ground-state line is reproduced
correctly and to determine which structures should be used as
input. In order to make a straightforward comparison between
CSCE and DO and to ensure a reasonable fit construction
time for this problem, we only used the LOOCV-based DO
functionality of ATAT. Since the DO method for N = 986
clusters on a training set of a few hundred structures takes
several days to complete, averages were taken over only ten
training sets of size M (except for M = 400 when we used
42 different training sets to perform statistical analysis of the
calculated ECI’s). In order to simulate building a complicated
unknown model, we deliberately avoided applying physical
intuition (e.g., picking short-range interactions) and simply
performed the optimizations with minimal restrictions. The
maximum number of reported ECI’s was capped to M/4 for
ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom
and computed solutions for 500 randomly chosen training sets
of M structures.

Figure 4 shows a box and whisker plot of the RMS errors
over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used
for DO solutions due to the small number of DO fits). Each
box and whisker represents RMS values for approximately
500 different fits. We see that CSCE achieves an RMS error
value much lower (2.8 meV/atom) than LOOCV-based DO
(6.8 meV/atom). Furthermore, Fig. 4 shows that the !1 norm
of the solution increases almost linearly for the DO fit, while
it levels off for the CSCE fit, indicating that the latter is
converging towards a stable solution, while the former keeps
adding large ECI’s, a behavior suggestive of overfitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different
training sets can be computed in a few minutes. The results of
all these fits can be analyzed statistically to determine which
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FIG. 4. (Color online) Results from compressive sensing and
leave-one-out cross validation for the fcc-based, Ag-Pt alloy system.
The solid line gives the root-mean-square (RMS) errors for predic-
tions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross validation (squares). The dashed lines give the
!1-norm of the solution vector for both methods.

coefficients are consistently identified as contributors and to
eliminate artifacts due to a particular choice of the training
set. This functionality, the ability to gather enough data in a
reasonable amount of time to perform statistical analyses, is a
significant advantage of CSCE over (slower) DO methods that
can be used to gain insight into the probability distributions
for the cluster interactions. These distributions can be used to
quantify the uncertainty in the CSCE predictions for physical
properties that go beyond a simple LOOCV score or an RMS
prediction error. For instance, one can draw ECI’s from the
calculated distributions and generate ground state convex hulls
with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were
computed for Ag-Pt. Most of the resulting distributions had
only one sharp peak at zero, indicating that, independently of
the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s
exhibited a unimodal distribution with nonzero mean, which
were interpreted as strongly significant nonzero interactions.
Finally, a fraction of the ECI’s showed bimodal distributions
with two peaks of comparable weight and one of the peaks
centered at zero energy. Since the latter ECI’s were selected
by CSCE with an approximately 50% probability, they belong
to the class of “marginal” interactions, which were counted as
significant only if their distribution mean was greater than one
standard deviation. To make a fair comparison between CSCE
and the DO methods implemented in the ATAT program, the
same statistical criteria for determining relevant coefficients
was used for the DO fits, even though data for only 42 fits
were available.

Figure 5 gives a comparison of the CS-determined coef-
ficients and those found by DO. The upper pane compares a
typical DO fit with a typical CSCE fit, while the lower pane
gives a comparison of statistically relevant ECI’s from both
methods. The CSCE-derived ECI’s appear to evolve towards
one specific solution as the size of the fitting set increases,
indicating convergence of the solution. Notice also that the
magnitudes of the CSCE coefficients decrease as the spatial
extent of the cluster increases and as the number of cluster
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which are represented by the black dotted lines in Fig. 3. We
see that the RMS errors for the prediction set largely follow
the same behavior as the LOOCV scores, reaching minima at
nearly identical µ values.

As expected, fitting errors for the training set (not shown
here) decrease monotonically with decreasing µ and are sig-
nificantly smaller than either the LOOCV scores or prediction
errors for the holdout set. The leveling off in both the prediction
errors and the LOOCV score at small values of µ can be
explained by noting that CSCE fits the training set perfectly
and further decrease of µ does not bring about noticeable
changes in the calculated ECI’s. We note that this behavior
is different from the short-ranged pair model in the previous
section, where decreasing µ below the optimal range caused
a rapid deterioration in the accuracy of the calculated ECI’s.
We attribute this difference to the lower level of noise in the
Ag-Pt case, so that the range of µ’s that leads to acceptable
ECI’s is much wider than at the 20–50% noise level for the
short-ranged pair model.

To compare the performance of CSCE with other es-
tablished methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22

was used. Note that the ATAT program is capable of employing
advanced algorithms beyond minimization of the LOOCV
score to ensure that the ground-state line is reproduced
correctly and to determine which structures should be used as
input. In order to make a straightforward comparison between
CSCE and DO and to ensure a reasonable fit construction
time for this problem, we only used the LOOCV-based DO
functionality of ATAT. Since the DO method for N = 986
clusters on a training set of a few hundred structures takes
several days to complete, averages were taken over only ten
training sets of size M (except for M = 400 when we used
42 different training sets to perform statistical analysis of the
calculated ECI’s). In order to simulate building a complicated
unknown model, we deliberately avoided applying physical
intuition (e.g., picking short-range interactions) and simply
performed the optimizations with minimal restrictions. The
maximum number of reported ECI’s was capped to M/4 for
ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom
and computed solutions for 500 randomly chosen training sets
of M structures.

Figure 4 shows a box and whisker plot of the RMS errors
over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used
for DO solutions due to the small number of DO fits). Each
box and whisker represents RMS values for approximately
500 different fits. We see that CSCE achieves an RMS error
value much lower (2.8 meV/atom) than LOOCV-based DO
(6.8 meV/atom). Furthermore, Fig. 4 shows that the !1 norm
of the solution increases almost linearly for the DO fit, while
it levels off for the CSCE fit, indicating that the latter is
converging towards a stable solution, while the former keeps
adding large ECI’s, a behavior suggestive of overfitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different
training sets can be computed in a few minutes. The results of
all these fits can be analyzed statistically to determine which
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FIG. 4. (Color online) Results from compressive sensing and
leave-one-out cross validation for the fcc-based, Ag-Pt alloy system.
The solid line gives the root-mean-square (RMS) errors for predic-
tions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross validation (squares). The dashed lines give the
!1-norm of the solution vector for both methods.

coefficients are consistently identified as contributors and to
eliminate artifacts due to a particular choice of the training
set. This functionality, the ability to gather enough data in a
reasonable amount of time to perform statistical analyses, is a
significant advantage of CSCE over (slower) DO methods that
can be used to gain insight into the probability distributions
for the cluster interactions. These distributions can be used to
quantify the uncertainty in the CSCE predictions for physical
properties that go beyond a simple LOOCV score or an RMS
prediction error. For instance, one can draw ECI’s from the
calculated distributions and generate ground state convex hulls
with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were
computed for Ag-Pt. Most of the resulting distributions had
only one sharp peak at zero, indicating that, independently of
the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s
exhibited a unimodal distribution with nonzero mean, which
were interpreted as strongly significant nonzero interactions.
Finally, a fraction of the ECI’s showed bimodal distributions
with two peaks of comparable weight and one of the peaks
centered at zero energy. Since the latter ECI’s were selected
by CSCE with an approximately 50% probability, they belong
to the class of “marginal” interactions, which were counted as
significant only if their distribution mean was greater than one
standard deviation. To make a fair comparison between CSCE
and the DO methods implemented in the ATAT program, the
same statistical criteria for determining relevant coefficients
was used for the DO fits, even though data for only 42 fits
were available.

Figure 5 gives a comparison of the CS-determined coef-
ficients and those found by DO. The upper pane compares a
typical DO fit with a typical CSCE fit, while the lower pane
gives a comparison of statistically relevant ECI’s from both
methods. The CSCE-derived ECI’s appear to evolve towards
one specific solution as the size of the fitting set increases,
indicating convergence of the solution. Notice also that the
magnitudes of the CSCE coefficients decrease as the spatial
extent of the cluster increases and as the number of cluster
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•Faster(!)
•Better predictions
•Easier to implement
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Further reading
Lance J. Nelson, Gus L. W. Hart, Fei Zhou, and Vidvuds 
Ozolins, “Cluster expansion made easy with Bayesian 
compressive sensing,” arXiv:1307.2938 [cond-mat.mtrl-sci]

Lance J. Nelson, Gus L. W. Hart, Fei Zhou, and Vidvuds 
Ozolins, “Compressive sensing as a paradigm for building 
physics models,” Phys. Rev. B 87 035125 (2013).

E. J. Candès and M. B. Wakin, “An introduction to 
compressive sampling,” Signal Processing Magazine, IEEE, 
vol. 25, no. 2, pp. 21–30 (2008).

T. Strohmer, “Measure What Should be Measured: Progress 
and Challenges in Compressive Sensing,” Signal Processing 
Letters 19 887 (2012).
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Problem I (20 min.)

1.1 Average lattice occupations (the “�’s”, also called
“correlations”)

Task: Following the same procedure outlined in the introduction to this tutorial,
calculate the �’s for each of the three remaining structures in Fig. 3. The c(2 ◊ 2)
structure for which we calculated the �’s together (during in the introductory remarks)
is shown in Fig. 2. The �’s we computed as a class are shown in the figure as the
third row in a “� matrix”. Fill out the rest of the matrix. �0 is always 1. The other
three columns will be for the on-site cluster, the pair cluster, and the triplet cluster,
respectively.

After you have filled out the matrix, double check your results with the answer
shown in the Appendix

1.2 Finding the e�ective interactions (the “J ’s”)
Conceptually, finding the J ’s in Eq. 5 is a simple linear algebra problem. For each
configuration ‡ we have an equation with a unique value of E, unique values for the
�’s, and unknown coe�cients J . This system of linear equations form a simple matrix
inversion problem. Given the energies for the four structures in the example, and
having computed the � matrix, we can find the J ’s by inversion:

Q

cca

E1
E2
E3
E4

R

ddb =

Q

cca

�1,1 �1,2 �1,3 �1,4
�2,1 �2,2 �2,3 �2,4
�3,1 �3,2 �3,3 �3,4
�4,1 �4,2 �4,3 �4,4

R

ddb

Q

cca

J1
J2
J3
J4

R

ddb (7)

»
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cca

J1
J2
J3
J4

R

ddb =

Q

cca

�1,1 �1,2 �1,3 �1,4
�2,1 �2,2 �2,3 �2,4
�3,1 �3,2 �3,3 �3,4
�4,1 �4,2 �4,3 �4,4

R

ddb

≠1 Q

cca

E1
E2
E3
E4

R

ddb (8)

Task: Using the E’s given above for each structure, invert the � matrix that you
found and use it to find the J ’s. You could invert the matrix by hand (but who
would?!) or you can use a ready-made tool. For example, scroll down on the following
page until you see Try it in the ’inverse calculator’ and use the built-in tool
there.
http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/
fourD/index.htm

1.3 Predictions and refining the fit
Task: Now that you have a set of J ’s, you can use them to predict the energy of a
structure that wasn’t used in the input set. Calculate the �’s (for the same clusters
as before) for the structure shown in Fig. 4. Use your �-vector for this structure with

9
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would?!) or you can use a ready-made tool. For example, scroll down on the following
page until you see Try it in the ’inverse calculator’ and use the built-in tool
there.
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1.3 Predictions and refining the fit
Task: Now that you have a set of J ’s, you can use them to predict the energy of a
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Problem III (60 min.)

Repeat cluster expansion with real data

Predict ground state line, unrelaxed

Compute four DFT-LDA structures (3 atoms), relaxed!

Find optimum CE based on first 8 relaxed structures, predict remaining 19!
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Problem V (remaining time): Order-disorder transitions

Repeat two cluster expansions: nearest-neighbour only vs. optimum
(19 DFT input structures)

Predict ground states for both

Monte Carlo temperature schedules for both CE’s, 
different unit cells, 50 %:

Monte Carlo temperature schedules for both CE’s, 
different unit cells, 80% (Ni-rich):

Phase separation?
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Monte Carlo modeling in a nutshell
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Monte Carlo modeling in a nutshell

Use random numbers to...
Find the thermodynamic equilibrium of a 
system as a function of temperature.
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Monte Carlo modeling in a nutshell

Use random numbers to...
Find the thermodynamic equilibrium of a 
system as a function of temperature.

- Is a material magnetic at a given T?

- Is a material ordered (stronger) at a given T?
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Monte Carlo modeling in a nutshell

Find the thermodynamic equilibrium of a 
system as a function of temperature.

- Is a material magnetic at a given T?

- Is a material ordered (stronger) at a given T?

Metropolis algorithm:
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