Wavefunction Correlation Methods: From the Basics to the Frontiers

Frank Neese

Max Planck Institute for
Chemical Energy Conversion
Stifstr. 34-36
D-45470 Mülheim an der Ruhr
Germany

Challenges in Theoretical Chemistry

- Large (+extended) Systems:
\star Proteins, Nucleic Acids
* Extended π-Systems
\star Solids + surfaces
- High Accuracy Needed
\star Chemical phenomena are happening on a scale of relative energies of $\sim 1 \mathrm{kcal} / \mathrm{mol}$
- Conformational Complexity
* Multiple minima separated by shallow barriers lead to a large

- Relativistic effects
\star Heavy atoms
\star Advanced spectroscopies (EPR, XAS)
- Excited states
- Intermolecular interactions (including environment modeling)

The Underlying Simplicity

$$
E=T_{e}+T_{N}+V_{e N}+V_{N N}+V_{e e}
$$

Just 2 Laws:

1. Coulomb‘s Law

$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}$
2. Kinetic Energy

$E=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}$

Approximate Methods

Wavefunction vs DFT Methods

The Exact Energy

Definition of the Correlation Energy

The Hartree-Fock model is characterized by:

\checkmark The use of a single Slater determinant which describes a system of N quasiindependent electrons (independent particle or mean field model!)
\checkmark The orbitals are optimized to achieve the lowest possible energies.
\checkmark The method is variational. It provides an upper bound to the exact solution of the Born-Oppenheimer hamiltonian (usually $>99.7 \%$ of the exact nonrelativistic energy is recovered): not good enough :-(
\checkmark The remaining energy error is called correlation error and arises from „instantaneous" electron-electron interactions (as opposed to the mean-field interaction present in HF theory).
\checkmark Thus, we define the correlation energy as (Löwdin):

$$
E_{\text {corr }}=E_{\text {excact }}-E_{H F}
$$

This definition is quite problematic but is still the widely accepted one.

Ampion
 Solving the Many Particle Schrödinger Equation

Basic idea of wavefunction based correlation methods:

multideterminantal Ansatz

Solving the many particle Schrödinger equation is then a trivial exercise:

$$
\begin{aligned}
& \text { Assume: complete set of } \mathrm{N} \text {-electron expansion functions }\{\Phi\} \text { available. } \\
& \qquad \begin{array}{l}
\text { Ansatz: } \\
\qquad \text { Variational principle: } \\
\\
\text { Perform variation: } \\
\\
\\
\\
\\
\\
\\
\\
\\
\text { Lowest eigenvalue }=\text { exact ground state energy }
\end{array}
\end{aligned}
$$

First Problem: Where to get a complete many particle expansion basis from?

Construction of the N-Particle Space

We can construct a complete (infinite) N -electron expansion set from the (presumed exact!) solutions of the HF equations by replacing $1,2, \ldots, \mathrm{~N}$ electrons in the HF Slater determinant by virtual orbitals (so called excitations - not to be confused with actual excited STATES)!

conventions:

i, j, k, l
a, b, c, d
p, q, r, s
$\mu, \nu, \kappa, \tau \quad:$ basis functions
Capital symbols : N-particle space
Lowercase symbols : 1-particle space
: internal (occupied) orbitals (occupied in the HF determinant)
: external (virtual) orbitals (unoccupied in the HF determinant)
: general orbitals (occupied or unoccupied)
$-2+2$

The Boiling „Electron Sea"

Structure of the Full CI Problem

Let us look at: $\quad \mathbf{H C}=E \mathbf{S C}$
in terms of our infinite set of excited determinants. First we recognize that since the HF orbitals are assumed to be orthonormal we get $\mathbf{S}=\mathbf{1}$.

If we order the determinants according to excitation level 0,1 (S), 2 (D), 3 (T), 4 (Q), ... Owing to Slater's rules, the structure of the Hamilton matrix is:

Thus, the Hamiltonian has a nice block structure in the determinantal basis.

Nesbet's and Brillouin's Theorems

Start from the Schrödinger equation $\quad \hat{H}_{B O} \Psi=E \Psi$
Insert the expansion

$$
\hat{H}_{B O}\left(C_{0} \Phi_{H F}+\sum_{i a} C_{a}^{i} \Phi_{i}^{a}+\left(\frac{1}{2!}\right)^{2} \sum_{i j a b} C_{a b}^{i j} \Phi_{i j}^{a b}+\ldots\right)=E\left(C_{0} \Phi_{H F}+\sum_{i a} C_{a}^{i} \Phi_{i}^{a}+\left(\frac{1}{2!}\right)^{2} \sum_{i j a b} C_{a b}^{i j} \Phi_{i j}^{a b}+\ldots\right)
$$

Multiply with the HF function from the left:

$$
C_{0} \underbrace{\left\langle\Phi_{H F}\right| \hat{H}_{B O}\left|\Phi_{H F}\right\rangle}_{E_{H F}}+\sum_{i a} C_{i}^{a} \underbrace{\left\langle\Phi_{H F}\right| \hat{H}_{B O}\left|\Phi_{i}^{a}\right\rangle}_{F_{i a}^{a}}+\frac{1}{4} \sum_{i j a b} C_{i j}^{a b} \underbrace{\left\langle\Phi_{H F}\right| \hat{H}_{B O}\left|\Phi_{i j}^{a b}\right\rangle}_{\langle i j \mid a b\rangle}
$$

$F_{i a}=h_{i a}+\sum_{j}\langle i j \| a j\rangle \quad$ Matrix element of the HF operator
$\varepsilon_{i j}=\frac{1}{2} \sum_{a b} C_{a b}^{i j}\langle i j \| a b\rangle \quad$ pair-correlation energy
$\langle i j \| a b\rangle=\langle i j \mid a b\rangle-\langle i j \mid b a\rangle=(i a \mid j b)-(i b \mid j a)$

We get: $\quad \sum_{i a} C_{a}^{i} F_{i a}+\frac{1}{2} \sum_{i j} \varepsilon_{i j}=C_{0} E_{c o r r}$
However, if the orbitals really do satisfy the canonical HF equations

$$
F \psi_{i}=\varepsilon_{i} \psi_{i}
$$

then we see immediately by multiplying from the left with ψ_{a} and integrating:

$$
\left\langle\psi_{a}\right| F\left|\psi_{i}\right\rangle=\varepsilon_{i}\left\langle\psi_{a} \mid \psi_{i}\right\rangle=0
$$

Note: this does not imply that the coefficients on the single excitations in the exact wavefunction are zero! They are not zero for HF orbitals. (there is a set of orbitals for which the singles coefficients are zero, the so called Brueckner orbitals).

Thus, for HF orbitals the matrix elements of the BO Hamiltonian with single excited determinants is zero! (Brillouin's theorem)

Finally:

$$
\frac{1}{4} \sum_{i j a b} C_{a b}^{i j}\langle i j||a b\rangle=\frac{1}{2} \sum_{i j} \varepsilon_{i j}=C_{0} E_{c o r r}
$$

If we would know the precise values of the double excitation coefficients we would know the EXACT correlation energy!
\checkmark Too bad that we don't know the exact values of the double coefficients :-(since each coefficient of a given excitation level directly depends on the coefficients of the higher (up to 2 levels) and lower (up to two levels) excitation levels (consequently all coefficients are indirectly dependent on each other!).

Later we will see how we can determine pretty accurate approximations to the crucial double excitation coefficients!
\checkmark The expansion is still infinite and therefore pretty academic! In practice all we can do is of course to truncate the expansion by not using an infinite set of orbitals but a finite one. Then the determinantal expansion also becomes finite.

\checkmark Then we do not obtain the exact correlation energy from the full-Cl but the basis set correlation energy and hope that we can get to the basis set limit
\checkmark In the Hartree-Fock theory that is not too hard. Unfortunately for Cl the correlation energy converges very slowly with the basis set! (F12-methods, extrapolation)

Size of the Full CI Space

Let us determine how many terms we have in the expansion if we assume N occupied and $V=N-M$ ($M=$ size of the basis) virtual HF orbitals at our disposal. For excitation level n :

Number of ways to choose n out of N electrons to be excited: $\binom{N}{n}$
Number of ways to choose n out of V acceptor orbitals (virtual): $\binom{V}{n}$
Combine the two and sum over all excitation levels n up to N :

$$
N_{\mathrm{det}}(F C I)=\sum_{n=1}^{N}\binom{N}{n}\binom{V}{n}=\sum_{n=1}^{N} \frac{N!}{n!(N-n)!} \frac{(M-N)!}{n!(M-N-n)!}=\binom{M}{N}
$$

Using Stirling's formula: $k!\approx k^{k+\frac{1}{2}} \sqrt{2 \pi+1} \exp (-k)$

$$
\binom{M}{N} \approx \sqrt{\frac{M}{(2 \pi+1) N(M-N)}}\left(\frac{M-N}{N}\right)^{N}\left(\frac{M}{M-N}\right)^{M} \text { TOO MUCh! }
$$

Truncated Configuration Interaction

Nesbet's theorem implied a special role of the double excitations for the correlation problem (and an analysis of many body perturbation theory would confirm that). Hence, one might contemplate an Ansatz that only contains double excitations:

$$
|\Psi\rangle=\left|\Psi_{H F}\right\rangle+\frac{1}{4} \sum_{i j a b} C_{a b}^{i j}\left|\Phi_{i j}^{a b}\right\rangle
$$

The coefficients of the double excitations were estimated to first order as (MP2):

$$
C_{a b}^{i j(1)}=-\frac{\langle i j \| a b\rangle}{\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{i}-\varepsilon_{j}}
$$

But what about calculating these coefficients variationally? \rightarrow Configuration Interaction

$$
\mathbf{H C}=E \mathbf{S C} \rightarrow\left(\begin{array}{cc}
E_{H F} & \mathbf{H}_{0 D} \\
\mathbf{H}_{0 D} & \mathbf{H}_{D D}
\end{array}\right)\binom{1}{\mathbf{C}_{D}}=E\binom{1}{\mathbf{C}_{D}}
$$

Large-dimensional eigenvalue problem \rightarrow iterative solution (Davidson algorithm)

Size Consistency

If we treat a supersystem consisting of non-interacting subsystems, we should obtain the sum of the individual subsystem energies. Is that the case for CID?

$$
E_{c o r r}=\frac{\left\langle\Psi_{H F}+\Psi_{c o r r}\right| \hat{H}-E_{H F}\left|\Psi_{H F}+\Psi_{c o r r}\right\rangle}{\left\langle\Psi_{H F}+\Psi_{c o r r} \mid \Psi_{H F}+\Psi_{c o r r}\right\rangle}
$$

Now, for localized orbitals, it is easy to show that the numerator gives:

$$
\left\langle\Psi_{H F}+\Psi_{\text {corr }}\right| H\left|\Psi_{H F}+\Psi_{\text {corr }}\right\rangle=\left\langle\Psi_{H F}+\Psi_{\text {corr }}^{(A)}+\Psi_{\text {corr }}^{(B)}\right| H\left|\Psi_{H F}+\Psi_{\text {corr }}^{(A)}+\Psi_{\text {corr }}^{(B)}\right\rangle \equiv X_{A}+X_{B}
$$

For the denominator we have:

$$
\left\langle\Psi_{H F}+\Psi_{\text {corr }} \mid \Psi_{H F}+\Psi_{\text {corr }}\right\rangle \equiv 1+Y_{A}+Y_{B}
$$

Hence:

$$
\begin{aligned}
E_{\text {corr }} & =\frac{X_{A}+X_{B}}{1+Y_{A}+Y_{B}} \neq E_{\text {corr }}(A)+E_{\text {corr }}(B) \\
& \approx\left(X_{A}+X_{B}\right)\left[1-\left(Y_{A}+Y_{B}+\ldots\right)\right]
\end{aligned}
$$

Truncated Cl is NOT size consistent (and hence useless for chemistry)

Analysis of Size Consistency in $\left(\mathrm{H}_{2}\right)_{2}$

For a single minimal basis H_{2} molecule we found that the CID matrix was of the form:
$\mathbf{H}=\left(\begin{array}{cc}0 & V \\ V & \Delta\end{array}\right)$

$$
\begin{aligned}
\Delta & =\left\langle\Psi_{D}\right| \hat{H}\left|\Psi_{D}\right\rangle-\left\langle\Psi_{H F}\right| \hat{H}\left|\Psi_{H F}\right\rangle \\
V & =\left\langle\Psi_{0}\right| \hat{H}\left|\Psi_{D}\right\rangle
\end{aligned}
$$

Ground state of the minimal basis H_{2} system

$$
E_{0}=\frac{1}{2}\left(\Delta-\sqrt{\Delta^{2}+4 V^{2}}\right)
$$

It is easy to show that for N noninteracting H_{2} molecules CID gives:

$$
E_{0}=\frac{1}{2}\left(\Delta-\sqrt{\Delta^{2}+4 N V^{2}}\right)
$$

Which is not size consistent. We return to $\mathrm{N}=2$ and study what is missing from CID.

Obviously, one step beyond CID is to include higher excitations. In the minimal basis $2 \mathrm{H}_{2}$ model system this would be a „simultaneous pair excitation" in which both H_{2} 's are put in their excited state.

$$
\begin{aligned}
& \sigma_{A}^{*}-\sim \sigma_{B}^{*} \quad \sigma_{A}^{*} \uparrow \downarrow-\sigma_{B}^{*} \quad \sigma_{A}^{*}-\downarrow \sigma_{B}^{*} \\
& \sigma_{A}+\perp+\sigma_{B} \quad \sigma_{A}-\uparrow+\sigma_{B} \\
& |0\rangle \\
& \left|D_{A}\right\rangle \\
& \left|D_{B}\right\rangle \\
& \sigma_{A}^{*}+\downarrow+\sigma_{B}^{*} \\
& \sigma_{A}-\text { - } \sigma_{B} \\
& |Q\rangle=\left|D_{A}+D_{B}\right\rangle
\end{aligned}
$$

Matrix-elements:
$\left\langle D_{A}\right| \hat{H}\left|D_{A}\right\rangle=\left\langle D_{B}\right| \hat{H}\left|D_{B}\right\rangle=\langle 0| \hat{H}|0\rangle+\Delta \quad$ Diagonal doubles
$\langle Q| \hat{H}|Q\rangle=\langle 0| \hat{H}|0\rangle+2 \Delta$
Diagonal quadruple
$\langle 0| \hat{H}\left|D_{A}\right\rangle=\langle 0| \hat{H}\left|D_{B}\right\rangle=\left\langle\sigma \sigma \| \sigma^{*} \sigma^{*}\right\rangle=V \quad$ Doubles/ground state
$\langle 0| \hat{H}|Q\rangle=0$
Quadruple/ground state
$\left\langle D_{A}\right| \hat{H}|Q\rangle=\left\langle D_{B}\right| \hat{H}|Q\rangle=V$
Quadruple/doubles
=Doubles/ground state!

In order to solve the problem we form again the symmetry adapted linear combination of the two doubles: $\left.|D\rangle=\frac{1}{\sqrt{2}}\left(D_{A}\right\rangle+\left|D_{B}\right\rangle\right)$

The variational principle leads us then to the Cl matrix (the configurations are in the order |0>, |D>, |Q>):

$$
\mathbf{H}=\left(\begin{array}{ccc}
0 & \sqrt{2} V & 0 \\
\sqrt{2} V & \Delta & \sqrt{2 V} \\
0 & \sqrt{2} V & 2 \Delta
\end{array}\right)
$$

The lowest root is (without proof; look in a formula collection or use a computer algebra system):

$$
E_{0}=\Delta-\sqrt{\Delta^{2}+4 V^{2}}
$$

This is twice the energy of a single H_{2}. Thus, the inclusion of the quadruple excitation restores the size consistency!

Furthermore:

$$
C_{Q}=\underbrace{\frac{\sqrt{2} V}{E-2 \Delta}}_{C_{D} / 2 C_{0}} C_{D}=\frac{1}{2 C_{0}} C_{D}^{2}
$$

For noninteracting subsystems, the coefficients of the quadruples are exactly products of doubles coefficients!

Conclusions and Generalization

We had 3 key results in studying the $2 \mathrm{xH}_{2}$ problem:

1. Inclusion of the simultaneous pair excitation exactly restores the size consistency.
2. The product of the simultaneous pair excitation was exactly proportional to the square of the coefficients of the double excitations (also follow from MBPT).
3. The matrix elements of the quadruple excitation with the doubles was equal to the matrix elements of the doubles with the ground state. Both sets of determinants differ by a double substitution from each other.

Now we want to generalize these findings and restart from the full-Cl equations. Ansatz:

$$
\begin{aligned}
& |\Psi\rangle=\left|\Psi_{H F}\right\rangle+\left|\Psi_{D}\right\rangle+\left|\Psi_{Q}\right\rangle \\
& \left|\Psi_{D}\right\rangle=\frac{1}{4} \sum_{i j a b} C_{a b}^{i j}\left|\Phi_{i j}^{a b}\right\rangle \\
& \left|\Psi_{Q}\right\rangle=\frac{1}{576} \sum_{i j k l a b c d} C_{a b c d}^{i j k l}\left|\Phi_{i j k l}^{a b c d}\right\rangle
\end{aligned}
$$

Insert into the Schrödinger equation and multiply from the left with the HF wavefunction gives the energy expression:

$$
\begin{aligned}
H\left(\left|\Psi_{H F}\right\rangle+\left|\Psi_{D}\right\rangle+\left|\Psi_{Q}\right\rangle\right) & =E\left(\left|\Psi_{H F}\right\rangle+\left|\Psi_{D}\right\rangle+\left|\Psi_{Q}\right\rangle\right) \\
\left\langle\Psi_{H F}\right| \rightarrow E=E_{H F}+E_{c o r r} & =E_{H F}+\left\langle\Psi_{H F}\right| H\left|\Psi_{D}\right\rangle \\
& =E_{H F}+\frac{1}{4} \sum_{i j a b} C_{a b}^{i j}\langle i j \| a b\rangle
\end{aligned}
$$

Multiplication from the left with a double excitation (X is a compound label $\mathrm{X}=(\mathrm{ij}, \mathrm{ab}$)) gives the amplitude equation:

$$
\underbrace{\left\langle\Psi_{X}\right| H\left|\Psi_{H F}\right\rangle}_{\langle i j \mid a b\rangle}+\underbrace{\left\langle\Psi_{X}\right| H\left|\Psi_{D}\right\rangle}_{\begin{array}{c}
\text { doubles/doubles } \\
\text { interaction }
\end{array}}+\underbrace{\left\langle\Psi_{X}\right| H\left|\Psi_{Q}\right\rangle}_{\begin{array}{c}
\text { doubles/quadruples } \\
\text { interaction }
\end{array}}=E C_{X}
$$

In order to break the full-CI hierarchy we have to approximate the doubles/quadruples interaction! Let us try to use the insights gained from the H_{2}-dimer

$$
\begin{aligned}
& \left|\Psi_{D}\right\rangle=\sum_{X} C_{X} \hat{E}_{X}\left|\Psi_{H F}\right\rangle \\
& \left|\Psi_{Q}\right\rangle \approx \frac{1}{2} \sum_{X, Y} C_{X} C_{Y} \hat{E}_{X} \hat{E}_{Y}\left|\Psi_{H F}\right\rangle
\end{aligned}
$$

(the E's are second quantized excitation operators)

BIG approximation 1: „disconnected quadruples"

We then insert into the amplitude equation:

$$
\begin{aligned}
\left\langle\Psi_{D}\right| H\left|\Psi_{Q}\right\rangle & =\frac{1}{2} \sum_{Y, Z} C_{Y} C_{Z}\left\langle\Psi_{X}\right| \hat{H} \hat{E}_{Y} \hat{E}_{Z}\left|\Psi_{H F}\right\rangle \\
& \approx C_{X} \sum_{Y} C_{Y}\left\langle\Psi_{X}\right| H \hat{E}_{X} \hat{E}_{Y}\left|\Psi_{H F}\right\rangle \\
& \approx C_{X} \sum_{Y} C_{Y}\left\langle\Psi_{H F}\right| H \hat{E}_{Y}\left|\Psi_{H F}\right\rangle \quad \text { BIG approximation 2: Matrix element } \\
& =C_{X} \sum_{Y} C_{Y}\left\langle\Psi_{H F}\right| H\left|\Psi_{Y}\right\rangle=C_{X} E_{\text {corr }} \quad
\end{aligned}
$$

Hence, we arrive at a key result (MANY treatments arrive just there!):

$$
\begin{aligned}
& \underbrace{\left\langle\Psi_{X}\right| H\left|\Psi_{H F}\right\rangle}_{\langle\dot{j i l|a b\rangle}}+\underbrace{\left\langle\Psi_{X}\right| H\left|\Psi_{D}\right\rangle}+\underbrace{\left\langle\Psi_{X}\right| H\left|\Psi_{Q}\right\rangle}=E C_{X} \\
& \left\langle\Psi_{X}\right| H\left|\Psi_{H F}\right\rangle+\left\langle\Psi_{X}\right| H\left|\Psi_{D}\right\rangle+E_{\text {corr }} C_{X}=\underbrace{E}_{E_{H F}+E_{\text {corr }}} C_{X} \\
& \left\langle\Psi_{X}\right| H\left|\Psi_{H F}\right\rangle+\left\langle\Psi_{X}\right| H\left|\Psi_{D}\right\rangle=E_{H F} C_{X}
\end{aligned}
$$

These are the CEPA/0-equations. You would have arrived there upon neglect of the normalization of the denominator in the Ritz functional as well ... or in many other ways! They also look like CID equation shifted with a diagonal shifted by Ecorr

Exclusion principle violating terms

We have been a bit too hasty in making one-specific simplification: we can only perform a double excitation on top of another double excitation if the two double excitations are truly "disconnected" (share no orbital label). Hence, we have to repair that:

$$
\begin{aligned}
C_{X} \sum_{Y} C_{Y}\left\langle\Psi_{H F}\right| H \hat{E}_{Y}\left|\Psi_{H F}\right\rangle & \rightarrow C_{X} \sum_{Y} C_{Y}\left\langle\Psi_{H F}\right| H \hat{E}_{Y}\left|\Psi_{H F}\right\rangle-C_{X} \sum_{Y \subset X} C_{Y}\left\langle\Psi_{H F}\right| H \hat{E}_{Y}\left|\Psi_{H F}\right\rangle \\
& =C_{X}\left(E_{\text {corr }}-\sum_{Y \subset X} C_{Y}\left\langle\Psi_{H F}\right| H \hat{E}_{Y}\left|\Psi_{H F}\right\rangle\right) \\
& \equiv C_{X}\left(E_{\text {corr }}-\Delta_{X}^{(E P V)}\right)
\end{aligned}
$$

The shifts are called „Exclusion principle violating terms".
Inserting into the full-Cl equations now gives us the celebrated „Coupled Electron Pair" (CEPA) equations:

$$
\left\langle\Psi_{X}\right| H\left|\Psi_{H F}\right\rangle+\left\langle\Psi_{X}\right| H\left|\Psi_{D}\right\rangle=\left(E_{H F}+\Delta_{X}^{(E P V)}\right) C_{X}
$$

They are simply shifted Cl equations. Without proof, the best CEPA method is CEPA/1:

$$
\Delta_{X}^{(E P V)}=\Delta_{i j a b}^{(E P V)}=\frac{1}{2} \sum_{k} \varepsilon_{i k}+\varepsilon_{j k} \quad \begin{aligned}
& \varepsilon_{i j}=\frac{1}{2} \sum_{a b}\langle i j \| a b\rangle C_{a b}^{i j} \\
& \text { Pair correlation energy } \quad E_{c o r r}=\frac{1}{2} \sum_{i j} \varepsilon_{i j}
\end{aligned}
$$

ACCOUNTS
 of chemical research

Accurate Theoretical Chemistry with Coupled Pair Models

FRANK NEESE, ${ }^{*, \dagger, ~} \ddagger$ ANDREAS HANSEN, ${ }^{\dagger}$ FRANK WENNMOHS, ${ }^{\dagger}$ AND STEFAN GRIMME ${ }^{\S}$

For the overwhelming majority of cases CEPA is within $1-2 \mathrm{kcal} / \mathrm{mol}$ of $\operatorname{CCSD}(\mathrm{T})$ and systematically better than QCISD and CCSD.

Both are very close to experiment if large basis sets are used

Generalization of CEPA

In deriving CEPA we made two major approximations:
\checkmark Expressing the quadruples in terms of disconnected doubles amplitudes
\checkmark Expressing doubles/quadruples matrix elements in terms of pair correlation energies

The first approximation is physically sound, the second is mathematically sloppy. So let us avoid the second approximation. This is most easily done by introducing the excitation operators:

$$
\begin{aligned}
& \hat{C}_{1}=\sum_{i a} C_{a}^{i} a_{a}^{+} a_{i} \\
& \hat{C}_{2}=\frac{1}{4} \sum_{i j a b} C_{a b}^{i j} a_{a}^{+} a_{b}^{+} a_{j} a_{i}
\end{aligned}
$$

Now we also include the singles and make the Ansatz:

$$
\begin{aligned}
& \left|\Psi_{S}\right\rangle=\hat{C}_{1}\left|\Psi_{H F}\right\rangle \\
& \left|\Psi_{D}\right\rangle=\hat{C}_{2}\left|\Psi_{H F}\right\rangle \\
& \left|\Psi_{Q}\right\rangle \approx \hat{C}_{2} \hat{C}_{2}\left|\Psi_{H F}\right\rangle
\end{aligned}
$$

Quadratic Configuration Interaction Equations

This Ansatz leads immediately to what we consider as the most proper CEPA version: the quadratic configuration interaction with singles and doubles, QCISD). (This is NOT, how this method was historically perceived.)

$$
\begin{aligned}
& E_{Q C I S D}=E_{H F}+\frac{1}{4} \sum_{i j a b}\langle i j \| a b\rangle C_{a b}^{i j} \\
& E_{c o r r} C_{a}^{i}=\left\langle\Psi_{i}^{a}\right| H\left(1+\hat{C}_{1}+\hat{C}_{2}+\hat{C}_{1} \hat{C}_{2}\right)\left|\Psi_{H F}\right\rangle \\
& E_{c o r r} C_{a b}^{i j}=\left\langle\Psi_{i j}^{a b}\right| H\left(1+\hat{C}_{1}+\hat{C}_{2}+\hat{C}_{2} \hat{C}_{2}\right)\left|\Psi_{H F}\right\rangle
\end{aligned}
$$

These equations contain disconnected triples in the singles equation and disconnected quadruples in the doubles equation. Once the matrix elements are evaluated (perhaps best in terms of diagrams) and properly solved, the result are size consistent, unitarily invariant correlation energies of excellent quality.

Generalization: The exponential Ansatz

Instead of putting in products of excitation operators „by hand", we can choose an Ansatz that incorporates them from the beginning:

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\left|\Psi_{C C}\right\rangle=\exp (\underbrace{\hat{T}_{1}+\hat{T}_{2}+\hat{T}_{3}+\ldots}_{\hat{T}})\left|\Psi_{H F}\right\rangle \\
\quad=\left(1+\hat{T}+\frac{1}{2} \hat{T}^{2}+\frac{1}{3!} \hat{T}^{3}+\ldots\right)\left|\Psi_{H F}\right\rangle
\end{array}\right. \\
& \hat{T}_{1}=\sum_{i a} t_{a}^{i}\left\{a_{a}^{+} a_{i}\right\} \\
& \hat{T}_{2}=\frac{1}{4} \sum_{i j a b} t_{a b}^{i j}\left\{a_{a}^{+} a_{b}^{+} a_{j} a_{i}\right\} \\
& \hat{T}_{3}=\frac{1}{36} \sum_{i j k a b c} t_{a b c}^{i j k}\left\{a_{a}^{+} a_{b}^{+} a_{c}^{+} a_{k} a_{j} a_{i}\right\}
\end{aligned}
$$

In the limit where either all C-operators or all T-operators are included in the treatment, the Cl and CC wavefunctions are identical and CC is a more complicated way of parameterizing the full-Cl wavefunction. For truncation of the C-operator series or the T-operator series the CC expansion is more complicated but much more accurate.

We have purposely renamed the Cl coefficients \boldsymbol{C} to cluster amplitudes \boldsymbol{t} and the C-operators to T-operators to:
a) follow the conventions used in the literature and
b) emphasize that the two types of quantities are different
\checkmark This is the famous „Coupled Cluster Expansion".
$\checkmark \ln \mathrm{Cl}$ theory the unknowns are the Cl coefficients C of the single, double, triple,... excitations which are determined from the variational principle.
\checkmark In Coupled Cluster theory the unknowns are the "cluster amplitudes" t for the single, double, triple,... excitation operators.

Connection of Cl and CC approaches

While these t's and C's appear to be closely related there is an important difference which becomes obvious upon expanding the linear and nonlinear terms in the power series expansion of the exponential. Restricting, the cluster operator at the moment to the T_{1} and T_{2} terms:

$$
\exp \left(\hat{T}_{1}+\hat{T}_{2}\right)=1+\hat{T}_{1}+\hat{T}_{2}+\frac{1}{2} \hat{T}_{1}^{2}++\hat{T}_{1} \hat{T}_{2}+\frac{1}{2} \hat{T}_{2}^{2}+\ldots
$$

Thus, at each spin-orbital excitation level \boldsymbol{n} the coupled cluster expansion has amplitudes arising from „genuine" (connected) n-tuple excitations and those (disconnected) parts which arise as products of lower excitations. In CI theory each ntuple excitation is only associated with a single coefficient.
(In other words - if the CC T-operator is truncated, the model still contains highly excited determinants. This is not the case for the Cl model where each determinant in the treatment comes with its own coefficient. In the CC model the coefficients of the higher excitations are approximated as products of coefficients of lower excitations!)

$$
\begin{aligned}
& \hat{C}_{1}=\hat{T}_{1} \\
& \hat{C}_{2}=\frac{1}{2} \hat{T}_{1}^{2}+\hat{T}_{2} \\
& \hat{C}_{3}=\frac{1}{6} \hat{T}_{1}^{3}+\hat{T}_{1} \hat{T}_{2}+\hat{T}_{3} \\
& \hat{C}_{4}=\frac{1}{24} \hat{T}_{1}^{4}+\frac{1}{2} \hat{T}_{2}^{2}+\frac{1}{2} \hat{T}_{1}^{2} \hat{T}_{2}+\frac{1}{2} \hat{T}_{2}^{2}+\hat{T}_{1} \hat{T}_{3}+\hat{T}_{4}
\end{aligned}
$$

Solution of the CC Equations

\checkmark Inserting the CC Ansatz into the variational functional:

$$
E=\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\left\langle e^{T} \Psi_{0}\right| \hat{H}\left|e^{T} \Psi\right\rangle}{\left\langle e^{T} \Psi \mid e^{T} \Psi\right\rangle}
$$

shows that this is a hopeless idea - the expansion does not terminate.
\checkmark Thus, an alternative is needed and is readily derived from inserting the CC-Ansatz into the Schrödinger equation:

$$
\begin{aligned}
& \hat{H}_{B O}|\Psi\rangle=E|\Psi\rangle \\
& \hat{H}_{B O} e^{T}\left|\Psi_{0}\right\rangle=E e^{T}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

\checkmark The amplitudes are determined by projecting onto the Schrödinger equation. In Cl that gave the same results as the variational treatment. In CC theory this is evidently not so.

$$
\begin{aligned}
& E_{C C}=\left\langle\Psi_{0}\right| \hat{H}_{B O} e^{T}\left|\Psi_{0}\right\rangle \\
& 0=\left\langle\Psi_{X}\right| \hat{H}_{B O} e^{T}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

\checkmark The correlation energy results from projection with the HF determinant

$$
E_{c o r r}=\frac{1}{4} \sum_{i j} t_{a b}^{i j}\langle i j \| a b\rangle
$$

some diagrams in the doubles equation:

$-P(i j) t_{i m}^{a b}\langle m n \| j e) t_{n}^{e} \quad-\frac{1}{2} P(i j) t_{i m}^{a b}\langle m n \| e f\rangle t_{j n}^{e f}$

$\frac{1}{2}\left\langle m n\|\| j\rangle t_{m n}^{o b}\right.$

$\langle m n \| i j\rangle t_{n}^{a} t_{n}^{b}$

$\frac{1}{2} P(i j) t_{m n}^{a b}\langle m n \| i e\rangle t{ }_{j}^{e}$

$P(i j) t_{m}^{a} t_{n}^{b}\left\langle m n_{n} \| i e\right\rangle t_{j}^{e}$

$\frac{1}{4} t_{m n}^{a b} t_{i j}^{c f}\langle m n||e f\rangle$

$\frac{1}{2} t_{i j}^{e f}\langle a b \| e f\rangle$

Triple Excitations

In recent years it has become possible for small molecules to pursue very accurate calculations which explicitly include the triple and quadruple excitations in CCSDT and CCSDTQ. However, in the majority of cases, these calculations are simply too expensive as already CCSDT features an effort which scales as $O\left(N^{8}\right)$. On the other hand it is clear that one has to go beyond CCSD if high accuracy (i.e. „chemical accuracy" of $1-3 \mathrm{kcal} / \mathrm{mol}$) should be reached.

The compromise is the "gold standard" CCSD(T) model in which a perturbative correction to the connected triple excitations is calculated based on the converged amplitudes of a CCSD calculation. The correction features an asymptotic $O\left(N^{7}\right)$ effort and reads:

$$
\begin{aligned}
& \Delta E^{(T)}=-\frac{1}{36} \sum_{i j k a b c} t_{a b c}^{i j k}\left(t_{a b c}^{i j k}+\tilde{t}_{a b c}^{i j k}\right)\left(\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{i}-\varepsilon_{j}-\varepsilon_{k}\right) \\
& t_{a b c}^{i j k}=-P(i j k) P(a b c) \frac{\sum_{d} t_{a d}^{i j}\langle b c \| d k\rangle-\sum_{l} t_{a b}^{i l}\langle l c \| j k\rangle}{\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{i}-\varepsilon_{j}-\varepsilon_{k}} \\
& \tilde{t}_{a b c}^{i j k}=-P(i j k) P(a b c) \frac{t_{a}^{i}\langle b c \| j k\rangle}{\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}-\varepsilon_{i}-\varepsilon_{j}-\varepsilon_{k}}
\end{aligned}
$$

Convergence of CC Energies

Deviation from full-CI (CO molecules, cc-pVDZ basis, frozen core) in mE_{h} for Cl and CC models with various excitation levels:

	Cl	CC
SD	30.804	12.120
SDT	21.718	1.011^{a}
SDTQ	1.775	0.061
SDTQP	0.559	0.008
SDTQPH	0.035	0.002

a: $1.47 \mathrm{mE}_{\mathrm{h}}$ for $\operatorname{CCSD}(\mathrm{T})$
For a given excitation level, the CC models are about one order of magnitude more accurate than Cl models (which becomes even more significant for larger molecules)!

High Accuracy Thermochemistry with CC

Using the most accurate modern CC methods together with large basis sets and corrections for relativistic effects, one can calculate the atomization energy for small molecules to better than $1 \mathrm{kcal} / \mathrm{mol}$.

Example: CO molecule, atomization energy [$\mathrm{kcal} / \mathrm{mol}]$:

```
HF-Level : 174.40 kcal/mol
Correlation (CCSD(T)) : 85.30
Zero-Point Vibration : -3.10
Spin-Orbit Coupling : -0.29
Scalar Relativity : -0.17
Correlation (>CCSD(T)) : -0.04
Non Born-Oppnheimer : 0.03
Sum(Theory)
    256.29
Experiment 256.2
```


Problem with Wavefunction Methods

Problem with Wavefunction Methods

Aim of the Development

Premises

\checkmark Coupled cluster would be the method of choice if it would be applicable in reasonable turnaround times to molecules of current chemical interest.
... this means 50-200 atoms (QM/MM for larger)
... currently these studies are done with DFT (mostly B3LYP)
... if the accuracy of DFT is in question, typically CC calculations on model systems are called upon

Conclusions

\checkmark Produce methodology that is as black box as DFT or canonical CC
\checkmark The method must be computationally affordable (Not much more expensive than the gold standard B3LYP)
\checkmark The method must be generally applicable to properties, open shells, transition metals, ...

Aim of the Development

The ORCA Project

Hartree-Fock

RHF,UHF,ROHF,CASSCF Direct, Semidirect, Conventional, RI-Approx., Newton-Raphson

Electron Correlation

MP2/RI-MP2
$\operatorname{CCSD}(\mathrm{T}), \mathrm{QCISD}(\mathrm{T}), \mathrm{CEPA}, \mathrm{CPF}$ (all with and without RI, Local)
MR-MP2, MR-MP3, MR-MP4(SD) MR-CI, MR-ACPF, MR-AQCC

Relativistic Methods

$1^{\text {st }} 5^{\text {th }}$ Order Douglas-Kroll-Hess
Zero'th Order Regular Approximation (ZORA) Infinite Order Regular Approximation (IORA) Picture Change Effects, All electron basis sets, (Effective core potentials)

Density Functional

LDA, GGA, Hybrid Functionals Double hybrid functionals, RI-Approx., Newton-Raphson RKS,UKS,ROKS

Excited States

TD-DFT/CIS+gradients MR-CI/DDCI/SORCI

Molecular Properties

Analytical Gradients(HF,DFT,MP2) + Geometries + Trans. States Polarizabilities, Magnetizabilities (Coupled-Perturbed HF/KS)

COSMO Solvation Model Throughout
IR, Raman and Resonance Spectra (Numerical Frequencies)
EPR-Parameters (g,A,D,J,Q)

Mössbauer-Parameters $\left(\delta, \Delta \mathrm{E}_{\mathrm{Q}}\right)$
ABS,CD,MCD Spectra
Population Analysis, NBOs, Localization, Multipole Moments,...

Saving Time in Electronic Structure Calculations

Exploit Sparsity!

Compress Data!

$$
M=\left(\begin{array}{l}
\mathrm{M}^{\prime}=\mathrm{U}^{\mathrm{H} M \mathrm{MU}} \\
\Rightarrow \\
\Rightarrow
\end{array} M^{\prime}=\left(\begin{array}{l}
\mathbf{0}
\end{array}\right.\right.
$$

0
0

Canonical Virtual Orbitals and Correlation

Canonical virtual orbitals are a „chaotic" space for correlating electron pairs

MO120

MO140

MO98

Truncation schemes based on canonical MOs are unlikely to be highly successful

Projected Atomic Orbitals

Projected atomic orbitals, PAOs, Pulay, P. CPL, 1983, 100, $151 \quad|\tilde{\mu}\rangle=\left(1-\sum_{i}|i\rangle\langle i|\right)|\mu\rangle$

Only the PAOs of „domains" close to a given occupied orbitals are taken
Pair domains are constructed from individual orbital domains
Solid local basis for electron correlation! Leads to linear scaling when done properly (Pulay, Werner, Schütz)

If domains are chosen to be accurate they contains $>10-20$ atoms and then the calculations still become expensive or not feasible
 An even more compact set is obtained by using pair natural orbitals (Meyer, Kutzelnigg, Staemmler, Taylor). Local PNOs (FN)

Most Compact Expansion: Natural Orbitals

/ேロ

The Beauty of Pair Natural Orbitals

- Small number of significant PNOs per electron pair
- Vanishing (0-5) PNOs for weak pairs (But see talk of HJ Werner)

- Located in the same region of space as the internal pair but as delocalized as necessary
- Asymptotically basis set independent number of PNOs for each pair

Convergence of LPNO-CCSD

\checkmark Typically 99.8-99.9\% of the canonical correlation energy is recovered in LPNO(CEPA,QCISD, CCSD)
\checkmark Energetics of the canonical counterpart methods is reproduced to $1 \mathrm{kcal} / \mathrm{mol}$ or better
\checkmark The methods are robust and completely black box in character (as the canonical counterparts).

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106

Attractive Features of the LPNO Approach

(1) Simplicity. Only one critical cut-off ($T_{\text {CutpNo }}$); local approximations only ,boost‘ efficiency. Tcutpno can be use to control the absolute desired accuracy
(2) No real-space cut-offs or fragmentation necessary
(3) No redundant integral generation or amplitude optimizations
(4) No reliance on sparsity
(5) Correlation space for each electron pair is optimal: a) very small for weak pairs, b) as delocalized as necessary
(6) Excellent behavior with basis set size
(7) With (moderately) conservative thresholds only 0.1-0.3\% of E_{c} is lost. Reproduces the canonical result to within a few $0.1 \mathrm{kcal} / \mathrm{mol}$
(8) Very weak or no dependence on the localization method. Well localized internal space not even required
(9) Very smooth error; no kinks and jumps in PESs
(10) Black box character

```
Canonical:
! cc-pVTZ CCSD
LPNO:
! cc-pVTZ cc-pVTZ/C DLPNO-CCSD
```


How Local are the PNOs?

(ICQC, 2009)

The best of Both Worlds DLPNO

\checkmark The original LPNO-Method Expanded the PNOs in terms of virtual MOs. Hence, the PNOs were local but the expansion basis was not

- undesirable fifth order scaling steps limited the applicability of the method to about 100 atoms
- Expansion of the PNOs in terms of PAOs eliminates all bottlenecks and leads to (near) linear scaling LPNO-CCSD (,Domain Based‘ LPNO, DLPNO)

$$
\begin{array}{ll}
\text { LPNO-CCSD } & \left|\tilde{a}_{i j}\right\rangle=\sum_{a} d_{a \tilde{u}}^{i j}|a\rangle \\
\text { DLPNO-CCSD } & \left|\tilde{a}_{i j}\right\rangle=\sum_{(\underset{\mu \in\{i j\}}{ }} d_{\tilde{\mu} \tilde{u}}^{i j}|\tilde{\mu}\rangle
\end{array}
$$

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106

Dr. Christoph Riplinger

Pair Natural Orbital Construction

Pair density construction: LMP2 amplitudes $\quad T_{\tilde{\mu} \bar{\nu}}^{i j}=-\frac{(i \tilde{\mu} \mid j \tilde{\nu})}{\varepsilon_{\tilde{\mu}}+\varepsilon_{\tilde{\nu}}-F_{i i}-F_{j j}}$

$$
\mathbf{D}^{i j}=\tilde{\mathbf{T}}^{i j+} \mathbf{T}^{i j}+\tilde{\mathbf{T}}^{i j} \mathbf{T}^{i j+} \quad \tilde{T}^{i j}=\frac{1}{1+\delta_{i j}}\left(4 \mathbf{T}^{i j}-2 \mathbf{T}^{i j+}\right)
$$

The PNOs are obtained as the eigenfunctions of the virtual pair density

$$
\mathbf{D}^{i j} \mathbf{d}^{i j}=\mathbf{n}^{i j} \mathbf{d}^{i j}
$$

PNOs with occupation numbers below $\mathrm{T}_{\text {Cutpno }}$ are neglected
Problem: if this is done for each electron pair, the cost will be significant since even in a local MP2 context the amplitude construction becomes expensive.

Solution: Use a pair prescreening to estimate which pairs are worthwhile computing and obtain a reliable estimate of the pair truncation effect

Electron Pair Prescreening

\checkmark MP2 pair correlation energy:

$$
\begin{aligned}
& \text { "Coulomb" „Exchange" } \rightarrow 0 \\
& \varepsilon_{i j}^{S C-M P 2}=-\sum_{a b} \frac{4(i a \mid j b)(i a \mid j b)-2(i a \mid j b)(i b \mid j a))}{\varepsilon_{a}+\varepsilon_{b}-F_{i i}-F_{i j}}
\end{aligned}
$$

- Introduce a set of orbital specific virtual orbitals (=PNOs of diagonal pairs) and drop the exchange part
\checkmark Long range part

$$
\varepsilon_{i j}^{S C-o s V} \approx-4 \sum_{a b} \frac{\left(i \tilde{a}_{i} \mid j \tilde{b}_{j}\right)^{2}}{\varepsilon_{\tilde{a}_{i}}+\varepsilon_{\tilde{b}_{j}}-F_{i i}-F_{i j}} \quad \text { "Orbital specific } \text { virtuals" (OSvs) }
$$

\checkmark Multipole Expansion

$$
\varepsilon_{i j}^{o S V-D I P}=\frac{8}{R_{i j}^{6}} \sum_{a b} \frac{\left(\langle i| \mathbf{r}\left|\tilde{a}_{i}\right\rangle\langle j| \mathbf{r}\left|\tilde{b}_{j}\right\rangle\right)^{2}}{\left(\varepsilon_{\tilde{a}_{i}}+\varepsilon_{\tilde{b}_{i}}-F_{i i}-F_{j j}\right)}
$$

- Very small effort: only OSVs and dipole integrals (Generation in $\mathrm{O}(\mathrm{N})$ time)

Numerical Example: Benzene Dimer

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106

Scaling of DLPNO-CCSD

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106

hmon

Calculations on some larger molecules

Accuracy of the correlation energy Penicillin/def2-TZVPP
Canonical CCSD (1006 basis functions; 12 days on 16 cores) -4.3799 Eh
DLPNO-CCSD (4 hours on 1 core)
-4.3781 Eh

Heme-CO
74 Atoms
212 correlated electrons 542 correlated electrons def2-SVP
782 Basis functions
Vancomycin
176 Atoms SV(P)
1797 Basis functions

$$
\begin{gathered}
\mathbf{t}_{\text {SCF }}=? \mathrm{~h} \\
\text { tPNO-CC= }=14 \mathrm{~h}
\end{gathered}
$$

FN; A. Hansen, D.G. Liakos, J. Chem. Phys., 2009 131, 064103; Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106

The largest CCSD Calculation ever

$\mathrm{C}_{150} \mathrm{H}_{302}=452$ atoms

$$
\text { def2-TZVPP Basis Set }=8878 \text { Basis Functions }
$$

... LPNO-CCSD runs through on a single processor in just a few days.
... future highly parallelized codes will be able to treat huge molecules efficiently thus pushing the boundaries of computational chemistry

Real World Applications

Asymmetric Hydrogenation Catalysts

Pfaltz, A.; Drury, W.J. PNAS, 2004, 101, 5723

M. T. Reetz, A. Meiswinkel, G. Mehler, K. Angermund, M. Graf, W. Thiel, R. Mynott, and D. Blackmond, J. Am. Chem. Soc. 127, 10305-10313 (2005)

Dr. Manuel Sparta

Local ,Natural‘ Triple Excitations

The highly successful perturbative triple excitation correction (T) involves:

$$
W_{a b c}^{i j k} \leftarrow \underbrace{\sum_{d}(i a \mid b d) t_{d c}^{j k}}_{I_{a b, d}^{i} d_{d c}^{j k}}-\underbrace{\sum_{l}(k c \mid j l) t_{a b}^{i l}}_{T_{a b, l}^{i} L_{l, c}^{j k}}+(5 \text { permutations })
$$

\checkmark In a local context only a linear number of pairs must be included in the triples correction \checkmark The problem, again, is to represent the virtual space

PAO based domain treatment (Schütz \& Werner): Linear scaling achievable OSV based treatment (Chan, Werner et al.): Linear scaling achieved

Fragment based approach by Kallay, Piecuch: Linear scaling achieved
Approach by Pulay: Not strictly linear scaling but very accurate

DLPNO-CCSD:

\checkmark Domains are available but are too large for the Schütz \& Werner approach (>500 basis functions/pair)

Natural Triple Excitations

Our suggestion: Natural triples orbitals

\checkmark Three-pair density: $\quad \mathbf{D}^{i j k}=\frac{1}{3}\left(\mathbf{D}^{i j}+\mathbf{D}^{i k}+\mathbf{D}^{j k}\right)$
(The operator $\hat{D}^{i k}=\sum_{\bar{a}_{j}}\left|\bar{a}_{i j}\right\rangle\left\langle\bar{a}_{i j}\right|+\sum_{\bar{a}_{k}}\left|\bar{a}_{i k}\right\rangle\left\langle\bar{a}_{i k}\right|+\sum_{\bar{a}_{k}}\left|\bar{a}_{j k}\right\rangle\left\langle\bar{a}_{j k}\right| \begin{aligned} & \text { projects onto the joint PNO } \\ & \text { space of the three pairs) }\end{aligned}$
\checkmark Formation of the three pair density in the PAO basis is linear scaling:
\checkmark Eigenfunctions: $\mathbf{D}^{i j k} \mathbf{x}^{i j k}=n^{i j k} \mathbf{x}^{i j k}$ (cut-off below a given $\mathrm{n}^{i j}$ (min) just as for PNOs)
\checkmark Recanonicalize: $\mathbf{x}^{i j k} \mathbf{F x}^{i j k}$
\checkmark Amplitudes are projected into the TNO basis: $T_{\tilde{a}_{i j k}, \tilde{b}_{i j k}}^{i j ; T N O}=S_{\tilde{\partial}_{j k k}, c_{i j}}^{i j k, i j} T_{\tilde{c}_{i j}, \tilde{d}_{i j}}^{i j ; P N O} S_{\tilde{b}_{i j k}, \tilde{d}_{i j}}^{i j k, i j}$
\Rightarrow Problem is that projection of existing PNO integrals onto the TNO basis is not good enough (sad history :-()
\Rightarrow Integrals over TNOs must be generated for each triple (bookkeeping complicated but linear scaling)
\Rightarrow Linear scaling implementation achieved

Dr. Christoph Riplinger

Riplinger, C. FN J. Chem. Phys, 2013, submitted

Consistency checks

\checkmark Local (T_{0}) converges smoothly to about 97-98\% of (To)
\checkmark Sufficient to include MP2 pairs at 0.1 TCutPairs
\checkmark Domains are converged at the default TcutMkn

Riplinger, C. FN J. Chem. Phys, 2013, submitted

Error Statistics

Reaction \& Isomerization Energies (ISO34 set; relative to canonical CCSD/CCSD(To))

kcal/mol	MAD	MAX	ME
DLPNO-CCSD	0.41	2.10	-0.23
DLPNO-CCSD(T)	0.50	1.70	-0.06

\checkmark The additional error due to the triples is limited

Riplinger, C. FN J. Chem. Phys, 2013, submitted

Scaling of DLPNO-CCSD(T)

CCSD(T) Calculations on Entire Proteins

Riplinger, C. FN J. Chem. Phys, 2013, submitted

Crambin

644 atoms def2-SV(P)/6187 basis functions

Canonical computation time ~5 Million Years

DLPNO-CCSD(T)
~3 weeks/1 Core

(axea Consistency of Local Correlation: QM/MM

Mata, R. A., Werner, H.-J., Thiel, S., \& Thiel, W. (2008). J. Chem. Phys.,128, 025104-8.
\checkmark PHBH is a flavoprotein monooxygenase that catalyzes the hydroxylation of the substrate p-hydroxybenzoate by the cofactor flavin hydroperoxide
$\checkmark 10$ representative snapshot of the reaction were selected by MD simulation.
\checkmark For each snapshot GS and TS were optimized
\checkmark QM/MM calculations of the active site (49 atoms) embedded into the point charge distribution to account for the rest of the protein
\checkmark Computation of (T) accounts for $\sim 30 \%$ of the computation time
\checkmark Almost $>2 / 3$ rd of the (large) triples effect is recovered by DLPNO-CEPA/1

Dr. Manuel Sparta

Towards Applications: $\mathrm{V}_{2} \mathrm{O}_{5}$

$\mathrm{V}_{4} \mathrm{O}_{18} \mathrm{H}_{16}$

D Maganas; M Hävecker; A Knop-Gericke; M Roemelt; R Schlögl; A Trunschke; FN, PCCP 2013, 15, 7260-76.

Structure oprimization with high-level wavefunctions (LPNO-CCSD)

D Maganas; M Hävecker; A Knop-Gericke; M Roemelt; R Schlögl; A Trunschke; FN, PCCP 2013, 15, 7260-76.

Summary \& Conclusions

\star LPNO based correlation methods provide a highly reliable, robust and systematic route towards wavefunction calculations on large molecules.
\star Deviations from canonical results are small. Presently ~200-600 atoms can be treated.
\star Parallelized closed (and open-shell) codes are available.
\star Extensions to properties, F_{12}, excited states etc. are coming forward

> We are always looking for highly motivated Ph. D. students and postdocs to join the team!

Have fun with

http://www.cec.mpg.de/downloads

Acknowledgements

Molecular Theory and Spectroscopy @ MPI Mülheim, September 2011
$€ € €$ DFG, MPG, NSF €€€

- Dr. Frank Wennmohs

- Dr. Christian Kollmar
- Dr. Michael Atanasov
- Dr. Dmitry Ganyushin
- Dr. Taras Petrenko
- Dr. Gemma Christian
- Dr. Shengfa Ye
- Dr. Barbara Sandhöfer
- Dr. Dimitrios Pantazis
- Dr. Lili Shi
- Dr. Dimitris Liakos
- Dr. Dimitris Manganas
- Dr. Igor Schapiro
- Dr. Itana Krivokapic
- Dr. Simone Kossmann
- Dr. Christoph Riplinger
- Mr. Dima Bykov
- Ms. Cai-Yun Geng
- Dr. Andreas Hansen
- Mr. Oliver Krahe
- Mr. Mario Kampa
- Mr. Michael Römelt
- Mr. Kanthornban Sivalingam
- Ms. Ute Becker

