Introduction to linear-response, and time-dependent density-functional theory

Heiko Appel

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin

Motivation

Where is electron dynamics important?

- Electron-hole pair creation and exciton propagation in solar cells
- Photosynthesis and energy transfer in light-harvesting antenna complexes
- Quantum computing (e.g. electronic transitions in ultracold atoms)
- Molecular electronics, quantum transport

Motivation - Decoherence in Quantum Mechanics

Today's Google frontpage: 126. birthday of Erwin Schrödinger

Google.de angeboten auf: English

Werben mit Google Unternehmensangebote +Google Über Google Google.com
(c) 2013 -Datenschutzerk|ärung \& Nutzungsbedingungen

Schrödinger cat state

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}\left(a(t)\left|\psi_{A}\right\rangle+d(t)\left|\psi_{D}\right\rangle\right)
$$

Outline

Linear Response in DFT

- Response functions
- Casida equation
- Sternheimer equation

Real-space representation and real-time propagation

- Real-space representation for wavefunctions and Hamiltonians
- Time-propagation schemes
- Optimal control of electronic motion

Time-dependent density-functional theory

- One-to-one correspondence of time-dependent densities and potentials

$$
v(\mathbf{r}, t) \quad \stackrel{1-1}{\longleftrightarrow} \rho(\mathbf{r}, t)
$$

For fixed inital states, the time-dependent density determines uniquely the time-dependent external potential and hence all physical observables.
E. Runge, and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).

Time-dependent density-functional theory

- One-to-one correspondence of time-dependent densities and potentials

$$
v(\mathbf{r}, t) \quad \stackrel{1-1}{\longleftrightarrow} \rho(\mathbf{r}, t)
$$

For fixed inital states, the time-dependent density determines uniquely the time-dependent external potential and hence all physical observables.
E. Runge, and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).

- Time-dependent Kohn-Sham system

The time-dependent density of an interacting many-electron system can be calculated as density

$$
\rho(\mathbf{r}, t)=\sum_{j=1}^{N}\left|\varphi_{j}(\mathbf{r}, r)\right|^{2}
$$

of an auxiliary non-interacting Kohn-Sham system

$$
i \hbar \partial_{t} \varphi_{j}(\mathbf{r}, t)=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+v_{S}[\rho](\mathrm{r}, t)\right) \varphi_{j}(\mathbf{r}, t)
$$

with a local multiplicative potential

$$
v_{S}\left[\rho\left(\mathrm{r}^{\prime}, t^{\prime}\right)\right](\mathrm{r}, t)=v_{\mathrm{ext}}(\mathbf{r}, t)+\int \frac{\rho\left(\mathbf{r}^{\prime}, t\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime}+v_{x c}\left[\rho\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right](\mathbf{r}, t)
$$

Linear Response Theory

- Hamiltonian

$$
\hat{H}(t)=\hat{H}_{0}+\Theta\left(t-t_{0}\right) v_{1}(\mathrm{r}, t)
$$

- Initial condition: for times $t<t_{0}$ the system is in the ground-state of the unperturbed Hamiltonian \hat{H}_{0} with potential v_{0} and density $\rho_{0}(\mathbf{r})$

Linear Response Theory

- Hamiltonian

$$
\hat{H}(t)=\hat{H}_{0}+\Theta\left(t-t_{0}\right) v_{1}(\mathrm{r}, t)
$$

- Initial condition: for times $t<t_{0}$ the system is in the ground-state of the unperturbed Hamiltonian \hat{H}_{0} with potential v_{0} and density $\rho_{0}(\mathbf{r})$
- For times $t>t_{0}$, switch on perturbation $v_{1}(\mathrm{r}, t): \rightarrow$ leads to time-dependent density

$$
\rho(\mathbf{r}, t)=\rho_{0}(\mathbf{r})+\delta \rho(\mathbf{r} t)
$$

Linear Response Theory

- Hamiltonian

$$
\hat{H}(t)=\hat{H}_{0}+\Theta\left(t-t_{0}\right) v_{1}(\mathrm{r}, t)
$$

- Initial condition: for times $t<t_{0}$ the system is in the ground-state of the unperturbed Hamiltonian \hat{H}_{0} with potential v_{0} and density $\rho_{0}(\mathbf{r})$
- For times $t>t_{0}$, switch on perturbation $v_{1}(\mathrm{r}, t): \rightarrow$ leads to time-dependent density

$$
\rho(\mathbf{r}, t)=\rho_{0}(\mathbf{r})+\delta \rho(\mathbf{r} t)
$$

- Functional Taylor expansion of $\rho[v](\mathbf{r}, t)$ around v_{0} :

$$
\begin{aligned}
\rho[v](\mathbf{r}, t) & =\rho\left[v_{0}+v_{1}\right](\mathbf{r}, t) \\
& =\rho\left[v_{0}\right](\mathbf{r}, t) \\
& +\left.\int \frac{\delta \rho[v](\mathbf{r} t)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}\right|_{v_{0}} v_{1}\left(\mathbf{r}^{\prime} t^{\prime}\right) d^{3} r^{\prime} d t^{\prime} \\
& +\left.\iint \frac{\delta^{2} \rho[v](\mathbf{r} t)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right) \delta v\left(\mathbf{r}^{\prime \prime} t^{\prime \prime}\right)}\right|_{v_{0}} v_{1}\left(\mathrm{r}^{\prime} t^{\prime}\right) v_{1}\left(\mathrm{r}^{\prime \prime} t^{\prime \prime}\right) d^{3} r^{\prime} d t^{\prime} d^{3} r^{\prime \prime} d t^{\prime \prime} \\
& +\ldots
\end{aligned}
$$

Computing Linear Response

Different ways to compute first order response in DFT

- Response functions, Casida equation
- (frequency-dependent) perturbation theory, Sternheimer equation
- real-time propagation with weak external perturbation

Response functions

- Functional Taylor expansion of $\rho[v](\mathbf{r}, t)$ around external potential v_{0} :

$$
\rho\left[v_{0}+v_{1}\right](\mathbf{r}, t)=\rho\left[v_{0}\right](\mathbf{r})+\left.\int \frac{\delta \rho[v](\mathbf{r} t)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}\right|_{v_{0}} v_{1}\left(\mathbf{r}^{\prime} t^{\prime}\right) d^{3} r^{\prime} d t^{\prime}+\ldots
$$

- Density-density response function of interacting system

$$
\begin{aligned}
\chi\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) & :=\left.\frac{\delta \rho[v](\mathbf{r} t)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}\right|_{v_{0}} \\
& \equiv \Theta\left(t-t^{\prime}\right)\langle 0|\left[\hat{\rho}(\mathbf{r}, t)_{H}, \hat{\rho}\left(\mathbf{r}^{\prime}, t^{\prime}\right)_{H}\right]|0\rangle
\end{aligned}
$$

- Response of non-interacting Kohn-Sham system:

$$
\rho\left[v_{S, 0}+v_{S, 1}\right](\mathbf{r}, t)=\rho\left[v_{S, 0}\right](\mathbf{r})+\left.\int \frac{\delta \rho\left[v_{S}\right](\mathbf{r} t)}{\delta v_{S}\left(\mathbf{r}^{\prime} t^{\prime}\right)}\right|_{v_{0}} v_{S}\left(\mathbf{r}^{\prime} t^{\prime}\right) d^{3} r^{\prime} d t^{\prime}+\ldots
$$

- Density-density response function of time-dependent Kohn-Sham system

$$
\chi_{S}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right):=\left.\frac{\delta \rho_{S}\left[v_{S}\right](\mathbf{r} t)}{\delta v_{S}\left(\mathbf{r}^{\prime} t^{\prime}\right)}\right|_{v_{S, 0}}
$$

Derivation of response equation

- Definition of time-dependent xc potential

$$
v_{x c}(\mathbf{r} t)=v_{K S}(\mathbf{r} t)-v_{e x t}(\mathbf{r} t)-v_{H}(\mathbf{r} t)
$$

- Take functional derivative

$$
\begin{aligned}
\frac{\delta v_{x c}(\mathbf{r} t)}{\delta \rho\left(\mathbf{r}^{\prime} t^{\prime}\right)} & =\frac{\delta v_{K S}(\mathbf{r} t)}{\delta \rho\left(\mathbf{r}^{\prime} t^{\prime}\right)}-\frac{\delta v_{e x t}(\mathbf{r} t)}{\delta \rho\left(\mathbf{r}^{\prime} t^{\prime}\right)}-\frac{\delta\left(t-t^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
f_{x c}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) & :=\chi_{S}^{-1}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)-\chi^{-1}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)-W_{c}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)
\end{aligned}
$$

Derivation of response equation

- Definition of time-dependent xc potential

$$
v_{x c}(\mathbf{r} t)=v_{K S}(\mathbf{r} t)-v_{e x t}(\mathbf{r} t)-v_{H}(\mathbf{r} t)
$$

- Take functional derivative

$$
\begin{aligned}
\frac{\delta v_{x c}(\mathbf{r} t)}{\delta \rho\left(\mathbf{r}^{\prime} t^{\prime}\right)} & =\frac{\delta v_{K S}(\mathbf{r} t)}{\delta \rho\left(\mathbf{r}^{\prime} t^{\prime}\right)}-\frac{\delta v_{e x t}(\mathbf{r} t)}{\delta \rho\left(\mathbf{r}^{\prime} t^{\prime}\right)}-\frac{\delta\left(t-t^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
f_{x c}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) & :=\chi_{S}^{-1}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)-\chi^{-1}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)-W_{c}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)
\end{aligned}
$$

- Act with reponse functions from left and right

$$
\begin{aligned}
\chi_{S} \cdot \quad \mid \quad W_{c}+f_{x c} & =\chi_{S}^{-1}-\chi^{-1} \quad \mid \cdot \chi \\
\chi_{S}\left(W_{c}+f_{x c}\right) \chi & =\chi-\chi_{S}
\end{aligned}
$$

- Dyson-type equation for response functions

$$
\chi=\chi_{S}+\chi_{S}\left(W_{c}+f_{x c}\right) \chi
$$

First order density response

- Exact density response to first order

$$
\begin{aligned}
\rho_{1} & =\chi v_{1} \\
& =\chi_{S} v_{1}+\chi_{S}\left(W_{c}+f_{x c}\right) \rho_{1}
\end{aligned}
$$

- In integral notation

$$
\begin{aligned}
\rho_{1}(\mathbf{r} t) & =\int d^{3} r^{\prime} d t^{\prime} \chi_{S}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)\left[v_{1}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right. \\
& \left.+\int d^{3} r^{\prime \prime} d t^{\prime \prime}\left(W_{c}\left(\mathbf{r}^{\prime} t^{\prime}, \mathbf{r}^{\prime \prime} t^{\prime \prime}\right)+f_{x c}\left(\mathbf{r}^{\prime} t^{\prime}, \mathbf{r}^{\prime \prime} t^{\prime \prime}\right)\right) \rho_{1}\left(\mathbf{r}^{\prime \prime} t^{\prime \prime}\right)\right]
\end{aligned}
$$

- For practical application: iterative solution with approximate kernel $f_{x c}$

$$
f_{x c}\left(\mathbf{r}^{\prime} t^{\prime}, \mathbf{r}^{\prime \prime} t^{\prime \prime}\right)=\left.\frac{\delta v_{x c}[\rho]\left(\mathbf{r}^{\prime} t^{\prime}\right)}{\delta \rho\left(\mathbf{r}^{\prime \prime} t^{\prime \prime}\right)}\right|_{\rho_{0}}
$$

Lehmann representation of linear response function

- Exact many-body eigenstates

$$
\hat{H}\left(t=t_{0}\right)|m\rangle=E_{m}|m\rangle
$$

- Lehmann representation of linear density-density response function:

$$
\chi\left(\mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}\right)=\Theta\left(t-t^{\prime}\right)\langle 0|\left[\hat{\rho}(\mathbf{r}, t)_{H}, \hat{\rho}\left(\mathbf{r}^{\prime}, t^{\prime}\right)_{H}\right]|0\rangle
$$

Lehmann representation of linear response function

- Exact many-body eigenstates

$$
\hat{H}\left(t=t_{0}\right)|m\rangle=E_{m}|m\rangle
$$

- Lehmann representation of linear density-density response function:

$$
\chi\left(\mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}\right)=\Theta\left(t-t^{\prime}\right)\langle 0|\left[\hat{\rho}(\mathbf{r}, t)_{H}, \hat{\rho}\left(\mathbf{r}^{\prime}, t^{\prime}\right)_{H}\right]|0\rangle
$$

- Neutral excitation energies are poles of the linear response function!

$$
\chi\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\lim _{\eta \rightarrow 0^{+}} \sum_{m}\left(\frac{\langle 0| \hat{\rho}(\mathbf{r})_{H}|m\rangle\langle m| \hat{\rho}\left(\mathbf{r}^{\prime}\right)_{H}|0\rangle}{\omega-\left(E_{m}-E_{0}\right)+i \eta}-\frac{\langle 0| \hat{\rho}\left(\mathbf{r}^{\prime}\right)_{H}|m\rangle\langle m| \hat{\rho}(\mathbf{r})_{H}|0\rangle}{\omega+\left(E_{m}-E_{0}\right)+i \eta}\right)
$$

Lehmann representation of linear response function

- Exact many-body eigenstates

$$
\hat{H}\left(t=t_{0}\right)|m\rangle=E_{m}|m\rangle
$$

- Lehmann representation of linear density-density response function:

$$
\chi\left(\mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}\right)=\Theta\left(t-t^{\prime}\right)\langle 0|\left[\hat{\rho}(\mathbf{r}, t)_{H}, \hat{\rho}\left(\mathbf{r}^{\prime}, t^{\prime}\right)_{H}\right]|0\rangle
$$

- Neutral excitation energies are poles of the linear response function!

$$
\chi\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\lim _{\eta \rightarrow 0^{+}} \sum_{m}\left(\frac{\langle 0| \hat{\rho}(\mathbf{r})_{H}|m\rangle\langle m| \hat{\rho}\left(\mathbf{r}^{\prime}\right)_{H}|0\rangle}{\omega-\left(E_{m}-E_{0}\right)+i \eta}-\frac{\langle 0| \hat{\rho}\left(\mathbf{r}^{\prime}\right)_{H}|m\rangle\langle m| \hat{\rho}(\mathbf{r})_{H}|0\rangle}{\omega+\left(E_{m}-E_{0}\right)+i \eta}\right)
$$

- Exact linear density response to perturbation $v_{1}(\omega)$

$$
\rho_{1}(\omega)=\hat{\chi}(\omega) v_{1}(\omega)
$$

Lehmann representation of linear response function

- Exact many-body eigenstates

$$
\hat{H}\left(t=t_{0}\right)|m\rangle=E_{m}|m\rangle
$$

- Lehmann representation of linear density-density response function:

$$
\chi\left(\mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}\right)=\Theta\left(t-t^{\prime}\right)\langle 0|\left[\hat{\rho}(\mathbf{r}, t)_{H}, \hat{\rho}\left(\mathbf{r}^{\prime}, t^{\prime}\right)_{H}\right]|0\rangle
$$

- Neutral excitation energies are poles of the linear response function!

$$
\chi\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\lim _{\eta \rightarrow 0^{+}} \sum_{m}\left(\frac{\langle 0| \hat{\rho}(\mathbf{r})_{H}|m\rangle\langle m| \hat{\rho}\left(\mathbf{r}^{\prime}\right)_{H}|0\rangle}{\omega-\left(E_{m}-E_{0}\right)+i \eta}-\frac{\langle 0| \hat{\rho}\left(\mathbf{r}^{\prime}\right)_{H}|m\rangle\langle m| \hat{\rho}(\mathbf{r})_{H}|0\rangle}{\omega+\left(E_{m}-E_{0}\right)+i \eta}\right)
$$

- Exact linear density response to perturbation $v_{1}(\omega)$

$$
\rho_{1}(\omega)=\hat{\chi}(\omega) v_{1}(\omega)
$$

- Relation to two-body Green's function

$$
i^{2} G^{(2)}\left(\mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}, \mathbf{r}, t ; \mathbf{r}^{\prime}, t^{\prime}\right)=\chi\left(\mathbf{r}, t ; \mathbf{r}^{\prime}, t^{\prime}\right)+\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)
$$

Lehmann representation of linear response function

- Exact many-body eigenstates

$$
\hat{H}\left(t=t_{0}\right)|m\rangle=E_{m}|m\rangle
$$

- Lehmann representation of linear density-density response function:

$$
\chi\left(\mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}\right)=\Theta\left(t-t^{\prime}\right)\langle 0|\left[\hat{\rho}(\mathbf{r}, t)_{H}, \hat{\rho}\left(\mathbf{r}^{\prime}, t^{\prime}\right)_{H}\right]|0\rangle
$$

- Neutral excitation energies are poles of the linear response function!

$$
\chi\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\lim _{\eta \rightarrow 0^{+}} \sum_{m}\left(\frac{\langle 0| \hat{\rho}(\mathbf{r})_{H}|m\rangle\langle m| \hat{\rho}\left(\mathbf{r}^{\prime}\right)_{H}|0\rangle}{\omega-\left(E_{m}-E_{0}\right)+i \eta}-\frac{\langle 0| \hat{\rho}\left(\mathbf{r}^{\prime}\right)_{H}|m\rangle\langle m| \hat{\rho}(\mathbf{r})_{H}|0\rangle}{\omega+\left(E_{m}-E_{0}\right)+i \eta}\right)
$$

- Exact linear density response to perturbation $v_{1}(\omega)$

$$
\rho_{1}(\omega)=\hat{\chi}(\omega) v_{1}(\omega)
$$

- Relation to two-body Green's function

$$
i^{2} G^{(2)}\left(\mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}, \mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}\right)=\chi\left(\mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}\right)+\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)
$$

- Current-current response function:

$$
\Pi_{\alpha, \beta}\left(\mathbf{r}, t ;, \mathbf{r}^{\prime}, t^{\prime}\right)=\Theta\left(t-t^{\prime}\right)\langle 0|\left[\hat{j}_{\alpha}(\mathbf{r}, t)_{H}, \hat{j}_{\beta}\left(\mathbf{r}, t^{\prime}\right)_{H}\right]|0\rangle
$$

Excitation energies

- Dyson-type equation for response functions in frequency space

$$
\left[\hat{1}-\hat{\chi}_{S}(\omega)\left(\hat{W}_{c}+\hat{f}_{x c}(\omega)\right)\right] \rho_{1}(\omega)=\chi_{S} v_{1}(\omega)
$$

- $\rho_{1}(\omega)$ has poles for exact excitation energies Ω_{j}

$$
\rho_{1}(\omega) \rightarrow \infty \quad \text { for } \quad \omega \rightarrow \Omega_{j}
$$

- On the other hand, rhs $\chi_{S} v_{1}(\omega)$ stays finite for $\omega \rightarrow \Omega_{j}$ hence the eigenvalues of the integral operator

$$
\left[\hat{1}-\hat{\chi}_{S}(\omega)\left(\hat{W}_{c}+\hat{f}_{x c}(\omega)\right)\right] \xi(\omega)=\lambda(\omega) \xi(\omega)
$$

vanish, $\lambda(\omega) \rightarrow 0$ for $\omega \rightarrow \Omega_{j}$.

- Determines rigorously the exact excitation energies

$$
\left[\hat{1}-\hat{\chi} S\left(\Omega_{j}\right)\left(\hat{W}_{c}+\hat{f}_{x c}\left(\Omega_{j}\right)\right)\right] \xi\left(\Omega_{j}\right)=0
$$

Casida equation

- (Non-linear) eigenvalue equation for excitation energies

$$
\Omega \mathbf{F}_{j}=\omega_{j}^{2} \mathbf{F}_{j}
$$

with

$$
\Omega_{i a \sigma, j b \tau}=\delta_{\sigma, \tau} \delta_{i, j} \delta_{a, b}\left(\epsilon_{a}-\epsilon_{i}\right)^{2}+2 \sqrt{\left(\epsilon_{a}-\epsilon_{i}\right)} K_{i a \sigma, j b \tau} \sqrt{\left(\epsilon_{b}-\epsilon_{j}\right)}
$$

and

$$
K_{i a \sigma, j b \tau}(\omega)=\int d^{3} r \int d^{3} r^{\prime} \phi_{i \sigma}(\mathbf{r}) \phi_{j \sigma}(\mathbf{r})\left[\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+f_{x c}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)\right] \phi_{k \tau}(\mathbf{r}) \phi_{l \tau}(\mathbf{r})
$$

- Eigenvalues ω_{j} are exact vertical excitation energies
- Eigenvectors can be used to compute oscillator strength
- Drawback: need occupied and unoccupied orbitals

Adiabatic approximation

- Adiabatic approximation: evaluate static Kohn-Sham potential at time-dependent density

$$
v_{x c}^{\text {adiab }}[\rho](r t):=v_{x c}^{\text {static DFT }}[\rho(t)](r t)
$$

- Example: adiabatic LDA

$$
v_{x c}^{\mathrm{ALDA}}[\rho](r t):=v_{x c}^{\mathrm{LDA}}(\rho(t))=-\alpha \rho(\mathbf{r}, t)^{1 / 3}+\ldots
$$

- Exchange-correlation kernel

$$
\begin{aligned}
f_{x c}^{\mathrm{ALDA}}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=\frac{\delta v_{x c}^{\mathrm{ALDA}}[\rho](r t)}{\delta \rho\left(\mathbf{r}^{\prime} t^{\prime}\right)} & =\left.\delta\left(t-t^{\prime}\right) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \frac{\partial v_{x c}^{\mathrm{ALDA}}}{\partial \rho(\mathbf{r})}\right|_{\rho_{0}(\mathbf{r})} \\
& =\left.\delta\left(t-t^{\prime}\right) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \frac{\partial^{2} e_{x c}^{h o m}}{\partial n^{2}}\right|_{\rho_{0}(\mathbf{r})}
\end{aligned}
$$

Failures of the adiabatic approximation in linear response

- H_{2} dissociation is incorrect

$$
E\left({ }^{1} \Sigma_{u}^{+}\right)-E\left({ }^{1} \Sigma_{g}^{+}\right) \xrightarrow{R \rightarrow \infty} 0 \quad(\text { in ALDA })
$$

Gritsenko, van Gisbergen, Grling, Baerends, JCP 113, 8478 (2000).

- sometimes problematic close to conical intersections
- response of long chains strongly overestimated Champagne et al., JCP 109, 10489 (1998) and 110, 11664 (1999).
- in periodic solids $f_{x c}(q, \omega, \rho)=c(\rho)$, whereas for insulators, $f_{x c}^{\text {exact }} \xrightarrow{q \rightarrow 0} 1 / q^{2}$ divergent
- charge transfer excitations not properly described Dreuw et al., JCP 119, 2943 (2003).

Relation of TDHF eigenvalue problem to RPA, CIS and drCCD energies

- RPA equation

$$
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
-\mathbf{B} & -\mathbf{A}
\end{array}\right)\binom{\mathbf{X}}{\mathbf{Y}}=\binom{\mathbf{X}}{\mathbf{Y}} \omega
$$

- RPA correlation energy

$$
E_{c}^{\mathrm{RPA}}=\frac{1}{2} \operatorname{Tr}(\boldsymbol{\omega}-\mathbf{A})
$$

- CIS correlation energy from Tamm-Dancoff approximation TDA: $\mathbf{B}=\mathbf{0}$

$$
E_{c}^{\mathrm{CIS}}=\frac{1}{2} \operatorname{Tr}(\tilde{\boldsymbol{\omega}}-\mathbf{A})
$$

Relation of TDHF eigenvalue problem to RPA, CIS and drCCD energies

- RPA equation

$$
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
-\mathbf{B} & -\mathbf{A}
\end{array}\right)\binom{\mathbf{X}}{\mathbf{Y}}=\binom{\mathbf{X}}{\mathbf{Y}} \omega
$$

- RPA correlation energy

$$
E_{c}^{\mathrm{RPA}}=\frac{1}{2} \operatorname{Tr}(\boldsymbol{\omega}-\mathbf{A})
$$

- CIS correlation energy from Tamm-Dancoff approximation TDA: $\mathbf{B}=\mathbf{0}$

$$
E_{c}^{\mathrm{CIS}}=\frac{1}{2} \operatorname{Tr}(\tilde{\boldsymbol{\omega}}-\mathbf{A})
$$

- Keeping only particle-hole ring contractions, yiels matrix Ricatti equation for CCD cluster amplitudes

$$
\mathbf{B}+\mathbf{A T}+\mathbf{T A}+\mathbf{T B T}=\mathbf{0}, \quad t_{i j}^{a b}=T_{i a, j b}
$$

- Correlation energy in direct ring Coupled Cluster Doubles (drCCD)

$$
E_{c}^{\mathrm{drCCD}}=\frac{1}{2} \operatorname{Tr}(\mathbf{B T})
$$

Relation of TDHF eigenvalue problem to RPA, CIS and drCCD energies

- RPA equation

$$
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
-\mathbf{B} & -\mathbf{A}
\end{array}\right)\binom{\mathbf{X}}{\mathbf{Y}}=\binom{\mathbf{X}}{\mathbf{Y}} \omega
$$

- Multiplication of RPA equation with \mathbf{X}^{-1} from right yields

$$
\mathbf{A}+\mathbf{B T}=\mathbf{X} \omega \mathbf{X}^{-1}, \quad \text { where } \mathbf{T}:=\mathbf{Y} \mathbf{X}^{-1}
$$

- Taking trace yields correlation energies

$$
2 E_{c}^{\mathrm{drCCD}}=\operatorname{Tr}(\mathbf{B T})=\operatorname{Tr}\left(\mathbf{X} \boldsymbol{\omega} \mathbf{X}^{-\mathbf{1}}-\mathbf{A}\right)=\operatorname{Tr}(\boldsymbol{\omega}-\mathbf{A})=2 E_{c}^{\mathrm{RPA}}
$$

Relation of TDHF eigenvalue problem to RPA, CIS and drCCD energies

- RPA equation

$$
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
-\mathbf{B} & -\mathbf{A}
\end{array}\right)\binom{\mathbf{X}}{\mathbf{Y}}=\binom{\mathbf{X}}{\mathbf{Y}} \omega
$$

- Multiplication of RPA equation with \mathbf{X}^{-1} from right yields

$$
\mathbf{A}+\mathbf{B T}=\mathbf{X} \boldsymbol{\omega} \mathbf{X}^{-\mathbf{1}}, \quad \text { where } \mathbf{T}:=\mathbf{Y} \mathbf{X}^{-\mathbf{1}}
$$

- Taking trace yields correlation energies

$$
2 E_{c}^{\mathrm{drCCD}}=\operatorname{Tr}(\mathbf{B T})=\operatorname{Tr}\left(\mathbf{X} \boldsymbol{\omega} \mathbf{X}^{-\mathbf{1}}-\mathbf{A}\right)=\operatorname{Tr}(\boldsymbol{\omega}-\mathbf{A})=2 E_{c}^{\mathrm{RPA}}
$$

- Multiplication of RPA equation with $(\mathbf{T},-1)$ from left and \mathbf{X}^{-1} from right

$$
(\mathbf{T},-1)\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
-\mathbf{B} & -\mathbf{A}
\end{array}\right)\binom{\mathbf{1}}{\mathbf{Y} \mathbf{X}^{-1}}=(\mathbf{T},-1)\binom{\mathbf{1}}{\mathbf{Y} \mathbf{X}^{-1}} \mathbf{X} \omega \mathbf{X}^{-1}
$$

- Expanding yields drCCD Ricatti equation

$$
\mathbf{B}+\mathbf{A T}+\mathbf{T A}+\mathbf{T B T}=\mathbf{0}
$$

$\longrightarrow \mathbf{T}:=\mathbf{Y X}^{-1}$ satisfies drCCD amplitude equation
G. Scuseria, et. al. J. Chem. Phys. 129, 231101 (2008).

Computing Linear Response

Different ways to compute first order response in DFT

- Response functions, Casida equation
- (frequency-dependent) perturbation theory, Sternheimer equation
- real-time propagation with weak external perturbation

Sternheimer equation

On Nuclear Quadrupole Moments

R. Sternheimer

Los Alamos Scientific Laboratory, Los Alamos, New Mexico, and Brookhaven National Laboratory, Upton, New York*
(Received June 18, 1951)
units. If E_{0} denotes the unperturbed $1 s$ energy, the Schroedinger equation becomes

$$
\begin{equation*}
\left(H_{0}+H_{1}\right)\left(u_{0}+u_{1}\right)=E_{0}\left(u_{0}+u_{1}\right), \tag{3}
\end{equation*}
$$

since the first-order perturbation of the energy is zero for s states. Upon subtracting $H_{0} u_{0}=E_{0} u_{0}$, and to the first order in Q, we obtain

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) u_{1}=-H_{1} u_{0} . \tag{4}
\end{equation*}
$$

Sternheimer equation

- Perturbed Hamiltonian and states (zero frequency)

$$
\left(\hat{H}_{0}+\lambda H_{1}+\ldots\right)\left(\psi_{0}+\lambda \psi_{1}+\ldots\right)=\left(E_{0}+\lambda E_{1}+\ldots\right)\left(\psi_{0}+\lambda \psi_{1}+\ldots\right)
$$

- Expand and keep terms to first order in λ

$$
\hat{H}_{0} \psi_{0}+\lambda H_{1} \psi_{0}+\lambda H_{0} \psi_{1}=E_{0} \psi_{0}+\lambda E_{0} \psi_{1}+\lambda E_{1} \psi_{0}+\mathcal{O}\left(\lambda^{2}\right)
$$

- Use $\hat{H}_{0} \psi_{0}=E_{0} \psi_{0}$

$$
\left(\hat{H}_{0}-E_{0}\right) \psi_{1}=-\left(\hat{H}_{1}-E_{1}\right) \psi_{0}, \quad \text { Sternheimer equation }
$$

Sternheimer equation in TDDFT

- (Weak) monochromatic perturbation

$$
v_{1}(\mathbf{r}, t)=\lambda r_{i} \cos (\omega t)
$$

- Expand time-dependent Kohn-Sham wavefunctions in powers of λ

$$
\begin{aligned}
\psi_{m}(\mathbf{r}, t)= & \exp \left(-i\left(\epsilon_{m}^{(0)}+\lambda \epsilon_{m}^{(1)}\right) t\right) \times \\
& \left\{\psi_{m}^{(0)}(\mathbf{r})+\frac{1}{2} \lambda\left[\exp (i \omega t) \psi_{m}^{(1)}(\mathbf{r}, \omega)+\exp (-i \omega t) \psi_{m}^{(1)}(\mathbf{r},-\omega)\right]\right\}
\end{aligned}
$$

- Insert in time-dependent Kohn-Sham equation and keep terms up to first order in λ

Sternheimer equation in DFT

- Frequency-dependent response (self-consistent solution!)

$$
\left[\hat{H}^{(0)}-\epsilon_{j} \pm \omega+i \eta\right] \psi^{(1)}(\mathbf{r}, \pm \omega)=\hat{H}^{(1)}(\pm \omega) \psi^{(0)}(\mathbf{r})
$$

with first-oder frequency-dependent perturbation

$$
\hat{H}^{(1)}(\omega)=v(\mathbf{r})+\int \frac{\rho_{1}(\mathbf{r}, \omega)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime}+\int f_{x c}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right) \rho_{1}\left(\mathbf{r}^{\prime}, \omega\right) d^{3} r^{\prime}
$$

and first-order density response

$$
\rho_{1}\left(\mathbf{r}^{\prime}, \pm \omega\right)=\sum_{m}^{\text {occ. }}\left\{\left[\psi^{(0)}(\mathbf{r})\right]^{*} \psi^{(1)}(\mathbf{r}, \omega)+\left[\psi^{(1)}(\mathbf{r},-\omega)\right]^{*} \psi^{(0)}(\mathbf{r})\right\}
$$

- Main advantages
- Only occupied states need to be considered
- Scales as N^{2}, where N is the number of atoms
- (Non-)Linear system of equations. Can be solved with standard solvers
- Disadvantage
- Converges slowly close to a resonance

Different types of perturbations

The response equations can be used for different types of perturbations

- Electric perturbations

$$
v(\mathbf{r})=\mathbf{r}_{i}
$$

Response contains information about polarizabilities, absorption, fluoresence, etc.

- Magnetic perturbations

$$
v(\mathbf{r})=\mathbf{L}_{i}
$$

Response contains e.g. NMR signals, etc.

- Atomic displacements

$$
v(\mathbf{r})=\frac{\partial v(\mathbf{r})}{\partial \mathbf{R}_{i}}
$$

Response contains e.g. phonons, etc.

Outline

Linear Response in DFT

- Response functions
- Casida equation
- Sternheimer equation

Real-space representation and real-time propagation

- Real-space representation for wavefunctions and Hamiltonians
- Time-propagation schemes
- Optimal control of electronic motion

Real-space grids

- Simulation volumes: sphere, cylinder, parallelepiped
- Minimal mesh: spheres around atoms, filled with uniform mesh of grid points
- Typically zero boundary condition, absorbing boundary, optical potential
- Finite-difference representation ("stencils") for the Laplacian/kinetic energy
- Pseudopotentials
- Domain-parallelization

Real-space grids

- Example: five-point finite difference Laplacian in 2D

$$
\begin{aligned}
& -\frac{1}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \approx \frac{1}{2 m} \frac{1}{h^{2}}[-\psi(i-1, j)+2 \psi(i, j)-\psi(i+1, j)] \\
& -\frac{1}{2 m} \frac{\partial^{2} \psi}{\partial y^{2}} \approx \frac{1}{2 m} \frac{1}{h^{2}}[-\psi(i, j-1)+2 \psi(i, j)-\psi(i, j+1)]
\end{aligned}
$$

- Stencil notation for kinetic energy

$$
\frac{1}{2 m} \frac{1}{h^{2}}\left(\begin{array}{ccc}
& -1 & \\
-1 & 4 & -1 \\
& -1 &
\end{array}\right) \psi(i, j)
$$

- Leads to sparse matrices

Real-space grids

- Size of Hamiltonian matrix can easily reach $10^{7} \times 10^{7}$
- Basic operation $\hat{H} \psi \longrightarrow$ sparse matrix vector operations
- Sparse solvers
- Conjugate gradients
- Krylov subspace/Lanczos methods
- Davidson or Jacobi-Davidson algorithm
- Multigrid methods

Real-time evolution for the time-dependent Kohn-Sham system

- Time-dependent Kohn-Sham equations

$$
\begin{aligned}
i \hbar \partial_{t} \varphi_{j}(\mathbf{r}, t) & =\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+v_{S}[\rho](\mathbf{r}, t)\right) \varphi_{j}(\mathbf{r}, t) \\
v_{S}\left[\rho\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right](\mathbf{r}, t) & =v(\mathbf{r}, t)+\int \frac{\rho\left(\mathbf{r}^{\prime}, t\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime}+v_{x c}\left[\rho\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right](\mathbf{r}, t) \\
\rho(\mathbf{r}, t) & =\sum_{j=1}^{N}\left|\varphi_{j}(\mathbf{r}, r)\right|^{2}
\end{aligned}
$$

- Initial value problem

$$
\varphi_{j}(\mathbf{r}, t)=\varphi_{j}^{(0)}(\mathbf{r})
$$

Real-time evolution for the time-dependent Kohn-Sham system

- Time-dependent Kohn-Sham equations

$$
\begin{aligned}
i \hbar \partial_{t} \varphi_{j}(\mathbf{r}, t) & =\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+v_{S}[\rho](\mathbf{r}, t)\right) \varphi_{j}(\mathbf{r}, t) \\
v_{S}\left[\rho\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right](\mathbf{r}, t) & =v(\mathbf{r}, t)+\int \frac{\rho\left(\mathbf{r}^{\prime}, t\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime}+v_{x c}\left[\rho\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right](\mathbf{r}, t) \\
\rho(\mathbf{r}, t) & =\sum_{j=1}^{N}\left|\varphi_{j}(\mathbf{r}, r)\right|^{2}
\end{aligned}
$$

- Initial value problem

$$
\varphi_{j}(\mathbf{r}, t)=\varphi_{j}^{(0)}(\mathbf{r})
$$

- Time-evolution operator $\hat{U}\left(t, t_{0}\right)$

$$
\varphi_{j}(\mathbf{r}, t)=\hat{U}\left(t, t_{0}\right) \varphi_{j}\left(\mathbf{r}, t_{0}\right)
$$

Properties of $\hat{U}\left(t, t_{0}\right)$

- $\hat{U}\left(t, t_{0}\right)$ is a non-linear operator
- The propagator is unitary $\hat{U}^{\dagger}=\hat{U}^{-1}$
- In the absence of magnetic fields the propagator is time-reversal symmetric

$$
\hat{U}^{-1}\left(t, t_{0}\right)=\hat{U}\left(t_{0}, t\right)
$$

Properties of $\hat{U}\left(t, t_{0}\right)$

- $\hat{U}\left(t, t_{0}\right)$ is a non-linear operator
- The propagator is unitary $\hat{U}^{\dagger}=\hat{U}^{-1}$
- In the absence of magnetic fields the propagator is time-reversal symmetric

$$
\hat{U}^{-1}\left(t, t_{0}\right)=\hat{U}\left(t_{0}, t\right)
$$

- Equation of motion for the propagator

$$
i \hbar \partial_{t} \hat{U}\left(t, t_{0}\right)=\hat{H}(t) \hat{U}\left(t, t_{0}\right), \quad \hat{U}\left(t_{0}, t_{0}\right)=\hat{1}
$$

Properties of $\hat{U}\left(t, t_{0}\right)$

- $\hat{U}\left(t, t_{0}\right)$ is a non-linear operator
- The propagator is unitary $\hat{U}^{\dagger}=\hat{U}^{-1}$
- In the absence of magnetic fields the propagator is time-reversal symmetric

$$
\hat{U}^{-1}\left(t, t_{0}\right)=\hat{U}\left(t_{0}, t\right)
$$

- Equation of motion for the propagator

$$
i \hbar \partial_{t} \hat{U}\left(t, t_{0}\right)=\hat{H}(t) \hat{U}\left(t, t_{0}\right), \quad \hat{U}\left(t_{0}, t_{0}\right)=\hat{1}
$$

- Representation in integral form

$$
\hat{U}\left(t, t_{0}\right)=\hat{1}-i \int_{t_{0}}^{t} d \tau \hat{H}(\tau) \hat{U}\left(\tau, t_{0}\right)
$$

Properties of $\hat{U}\left(t, t_{0}\right)$

- $\hat{U}\left(t, t_{0}\right)$ is a non-linear operator
- The propagator is unitary $\hat{U}^{\dagger}=\hat{U}^{-1}$
- In the absence of magnetic fields the propagator is time-reversal symmetric

$$
\hat{U}^{-1}\left(t, t_{0}\right)=\hat{U}\left(t_{0}, t\right)
$$

- Equation of motion for the propagator

$$
i \hbar \partial_{t} \hat{U}\left(t, t_{0}\right)=\hat{H}(t) \hat{U}\left(t, t_{0}\right), \quad \hat{U}\left(t_{0}, t_{0}\right)=\hat{1}
$$

- Representation in integral form

$$
\hat{U}\left(t, t_{0}\right)=\hat{1}-i \int_{t_{0}}^{t} d \tau \hat{H}(\tau) \hat{U}\left(\tau, t_{0}\right)
$$

- Iterated solution of integral equation - time-ordered exponential

$$
\begin{aligned}
\hat{U}\left(t, t_{0}\right) & =\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t} d t_{2} \ldots \int_{t_{0}}^{t} d t_{n} \hat{T}\left[\hat{H}\left(t_{1}\right) \hat{H}\left(t_{2}\right) \ldots \hat{H}\left(t_{n}\right)\right] \\
& =\hat{T} \exp \left(-i \int_{t_{0}}^{t} d \tau \hat{H}(\tau)\right)
\end{aligned}
$$

Real-time evolution - Short-time propagation

- Group property of exact propagator

$$
\hat{U}\left(t_{1}, t_{2}\right)=\hat{U}\left(t_{1}, t_{3}\right) \hat{U}\left(t_{3}, t_{2}\right)
$$

- Split propagation step in small short-time propagation intervals

$$
\hat{U}\left(t, t_{0}\right)=\prod_{j=1}^{N-1} \hat{U}\left(t_{j}, t_{j}+\Delta t_{j}\right)
$$

- Why is this a good idea?
- If we want to resolve frequencies up to $\omega_{\max }$, the time-step should be no larger than $\approx 1 / \omega_{\text {max }}$
- The time-dependence of the Hamiltonian is small over a short-time interval
- The norm of the time-ordered exponential is proportional to Δt.

Real-time evolution - Magnus expansion

- Time-ordered evolution operator

$$
\begin{aligned}
\hat{U}\left(t, t_{0}\right) & =\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t} d t_{2} \ldots \int_{t_{0}}^{t} d t_{n} \hat{T}\left[\hat{H}\left(t_{1}\right) \hat{H}\left(t_{2}\right) \ldots \hat{H}\left(t_{n}\right)\right] \\
& =\hat{T} \exp \left(-i \int_{t_{0}}^{t} d \tau \hat{H}(\tau)\right)
\end{aligned}
$$

- Magnus expansion

$$
\hat{U}(t+\Delta t, t)=\exp \left(\hat{\Omega}_{1}+\hat{\Omega}_{2}+\hat{\Omega}_{3}+\cdots\right)
$$

- Magnus operators

$$
\begin{aligned}
& \hat{\Omega}_{1}=-i \int_{t}^{t+\Delta t} \hat{H}(\tau) d \tau \\
& \hat{\Omega}_{2}=\int_{t}^{t+\Delta t} \int_{t}^{\tau_{1}}\left[\hat{H}\left(\tau_{1}\right), \hat{H}\left(\tau_{2}\right)\right] d \tau_{2} d \tau_{1}
\end{aligned}
$$

Real-time evolution - Magnus expansion

- Second-order Magnus propagator - Exponential midpoint rule

$$
\begin{aligned}
\hat{U}^{(2)}(t+\Delta t, t) & =\exp \left(\hat{\Omega}_{1}\right)+O\left(\Delta t^{3}\right) \\
\hat{\Omega}_{1} & =-i \hat{H}(t+\Delta t / 2)+O\left(\Delta t^{3}\right) .
\end{aligned}
$$

Real-time evolution - Magnus expansion

- Second-order Magnus propagator - Exponential midpoint rule

$$
\begin{aligned}
\hat{U}^{(2)}(t+\Delta t, t) & =\exp \left(\hat{\Omega}_{1}\right)+O\left(\Delta t^{3}\right) \\
\hat{\Omega}_{1} & =-i \hat{H}(t+\Delta t / 2)+O\left(\Delta t^{3}\right) .
\end{aligned}
$$

- Fourth-order Magnus propagator

$$
\begin{aligned}
\hat{U}^{(4)}(t+\Delta t, t) & =\exp \left(\hat{\Omega}_{1}+\Omega_{2}\right)+O\left(\Delta t^{5}\right) \\
\hat{\Omega}_{1} & =-i\left(\hat{H}\left(\tau_{1}\right)+\hat{H}\left(\tau_{2}\right)\right) \frac{\Delta t}{2}+O\left(\Delta t^{5}\right) . \\
\hat{\Omega}_{2} & =-i\left[\hat{H}\left(\tau_{1}\right), \hat{H}\left(\tau_{2}\right)\right] \frac{\sqrt{3} \Delta t^{2}}{12}+O\left(\Delta t^{5}\right) . \\
\tau_{1,2} & =t+\left(\frac{1}{2} \pm \frac{\sqrt{3}}{6}\right) \Delta t
\end{aligned}
$$

Real-time evolution - Crank-Nicholson/Cayley propagator

- Padé approximation of exponential, e.g. lowest order (Crank-Nicholson)

$$
\exp (-i \hat{H} \Delta t) \approx \frac{1-i \hat{H} \Delta t / 2}{1+i \hat{H} \Delta t / 2}
$$

- Need only action of operator on a state vector

$$
|\Psi(t+\Delta t)\rangle=\frac{1-i \hat{H} \Delta t / 2}{1+i \hat{H} \Delta t / 2}|\Psi(t)\rangle
$$

- (Non-)Linear system of equations at each time-step

$$
(1+i \hat{H} \Delta t / 2)|\Psi(t+\Delta t)\rangle=(1-i \hat{H} \Delta t / 2)|\Psi(t)\rangle
$$

Real-time evolution - Operator splitting methods

- Typically, the Hamiltonian has the form $\hat{H}=\hat{T}+\hat{V}$
- \hat{T} is diagonal in momentum space, \hat{V} in position space
- Baker-Campbell-Hausdorff relation

$$
e^{\hat{A}} e^{\hat{B}}=\exp \left(\hat{A}+\hat{B}+\frac{1}{2}[\hat{A}, \hat{B}]+\ldots\right)
$$

- Split-Operator

$$
\exp (-i \Delta t(\hat{T}+\hat{V})) \approx \exp (-i \Delta t \hat{T} / 2) \exp (-i \Delta t \hat{V}) \exp (-i \Delta t \hat{T} / 2)
$$

Use FFT to switch between momentum space and real-space.

- Higher-order splittings possible, but require more FFTs

Real-time evolution - Enforced time reversal symmetry

- Enforced time-reversal symmetry

$$
\exp \left(+i \frac{\Delta t}{2} \hat{H}(t+\Delta t)\right)|\Psi(t+\Delta t)\rangle=\exp \left(-i \frac{\Delta t}{2} \hat{H}(t)\right)|\Psi(t)\rangle
$$

- Propagator with time-reversal symmetry

$$
\hat{U}^{\mathrm{ETRS}}(t+\Delta t, t)=\exp \left(-i \frac{\Delta t}{2} \hat{H}(t+\Delta t)\right) \exp \left(-i \frac{\Delta t}{2} \hat{H}(t)\right)
$$

Real-time evolution - Matrix exponential

$$
\begin{aligned}
\hat{U}^{\mathrm{CN}}(t+\Delta t, t) & =\frac{1-i \hat{H} \Delta t / 2}{1+i \hat{H} \Delta t / 2} \\
\hat{U}^{\mathrm{EM}}(t+\Delta t, t) & =\exp (-i \Delta t \hat{H}(t+\Delta t / 2)) \\
\hat{U}^{\mathrm{SO}}(t+\Delta t, t) & =\exp (-i \Delta t \hat{T} / 2) \exp (-i \Delta t \hat{V}) \exp (-i \Delta t \hat{T} / 2) \\
\hat{U}^{\mathrm{ETRS}}(t+\Delta t, t) & =\exp \left(-i \frac{\Delta t}{2} \hat{H}(t+\Delta t)\right) \exp \left(-i \frac{\Delta t}{2} \hat{H}(t)\right)
\end{aligned}
$$

Real-time evolution - Matrix exponential

$$
\begin{aligned}
\hat{U}^{\mathrm{CN}}(t+\Delta t, t) & =\frac{1-i \hat{H} \Delta t / 2}{1+i \hat{H} \Delta t / 2} \\
\hat{U}^{\mathrm{EM}}(t+\Delta t, t) & =\exp (-i \Delta t \hat{H}(t+\Delta t / 2)) \\
\hat{U}^{\mathrm{SO}}(t+\Delta t, t) & =\exp (-i \Delta t \hat{T} / 2) \exp (-i \Delta t \hat{V}) \exp (-i \Delta t \hat{T} / 2) \\
\hat{U}^{\mathrm{ETRS}}(t+\Delta t, t) & =\exp \left(-i \frac{\Delta t}{2} \hat{H}(t+\Delta t)\right) \exp \left(-i \frac{\Delta t}{2} \hat{H}(t)\right)
\end{aligned}
$$

Real-time evolution - Matrix exponential

C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of A Matrix, SIAM Review 20, 801 (1978)
C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of A Matrix,

Twenty-Five Years Later, SIAM Review 45, 3 (2003)
Task: Compute exponential of operator/matrix

- Taylor series
- Chebyshev polynomials
- Padé approximations
- Scaling and squaring
- Ordinary differential equation methods
- Matrix decomposition methods
- Splitting methods

Task: Compute $e^{\hat{A}} v$ for given v

- Taylor series
- Chebyshev rational approximation
- Lanczos-Krylov subspace projection

Real-time evolution - Movie time

Proton scattering of fast proton with ethene

Octopus code

- Octopus: real-space, real-time TDDFT code, available under GPL http://tddft.org/programs/octopus/wiki/index.php/Main_Page (Parsec: real-space, real-time code using similar concepts)
- libxc: Exchange-Correlation library, available under LGPL (used by many codes: Abinit, APE, AtomPAW, Atomistix ToolKit, BigDFT, DP, ERKALE, GPAW, Elk, exciting, octopus, Yambo)
http://tddft.org/programs/octopus/wiki/index.php/Libxc

Optimal control theory

Control of ring current in a quantum ring

external potential

density profile

Optimal Control of Quantum Rings by Terahertz Laser Pulses, E. Räsänen, et. al, Phys. Rev. Lett. 98, 157404 (2007).

Optimal control theory

Goal: find optimal laser pulse $\epsilon(t)$ that drives the system to a desired state Φ_{f}

- maximize overlap functional

$$
J_{1}[\Psi]=\left|\left\langle\Psi(T) \mid \Phi_{f}\right\rangle\right|^{2}
$$

- constrain laser intensity

$$
J_{2}[\epsilon]=-\alpha_{0} \int_{0}^{T} \epsilon^{2}(t) d t
$$

- Lagrange multiplier density to ensure evolution with TDSE

$$
J_{3}[\Psi, \chi, \epsilon]=-2 \operatorname{lm} \int_{0}^{T}\langle\chi(t)|\left(\mathrm{i} \partial_{t}-\hat{H}(t)\right)|\Psi(t)\rangle d t
$$

Find maximum of $J_{1}[\Psi]+J_{2}[\epsilon]+J_{3}[\Psi, \chi, \epsilon]$

Optimal control theory

- First variation of the functional

$$
\delta J=\delta_{\Psi} J+\delta_{\chi} J+\delta_{\epsilon} J=0
$$

- Control equations

$$
\begin{array}{rll}
\delta_{\Psi} J=0 & : & \left(i \partial_{t}-\hat{H}(t)\right)|\chi(t)\rangle=0, \\
\delta_{\chi} J=0 & : \quad\left(i \partial_{t}-\hat{H}(t)\right)|\Psi(t)\rangle=0, \quad|\Psi(0)\rangle=\left|\Phi_{i}\right\rangle \\
\delta_{\epsilon} J=0 & : \quad \alpha_{0} \epsilon(t)=-\operatorname{Im}\langle\chi(t)| \hat{\mu}|\Psi(t)\rangle
\end{array}
$$

Optimal control theory

Optimal laser pulse and level population

Optimal Control of Quantum Rings by Terahertz Laser Pulses, E. Räsänen, et. al, Phys. Rev. Lett. 98, 157404 (2007).

