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Modeling Materials Properties and Functions:

The Many-Body Schrodinger Equation

(T(z + Tf’m: n V(z—e n Ve—'im: n V‘im:—ion)\P LY

2 M 2

e Pk i PI
e Tk frion _

= 2m I; 2M;
thf(z _ 1 1 RN "’2

2 4ﬂ'€[) W2k ‘I‘k — I‘kf‘
M,M

Vim:—ion o 11 ZIZI’

n E4ﬂ'€0 121 |RI — RI’|

| N M
Ve ng R = 30 ) vit" (IR — )

k=11=1

Modeling Materials Properties and Functions:

The Many-Body Schrodinger Equation
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Born-Oppenheimer Approximation

¥(r1, ;R Rm) = ) Av({Ri)) @y (r({nd)

Where @, are solutions of the “electronic Hamiltonian™:

Hig, 1 Pvirpdnd) = E} (g1 Po ry{nd)
H¢ — T¢ + Ve e n Vs?fi(m
frequently (commonly) applied approximations:

* neglect non-adiabatic coupling (terms of order m/M; )
 keeponly A,

—> the dynamics of electrons and nuclei decouple

Some Limits of the
Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions and
electrons. For example:

* polaron-induced superconductivity
 dynamical Jahn-Teller effect at defects in crystals
» some phenomena of diffusion in solids

 non-adiabaticity in molecule-surface scattering
and chemical reactions

« relaxation and transport of charge carriers (e~ or h)
* etc.




Some Limits of the
Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions and
electrons. For example:

These limits can be severe.
Nevertheless, we will use the BO

approximation in the following.

How can we solve:
e fe
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The Hohenberg-Kohn Theorem (1964)
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trary N-electron Hamiltonians. N-electron ground states.
The dashed arrow is not possible. Thus, hereis a
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Density Functional Theory

The energy of the ground state of a many-

Hohenberg and Kohn (1964): The functional
n(r) = n[®] = <®| 2. 8(r-r;) |©>
can be inverted, i.e., |
O(ry, 1y, ..., Fy) =O[n(N)] .
This implies:
Eo {R}) = Min, ) Ecgy [N]

electron system : E, {R,}) = Ming <®|He¢|D>

Comparison of Wave-Function and
Density-Functional Theory
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Comparison of Wave-Function and

Density-Functional Theory

E,[n]
1
O({r;)) o n(r)
T T
~ 10%3Variables 3 Variables

Summary of Hohenberg-Kohn

Density-Functional Theory (DFT) -- 1964

-- The many-body Hamiltonian|determines everything.
(standard quantum meghkahics)

-- There is a one-to-ong’correspondence between the
ground-state wave function and the many-body
Hamiltonian [or the nuclear (or ionic) potential, v(r) 1.
(standard quantpim mechanics)

-- There is a one-td-one correspondence between
the ground-state electron-densityland the ground-
state wave function. (Hohenberg and Kohn)




Kohn and Sham (1965):
Ey[n] =1n] + f z.:(r)-n(r)d3r 4 pHartree [-n] + E*¢[n]

- EHartree n {3 n dS !
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And T[n] the functional of the kinetic energy of non-
interacting electrons. EX¢[n] contains all the unknowns,

At fixed electron number N the variational principle gives
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Kohn and Sham (1965):
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The Kohn-Sham Ansatz of
Density-Functional Theory

/‘:\\ Eudon. U

Walter Kohn C’\@ ‘,

The Kohn-Sham Ansatz of

Density-Functional Theory

Kohn-Sham (1965): Replace the original
many-body problem by an independent
electron problem that can be solved!

E,[n] = TJn] + IV(F) n(r) dr + EFetee[n] + Ex[n]

*  With T, [n] the kinetic energy functional of
independent electrons, and E*[n] the unknown
functional.

* The challenge is to find useful, approximate xc
functionals.




The Kohn-Sham Ansatz of
Density-Functional Theory

Approximate xc functionals have been very
successful but there are problems

» for certain bonding situations (vdW,
hydrogen bonding, certain covalent bonds)

» for highly correlated situations, and

* for excited states.

* The challenge is to find useful, approximate xc
functionals.

Certainties about Density Functional Theory

1. DFT in principle: It is exact; a universal
E*¢[n] functional “exists”.

2. DFT in practice: It is probably not possible to write
down EX[n] as a closed mathematical expression.
We need approximations.

to the exchange-correlation functiona pbrovide good

The success of DFT proves that “simpli” approximations
results — if one knows what one is doing.
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Perdew’s Dream: Jacob’s Ladder in
Density-Functional Theory

The exchange-correlation functional a4
I our favorite
unoccupied y;(r), EX+ cRPA, as given by ACFD

S

ul

>

E 4 | occupied y;(r), hybrids (B3LYP, PBEO, HSE, ...)

3 3| (D), meta-GGA (e.g., TPSS)

© 2 | vn(r), Generalized Gradient Approximation
1| n(r), Local-Density Approximation

7(r):  Kohn-Sham kinetic-energy den5|ty Berlin, July 2013
(1) ¢ (1) 05, (1) o (1)

EX:  exactexchange:  E.— = Z v v’ L2 -
r—r'|

cRPA: random-phase apprOX|mat|on for correlation

ACFD : adiabatic connection fluctuation dissipation theorem

Bohm, Pines (1953); Gell-Mann, Brueckner (1957);
Gunnarsson, Lundqvist (1975, 1976); Langreth, Perdew (1977);
X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)
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Density-Functional Theory
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“Level 5 plus”

Viewed in the Many-Body Framework

Perturbation theory:
H=H"+H’ with H\¢,.) = E,@|o,) and |¢,) = Slater det.
|do) = ground state, |¢; ,) = single excitations, |¢;; 4,) = double exci.

Eo(o) = (dol H o),  Eq = (dol H” [0g)

| (9ol H’ ) [2 | (ol H 19, a> |2 (ol H a0
E”-;{) E(O)_EM—Z g, O 2’“ Eg® —E; @

smgle excitations double excitations

Using HF input, this is
Mogller-Plesset pertur-
bation theory, MP2

X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)
X. Ren, P. Rinke, G.E. Scuseria, and M. Scheffler, Phys. Rev. B, in print (2013)

“Level 5 plus”

Viewed in the Many-Body Framework

Perturbation theory:
H=H"+H’ with HO¢,) = E,O]d,) and |¢,) = Slater det.
[doy = ground state, |¢; ,) = single excitations, |¢;; ,,) = double exci.

Eo® = (ool H 9o, Eol) = (ool H” o)
H (o) [ H I, o) [ H’ P
£ @ [l |¢>|_ 5 | (9ol H” 10 ) | Y {9l |¢||ab>.

0 < 0) -
~ E,® E & ~ E,O-E, ,0 o By
single excitations  double excitations

Adding all ring diagrams from higher order perturbations:

X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)
X. Ren, P. Rinke, G.E. Scuseria, and M. Scheffler, Phys. Rev. B, in print (2013)
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“Level 5 plus”
Viewed in the Many-Body Framework

Ren, A. Tkatchenko, P. Rinke,
d M.S., PRL 106, (2011).

riineis, G. Kresse, G. E. Scuseria,

single excitations cRPA M.S., NJP (2012).

X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)
X. Ren, P. Rinke, G.E. Scuseria, and M. Scheffler, Phys. Rev. B, in print (2013)

Renormalized second order perturbation theory
sets the reference for materials.

-- better than LDA, PBE, MP2
-- comparable to CCSD
-- not as accurate as CCSD(T)

Ren, A. Tkatchenko, P. Rinke,
d M.S., PRL 106, (2011).

riineis, G. Kresse, G. E. Scuseria,

single excitations  cRPA M.S., NIP (2012).

X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)
X. Ren, P. Rinke, G.E. Scuseria, and M. Scheffler, Phys. Rev. B, in print (2013)
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Performance of rPT2 for Weak Intermolecular

Interactions: S22 Test Set

Alexandre

Xinguo Ren Patrick Rinke
Tkatchenko
150 M PBE

M vdW-DF

100
H PBE+vdW(Hobza)
O rPT2 @ PBE

M PBE+vdW(TS)

20 D MP2+AvdW (TSetal.)

0

Mean absolute error to CCSD(T) (meV)

H-bond vdW Mixed Overall

CCSD(T): Jurecka, Sponer, Cerny, Hobza, PCCP (2006). Langreth-Lundqvist : Gulans,
Puska, Nieminen, PRB (2009); rPT2: X. Ren et al. PRL (2011) and to be published.
TS: A. Tkatchenko and M.S., PRL (2009); A. Tkatchenko et al., JCP (2009).

Performance of rPT2 for Weak Intermolecular

Interactions: S22 Test Set

o

rPT2 achieves “chemical accuracy” ?
(1 kcal/mol ~ 43 meV)
-- same performance for the S66 test set --

150 M PBE
M vdW-DF
100
Hl PBE+vdW(Hobza)
O rPT2 @ PBE
B PRBE+vdW(TS)

20 O MP2+AvdW (TSetal.)

Mean absolute error to CCSD(T) (meV)

0 H-bond vdW Mixed Overall

CCSD(T): Jurecka, Sponer, Cerny, Hobza, PCCP (2006). Langreth-Lundqvist : Gulans,
Puska, Nieminen, PRB (2009); rPT2: X. Ren et al. PRL (2011) and to be published.
TS: A. Tkatchenko and M.S., PRL (2009); A. Tkatchenko et al., JCP (2009).
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Performance of rPT2 for Weak Intermolecular

Interactions: S22 and S66 Test Sets

<

=]
T

RPA+rSE
RPA+SOSEX
= PT2

(N T N LY e )
o O
T T

o <
T T

O T

Mean absolute percentage error (%)

S22 S66

Bonding type hydrogen dispersion mixed
S22 [1] 7 8 7
S66 [2] 23 23 20

[1] Juretka, Sponer, Cerny, and Hobza, PCCP 8, 1985 (2006).
[2] Rezac, Riley, and Hobza, J. Chem. Theo. Comp. 7 2427 (2011).

X. Ren, P. Rinke,
G. Scuseria, and M.S.
PEB, July 19 (2013)

Atomization Energies with rPT2

= PBE
0.8[Overbinding == RPA@PBE
I = PBE(
G2 set RPA+SOSEX
0.4+ -
L (== PT2

Mean error (eV)
o
=)

1
&S S
o0 ~

'Underbinding

G, Si, SiC,
| i BN, BP,
AIN, AlP,

Insulators -

solids:

LiH, LiF,
LiC, MgoO.

and M.S., New J. Phys. 14, 043001 (2012).

J. Paier, X. Ren, P. Rinke, G. Scuseria, A. Grueneis, G. Kresse,
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Get Real! Consider Temperature, Pressure, and
Doping; Ab Initio Atomistic Thermodynamics

C.M. Weinert and M.S.,
,UOZ(T, 9)) Mat. Sci. Forum 10-12,
25 (1986).

@?D K. Reuter, C. Stampfl, and

M.S., in: Handbook of Mate-

rials Modeling, Vol. 1. (Ed.

\\ Sid Yip), Springer 2005.

77
G(T, p) = Et + FVib— TS0+ pV + Ny (T, p) + Nee

K

DET

to (T, p) = Y2 o, (T, p°) + Y2 KT In(p/p°)

Predictive modeling

and simulations must

address all time and
space scales
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space

density-
functional

theory
(and beyond)

Electronic
Structure®
Theory

Predictive modeling
and simulations must

address all time and Continuum Equations,

space scales

S
©
S

the base

ate Equations

is is what we
want (need)

time

s hours years

The first (convincing) DFT calculations:
Stability of crystals and crystal phase transitions

Total energy (Ryd./atom)

-7.90

-7.92

silicon

\ HEXAGONAL 1
DIAMOND

diamond ]

| DN T T NN |

0.6

0.7 0.8 0.9 1.0 1.1
Volume

M. T. Yin and

M. L. Cohen

PRB 26 (1982)
<and PRL 1980 >

see also:

V.L. Moruzzi, J.F. Janak,
and A. R. Williams
Calculated Electronic
Properties of Metals
Pergamon Press (1978)
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InAs/GaAs(001) quantum dots close to

thermodynamic equilibrium
G. Costantini et al. APL 82 (2003)

a) STM topography
of a large island.

(111)

(101) | b) Equilibrium shape
(theory: E. Pehike, N.
Moll, M.S., Proc. 23rd
atoms ICPS (1996); Q. Liu,
50x50 M2 etal., PRB 60 (1999)).

{,IlO facet)u Ny (B I8 ¢), d) High-resolution

- X‘( * A views of the (110)
and (111) side facets.
*,\k ‘K 4

Also:
J. Marquez et al., APL 78 (2001);
Y. Temko et al., APL 83 (2003).

K

A ' ) \
-51—~12x12 nm2 | 2 nm2

110>

Adsorption, diffusion, island nucleation, and growth
of GaAs, studied by ab intio kinetic Monte Carlo

1/60 of the full simulation cell
As, pressure 1.33 x 108 bar
Ga deposition rate = 0.1 ML/s
T=700 K

P. Kratzer & M. S., PRL 88, 036102 (2002)




Ab initio melting curve of Fe
as function of pressure

Subduction zone

© Brown &NMcQueen
® Shen et al
OYoo et al

Midocoan
idges

Shallow
mantle

Depth (km)

outer core
(liquid) .
5,150 - 100 200 300
ir@ Pressure (GPa)
core

Temperature (1000 K)

6,378
364 329 136

Pressure (GPa)

D. Alfe, M. J. Gillan,
and G. D Price
NATURE 401 (1999)

Some remarks about excited states




What About the Kohn-Sham Eigenvalues?

The only quantities that are supposed to be correct in the
Kohn-Sham approach are electron density, total energy,
highest Kohn-Sham level, forces, force constants, ...

What about the individual ¢;(r) and €; ?

The Kohn-Sham ¢;(r) and €; give an approximate
description of quasi-particles, a (good) starting point for
many-body calculations.

fin exception 06 has occured at 0028:C11B3ADC in WD DiskTSD{03) +
00001660, This was called from 0028:C11B40C8 in VD voltrack{04) +
00000000, It may be possible to continue normally,

#* Press any key to attempt to continue.
# Press CTRLHALTHRESET to restart your computer, You will
lose any unsaved information in all applications.

Press any key to continue
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fin exception 06 has occured at 0028:C11B3ADC in WD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in WD voltrack(04) +
00000000, It may be possible to continue normally.

* Press any key to attempt to continue.
* Press CTRLHALTHRESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

Kohn-Sham eigenvalues are not excitation energies.

However, ¢/(r) and €; give an approximate
description of quasi-particles, a (good)
starting point for many-body calculations.

What About Kohn-Sham Eigenvalues?

The ionization energy is: I, = EN'—EY
n(r) =2, f lpi (NP
i=1 1 =
. oL, n| .
f, are occupation numbers = —/ ___l{ ]djk
Jo  Ofi
(Well defined for the highest occu- -1
pied state. Otherwise, “only” in terms = - / er( fr) dfy
of constrained DFT) Jo

Here we assume that the positions of the atoms don’t change upon
ionization, or that they change with some delay (Franck-Condon
principle). Using the mean-value theorem of integral algebra
gives: Ik = —Ek(OS)

This is the Slater-Janak “transition state”. It is the DFT analog of
Koopmans’ theorem.
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Kohn-Sham Electron Bands

Kohn-Sham band gap:
The measured (optical) band gap is something else:

Silico

/

~J

==

L r

W

addition

4conduction
band

(empty states)
~}the KSgap A

valence
band
(filled states)

There

AKS = eqg - €, Of the N-particle system

Bap = [ —A
A = E.-"\" - E.-"\Url
I = E;‘\"—l n E;\"
E _ E;\"—l + EN+1 . 2Ef\

gap
— KS
= AKS + A

Vie([nnea]ir) = Vio([nn]sr) + Axe
is a discontinuity in V, at integer

values of occupation numbers.

We don’t know how to determine A, for crystals with DFT.

Summary and Outlook: Interacting Electrons Determine

the Properties and Function of Real Materials

-

The challenges:

Important arenas for future theoretical work:

* Non-adiabatic effects, dissipation

* Transport (electrons, ions, heat)

* Thermodynamic phase transitions, e.g. melting

* Surfaces, nanostructures — in realistic environments

* Modeling the kinetics, e.g. of catalysts or crystal growth
(self-assembly and self-organization)

* Molecules and clusters in solvents, electrochemistry, fuel
cells, external fields

* Correlated systems, e.g. f-electron chemistry

Biological problems

» Find ways to control the xc approximation
» Develop methods for bridging length and time scales
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