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Born-Oppenheimer Approximation

Where Φν are solutions of the “electronic Hamiltonian”:

frequently (commonly) applied approximations:

• neglect non-adiabatic coupling (terms of order m/MI )

• keep only Λ0

the dynamics of electrons and nuclei decouple

({rk})

({rk})({rk}) =

Some Limits of the 
Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions and 

electrons. For example:

• polaron-induced superconductivity

• dynamical Jahn-Teller effect at defects in crystals

• some phenomena of diffusion in solids

• non-adiabaticity in molecule-surface scattering                  

and chemical reactions

• relaxation and transport of charge carriers (e˗ or h)

• etc.
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n(r)  =  n[Φ] 

=  Φ|  (rri) |Φ
i

N

Set of particle densities n(r)
belonging to non-degenerate 
N-electron ground states.

Set of non-degenerate ground-
state wave functions Φ of arbi-
trary N-electron Hamiltonians.

The dashed arrow is not possible. Thus, here is a 
one-to-one correspondence between Φ and n(r).

The Hohenberg-Kohn Theorem (1964)
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Density Functional Theory

This implies:

E0 ({RI }) = Minn(r) E{R} [n]

E0 ({RI }) = MinΦ Φ|He|Φ

Hohenberg and Kohn (1964):

can be inverted, i.e.,

n(r)  =  n[Φ]  =  Φ|  (rri) |Φ
i

Φ(r1, r2, . . . , rN,) = Φ[n(r)]  . 

The functional

The energy of the ground state of a many-

electron system :

Comparison of Wave-Function and 
Density-Functional Theory
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Comparison of Wave-Function and 
Density-Functional Theory

-- The many-body Hamiltonian determines everything.
(standard quantum mechanics) 

-- There is a one-to-one correspondence between the 
ground-state wave function and the many-body 
Hamiltonian [or the nuclear (or ionic) potential, υ(r) ].
(standard quantum mechanics)     

-- There is a one-to-one correspondence between 
the ground-state electron-density and the ground-
state wave function. (Hohenberg and Kohn)

Summary of Hohenberg-Kohn 
Density-Functional Theory (DFT) -- 1964
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Kohn and Sham (1965):

And Ts[n] the functional of the kinetic energy of non-

interacting electrons. Exc[n] contains all the unknowns.

At fixed electron number N the variational principle gives

or 

with

=
Kohn-Sham

equationδ n

Kohn and Sham (1965):

veff(r) depends on the density that we are seeking.

i

i i

k k

k

Because Ts[n] is the functional of non-interacting particles

we effectively restrict the allowed densities to those 

that can be written as

This implies: Kohn-Sham

equation

i
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Walter Kohn

The Kohn-Sham Ansatz of                     
Density-Functional Theory

Walter Kohn

Ev[n]  =  Ts[n]  +  ∫ v(r) n(r) d3r  +  EHartree[n]  +  Exc[n]

• Kohn-Sham (1965): Replace the original              
many-body problem by an independent           
electron problem that can be solved!

• With Ts [n] the kinetic energy functional of 
independent electrons, and Exc[n] the unknown 
functional.

• The challenge is to find useful, approximate xc
functionals. 

The Kohn-Sham Ansatz of                     
Density-Functional Theory
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functional.

• The challenge is to find useful, approximate xc
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The Kohn-Sham Ansatz of                     
Density-Functional Theory

Approximate xc functionals have been very 
successful
Approximate xc functionals have been very 
successful but there are problems 

• for certain bonding situations (vdW,                   
hydrogen bonding, certain covalent bonds)

• for highly correlated situations, and 

• for excited states.

Certainties about Density Functional Theory

1. DFT in principle: It is exact;  a universal 

Exc[n] functional “exists”.

2. DFT in practice: It is probably not possible to write 

down Exc[n] as a closed mathematical expression. 

We need approximations.

The success of DFT proves that “simple” approximations 

to the exchange-correlation functional can provide good 

results – if one knows what one is doing.
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τ(r) : Kohn-Sham kinetic-energy density

EX: exact exchange:

cRPA : random-phase approximation for correlation

ACFD :  adiabatic connection fluctuation dissipation theorem

Bohm, Pines (1953); Gell-Mann, Brueckner (1957); 
Gunnarsson, Lundqvist (1975, 1976); Langreth, Perdew (1977); 
X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)

5 unoccupied ψi(r), EX + cRPA, as given by ACFD
4      occupied ψi(r),       hybrids (B3LYP, PBE0, HSE, …)
3      τ (r), meta-GGA (e.g., TPSS) 
2      ∇n(r), Generalized Gradient Approximation 
1       n(r), Local-Density Approximation

ac
cu

ra
cy

 

Perdew’s Dream: Jacob’s Ladder in 
Density-Functional Theory

our favorite
The exchange-correlation functional

Berlin, July 2013
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“Level 5 plus”
Viewed in the Many-Body Framework

Perturbation theory:
H = H0 + H’          with H0|ϕn = En

(0)|ϕn and |ϕn = Slater det.                                                           

|ϕ0 = ground state, |ϕi, a = single excitations, |ϕij, ab = double exci.

E0
(0) = ϕ0| H

0 |ϕ0,     E0
(1) = ϕ0| H’ |ϕ0

E0 
(2) = Σ = Σ + Σ

| ϕ0| H’ |ϕn |2 | ϕ0| H’ |ϕi, a |2 | ϕ0| H’ |ϕij,ab |2

E0
(0) –En

(0) E0
(0) –Ei, a

(0) E0
(0) –Eij,ab

(0)

n≠0                                      i, a                                         ij, ab

single excitations      double excitations

Adding all ring diagrams from higher order perturbations:

=

single excitations     cRPA               SOSEX

X. Ren, A. Tkatchenko, P. Rinke, 
and M.S., PRL 106, (2011). 

J. Paier, X. Ren, P. Rinke, A. 
Grüneis, G. Kresse, G. E. Scuseria, 
M.S., NJP (2012).

+                    +                      + …                 +                   + … 

X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)

Using HF input, this is 
Møller-Plesset pertur-

bation theory, MP2 

X. Ren, P. Rinke, G.E. Scuseria, and M. Scheffler, Phys. Rev. B, in print (2013)
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“Level 5 plus”
Viewed in the Many-Body FrameworkRenormalized second order perturbation theory

sets the reference for materials.

-- better than LDA, PBE, MP2
-- comparable to CCSD 

-- not as accurate as CCSD(T)
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(TS et al.)
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CCSD(T): Jurecka, Sponer, Cerny, Hobza, PCCP (2006).  Langreth-Lundqvist : Gulans, 
Puska, Nieminen, PRB (2009);   rPT2: X. Ren et al. PRL (2011) and to be published.
TS: A. Tkatchenko and M.S., PRL (2009);  A. Tkatchenko et al., JCP (2009). 
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rPT2 achieves “chemical accuracy”
(1 kcal/mol ~ 43 meV)

-- same performance for the S66 test set --

Performance of rPT2 for Weak Intermolecular 
Interactions:  S22 Test Set

@PBE

rPT2 @ PBE              

http://www.fhi-berlin.mpg.de/th/member/tkatchenko_a2.jpg
http://www.fhi-berlin.mpg.de/th/member/tkatchenko_a2.jpg
http://www.fhi-berlin.mpg.de/th/member/tkatchenko_a2.jpg
http://www.fhi-berlin.mpg.de/th/member/tkatchenko_a2.jpg
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+

++

+
Performance of rPT2 for Weak Intermolecular 

Interactions:  S22 and S66 Test Sets

X. Ren, P. Rinke,
G. Scuseria, and M.S.
PEB, July 19 (2013)

Atomization Energies with rPT2

solids:
C, Si, SiC, 
BN, BP, 
AlN, AlP, 
LiH, LiF, 
LiC, MgO.

rPT2

J. Paier, X. Ren, P. Rinke, G. Scuseria, A. Grueneis, G. Kresse, 
and M.S., New J. Phys. 14, 043001 (2012).
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μO2
(T, p)

G(T, p) = Etot + Fvib – TSconf + pV + NO (T, p) + nεF

DFT  

C.M. Weinert and M.S.,

Mat. Sci. Forum 10-12,

25 (1986).

K. Reuter, C. Stampfl, and 

M.S., in: Handbook of Mate-

rials Modeling, Vol. 1. (Ed. 

Sid Yip), Springer 2005.

O (T, p)  =  ½ O2
(T, p0) +  ½ kT ln(p/p0)    

Get Real! Consider Temperature, Pressure, and 

Doping; Ab Initio Atomistic Thermodynamics

the base

space

time

Electronic
Structure
Theory

m

mm

μm

nm

this is what we 
want (need)

Master Equation

(ab initio

kinetic Monte Carlo)

Continuum Equations,
Rate Equations

and Finite Element

Modeling

fs ps ns       μs      ms        s   hours years

density-
functional 

theory
(and beyond)

ab initio
Molecular
Dynamics

Predictive modeling 
and simulations must 
address all time and 

space scales
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The first (convincing) DFT calculations:
Stability of crystals and crystal phase transitions

-7.84

-7.86

-7.88

-7.90

-7.92
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m
) silicon

0.6  0.7 0.8   0.9  1.0  1.1
Volume

diamond

-tin

see also:

V.L. Moruzzi, J.F. Janak,

and A. R. Williams

Calculated Electronic 

Properties of Metals

Pergamon Press (1978)

M. T. Yin and 

M. L. Cohen

PRB 26 (1982)

< and PRL 1980 >
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InAs/GaAs(001) quantum dots close to 
thermodynamic equilibrium

G. Costantini et al. APL 82 (2003)

a) STM topography

of a large island.

b) Equilibrium shape 

(theory: E. Pehlke, N.

Moll,  M.S., Proc. 23rd

ICPS (1996); Q. Liu,

et al., PRB  60  (1999)).

c), d)  High-resolution

views of the (110)

and (111) side facets.

Also: 

J. Marquez et al., APL 78 (2001);

Y. Temko et al., APL 83 (2003).12x12 nm2 4x4 nm2

(a) (b)

(c)

50x50 nm2

(d)(110 facet) (111) facet

Adsorption, diffusion, island nucleation, and growth 

of GaAs, studied by ab intio kinetic Monte Carlo

P. Kratzer & M. S., PRL 88, 036102 (2002)

top
view

side

view

Ga

As

1/60 of the full simulation cell
As2 pressure 1.33  10-8 bar 

Ga deposition rate = 0.1 ML/s

T = 700 K
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Pressure (GPa)
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Ab initio melting curve of Fe 
as function of pressure

D. Alfe, M. J. Gillan, 

and G. D Price

NATURE 401 (1999)
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Some remarks about excited states
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What About the Kohn-Sham Eigenvalues?

The only quantities that are supposed to be correct in the 

Kohn-Sham approach are electron density, total energy, 

highest Kohn-Sham level, forces, force constants, …

What about the individual φi(r) and єi ?

The Kohn-Sham φi(r) and єi give an approximate 

description of quasi-particles, a (good) starting point for 

many-body calculations.
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Kohn-Sham eigenvalues are not excitation energies.

However, φi(r) and єi give an approximate 
description of quasi-particles, a (good) 

starting point for many-body calculations.

The ionization energy is:

Here we assume that the positions of the atoms don’t change upon 

ionization, or that they change with some delay (Franck-Condon 

principle). Using the mean-value theorem of integral algebra 

gives:

This is the Slater-Janak “transition state”. It is the DFT analog of 

Koopmans’ theorem.

What About Kohn-Sham Eigenvalues?

n(r)  = ∑ fi |φi (r)|2  

fi are occupation numbers

∞

i = 1

(Well defined for the highest occu-

pied state. Otherwise, “only” in terms 

of constrained DFT)
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Kohn-Sham Electron Bands

Silicon conduction
band
(empty states)

valence
band
(filled states)

L            X   W

Kohn-Sham band gap:

The measured (optical) band gap is something else:

removal        addition

KS = єCB - єVB of the N-particle system

} the KS gap 
Egap

=

We don’t know how to determine xc for crystals with DFT.

There is a discontinuity in Vxc at integer 

values of occupation numbers.

KS +  xc

Important arenas for future theoretical work:
• Non-adiabatic effects, dissipation
• Transport (electrons, ions, heat) 
• Thermodynamic phase transitions, e.g. melting
• Surfaces, nanostructures – in realistic environments
• Modeling the kinetics, e.g. of catalysts or crystal growth 

..(self-assembly and self-organization)
• Molecules and clusters in solvents, electrochemistry, fuel 

..cells, external fields
• Correlated systems, e.g. f-electron chemistry
• Biological problems

The challenges:
 Find ways to control the xc approximation
 Develop methods for bridging length and time scales

Summary and Outlook: Interacting Electrons Determine 
the Properties and Function of Real Materials


