High-throughput descriptors in materials development

COMPUTATIONAL MATERIALS GENOME

learly,

exist-

ones

41

procedures of synthesis. Is there another way? Indeed, this is the burgeoning area of computational materials science called 'highthroughput' (HT) computational materials design. It is based on the marriage between computational quantum-mechanical-ther-

modynamic approaches^{1,2} and a multitude of techniques rooted in database construction and intelligent data mining³. The concept

is simple yet powerful: create a large database containing the calculated thermodynamic and electronic properties of existing and <u>bypothetical materials</u> and then intelligently interrogate the data-

mature materials

PUBLISHED ONLINE: 20 FEBRUARY 2013 | DOI: 10.1038/NMAT3568

The high-throughput highway to computational materials design

Curtarolo, Hart, Buongiorno Nardelli, Mingo, Sanvito, Levy

DOI: 10.1038/NMAT3568 (March 2013)

REVIEW ARTICLE

COMPUTATIONAL High-Throughput

The practical implementation of computational HT is highly non-trivial. The method is employed in three strictly connected steps: (i) virtual materials growth: thermodynamic and electronic structure calculations of materials^{3,23}; (ii) rational materials storage: systematic storage of the information in database repositories^{24,25}; (iii) materials characterization and selection: data analysis aimed at selecting novel materials or gaining new physical insights^{15,19,26}.

mature materials

REVIEW ARTICLE

PUBLISHED ONLINE: 20 FEBRUARY 2013 | DOI: 10.1038/NMAT3568

The high-throughput highway to computational materials design

Curtarolo, Hart, Buongiorno Nardelli, Mingo, Sanvito, Levy

DOI: 10.1038/NMAT3568 (March 2013)

MATERIALS GENOME: genes+descriptors

Table 1 | Examples of descriptors introduced in the literature. Nature Mater. 12, 191 (2013) Problem Combination of materials properties (gene) Descriptor Structure stability: convex hull of an alloy Formation enthalpy (H_f) as a function of concentration (x) and the $H_{f}(x) = H(A_{1-x}B_{x}) - (1-x)H(A) - xH(B)$ enthalpies (H) of A and B. system Phase stability in off-lattice alloys Spectral decomposition of alloy vector-energies (E_{nn} , *n*-rows = species, PRL 91, 135503 (2003) *p*-columns = configurations) with principal-component-analysis $E_{nn} \simeq \alpha_1 E_{n1} + \dots + \alpha_{n-1} E_{nn-1} + \epsilon(d)$ coefficients (d (ref.15). Nano Ratio of the av P the qualitative quantitative Variational rat rbit Topol Nat derivative stra at "problem" picture picture k, a_0 lattice)¹⁶. Powe Ratio of the m ident solar energy density on-hole (spec PRL 108, 068701 (2012) recombinatio versus bandgap energy $(E_{\alpha})^{62}$. $\hat{\chi}_{np} = \max\left(\frac{m_{\rm e}}{m_{\rm h}}, \frac{m_{\rm h}}{m_{\rm e}}\right)$ Maximum mismatch between effective masses of electrons (m_{e}) Non-proportionality in scintillators IEEE Trans. Nucl. Sci. 56, 2989 (2009) and holes $(m_{\rm h})^{75}$. Morphotropic phase boundary Energy proximity between tetragonal, rhombohedra and rotational $\Delta E_{\rm p} \le 0.5 \, {\rm eV}$ distortions (ΔE_{n}). Angular coordinate (α_{AB}) of the energy minimum in piezoelectrics $\alpha_{AB} \approx 45^{\circ}$ PRB 84, 014103 (2011) the A-B off-centerings energy map for ABO₃ systems⁷⁹.

Automation is key

NEED fast standards

Calculate electronic structure of all reported compounds

- ICSD ~150,000 (well defined ~50%)
- Work out all the prototype definitions/symmetries:
- Define standards in reciprocal space (on-line): a highly complex solution to an apparently simple problem
- Obtain LDAU parameters when required
- Adiabatic U
- Automatic switch to LS coupling when required
- Calculate stability, if necessary
- Discover properties through correlations
- Make ONLINE Tools
- Use results as <u>STARTING POINTS</u>
- Works for VASP and QE

STANDARD in Real Space and Reciprocal Space Algorithm has 25 self consistent points

 $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)_{BL}^{n+1} = \text{Dual}\left[\text{Minkowski}_{BL^*}\left[\text{Dual}\left[(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)_{BL}^n\right]\right]\right]$

14 Bravais Lattices → 25 Brillouin Zones → 25 Bravais Definitions

CUBIC: cub, bcc, fcc TETRAGONAL: tet, bct₁, bct₂ ORTHORHOMBIC: orc, orcf₁, orcf₂, orcf₂, orci, orcc HEXAGONAL/TRIGONAL: hex, rhl₁, rhl₂ MONOCLINIC: mcl, mclc₁, mclc₂, mclc₃, mclc₄, mclc₅ TRICLINIC: tri_{1a}, tri_{2a}, tri_{1b}, tri_{2b}

STANDARD in Real Space and Reciprocal Space

Repository of quantum mechanics calculations

(a)

AFLOWLIB.ORG

(b)

Mn

Al₅Mn₂₄

CHOOSE DATABASES

🧭 AFLOWLib 🥃 Structure Properties 📄 Electronic Properties 📄 Thermoelectric Properties 📄 Scintillator Database 💽 Magnetic Properties 📄 Job Status

SEARCH AFLOWLIB (379,310 Compounds)

Curtarolo et al., "AFLOWLIB.ORG: a distributed materials properties repository from highthroughput ab initio calculations", Comp. Mat. Sci. 58, 227-235 (2012).

$Al_1Ca_1O_5Ta_1 (ICSD\# 99001)$

REAL SPACE LATTICES

Lattices:	a = 7.40Å $b = 7.97$ Å $c = 7.71$ Å
	$\alpha = 68.69^{\circ} \beta = 90.00^{\circ} \gamma = 90.00^{\circ}$
Volume:	423.76Å ³
Unit Cell Atom Number:	32
Space Group Number:	14
Pearson Symbol:	mP32
Lattice Primitive:	MCL Al1Ca1O5Ta1 #14.0 - (Al1Ca1O5Ta1_ICSD_99
Lattice Variation:	MCL
Crystal Family:	Monoclinic
Crystal System:	Monoclinic
Crystal Class:	Monoclinic-prismatic
Point Group (Hermann Mauguin):	2/m PGXTAL
Point Group (Schoenflies):	C_2h
Point Group Orbifold:	2*
Point Group Type:	centrosymmetric
Point Group Order:	4

2 X Cyclic

0.59 Å⁻³

MCL

MCL

a = 0.85Å b = 0.85Å c = 0.87Å

 $\alpha = 111.31^{\circ} \beta = 90.00^{\circ} \gamma = 90.00^{\circ}$

MCL

MCL

mP32

ELECTRONIC PROPERTIES

Band Structure

Lattice Primitive:

Lattice Variation:

Al₁Ca₁O₅Ta₁ ICSD 99001 (MCL)

P 1 [P 1] a=7.399Å b=7.971Å c=7.713Å α=68.7° β=90.0° γ=90.0°

🗹 Turn spin off

Show atom labels

ball and stick 🛟

MCL path: Γ-Y-H-C-E-M₁-A-X-Γ-Z-D-M|Z-A|D-Y|X-H₁

Comp. Mat. Sci. 49, 299-312 (2010)

Point Group Structure:

Superlattice Variation:

Reciprocal Lattices:

Volume:

Superlattice Primitive unit cell:

Pearson Symbol Superlattice:

RECIPROCAL SPACE LATTICES

Repository of quantum mechanics calculations

geometritzernsonelecturial deter (po(withfaortonetietrc.e)nergies)

▲Name [1]	ICSD Number [1]	Bravais Lattice	Number of Atoms	< P n>/L (µW/cmK ² nm) [4]	<p<sub>n1>/L (µW/cmK²nm) [4]</p<sub>	< P _{n2} >/L (µW/cmK ² nm) [4]	<p<sub>n3>/L (µW/cmK²nm) [4]</p<sub>	<p<sub>p>/L (µW/cmK²nm) [4]</p<sub>	<p<sub>p1>/L (µW/cmK²nm) [4]</p<sub>	<p<sub>p2>/L (µW/cmK²nm) [4]</p<sub>	< P _{p3} >/L (µW/cmK ² nr [4]	$\begin{array}{c} \mathbf{Sn} \\ (\mu \mathbf{V}/\mathbf{K}) \\ [4] \end{array}$	Sp (μV/K) [4]
F ₃ Fe ₁ K ₁	15424	CUB (Cubic)	5	0.15	0.15	0.15	0.15	2.17	2.17	2.17	2.17	-116.36	91.29
F ₃ Fe ₁ Rb	49586	CUB (Cubic)	5	0.24	0.24	0.24	0.24	1.50	1.48	1.51 1.		-91.73	91.04
Fe ₁ La ₁ O ₂	29118	CUB (Cubic)	5	0.31	0.31	0.31	0.31	2.00	2.00	2.00	2.00	-139.02	92.92
Ag ₂ Fe ₁ S ₄ Sn ₁			42534		(Tetragonal)	l) 8		121 (I-42m)		tI16		4.77	

magnetic properties (if you want rare earth free magnets/spintronics)

▲Name [1]	ICSD Number [1]	Bravais Lattice	Number of Atoms	f М М (µв	Iagneti Iomen (atom)	c t [5]	Sp Polariz (1/ato	in zation m) [5]		Spin Decomposition (µB)						
Ag ₁ Fe ₁ O ₂	2786	HEX (Hexagonal)	8		1.25		0.00		{0.039,	{0.039,0.039,4.303,4.303,0.258,0.258,0.258,0.258						
Ag ₁ Fe ₁ O ₂	31919	RHL (Rhombohedral)) 4 1.25			0.0	00	{0.039,4.303,0.258,0.258}								
Ag ₂ Fe ₁ S ₄ Sn ₁	42534	BCT (Tetragonal)	8		0.50		0.0	00	{0.016,0.016,3.631,0.024,0.024,0.024,0.024,0.016}							
F ₂ Fe ₁	9166	(Tetragonal) 6	2.63 (I)	4.46	0.49	0.48	190.80	5.47	388.39	7.15	15.23	2.86700				

Automatic Generation of Databases

AFLOWLIB.ORG: a distributed materials properties repository from HT ab initio calculations, Comp. Mat. Sci. 58, 227 (2012)

Automatic data/visualization analysis

Extract general materials properties: structural, electronic, magnetic properties...

Develop new high-throughput programs based on the desired materials properties

AFLOW: an automatic framework for high-throughput materials discovery, Comp. Mat. Sci. 58, 218-226 (2012)

Vibrational Free energy

EXAMPLE: Topological Insulators

Table 1 | Examples of descriptors introduced in the literature. Nature Mater. 12, 191 (2013)

Problem	Combination of materials properties (gene)	Descriptor
Structure stability: convex hull of an alloy system	Formation enthalpy (H_f) as a function of concentration (x) and the enthalpies (H) of A and B .	$H_{f}(x) = H(A_{1-x}B_{x}) - (1-x)H(A) - xH(B)$
Phase stability in off-lattice alloys PRL 91 , 135503 (2003)	Spectral decomposition of alloy vector-energies ($E_{n,p}$, <i>n</i> -rows = species, <i>p</i> -columns = configurations) with principal-component-analysis coefficients (α_i) and truncation error ($\epsilon(d)$) (ref. 3).	$E_{n,p} \simeq \alpha_1 E_{n,1} + \dots + \alpha_{p-1} E_{n,p-1} + \epsilon(d)$
Nanosintered thermoelectrics PRX 1, 021012 (2011)	Ratio of the average power factor (< P >) to the grain size (L) (ref. 15).	$\hat{\chi}_{\text{thermo}} \equiv \frac{\langle P \rangle}{L}$
Topological insulators (epitaxial growth) Nature Mater. 11, 614 (2012)	Variational ratio of spin-orbit distortion versus non-spin-orbit derivative strain (E_k^{soc} , E_k^{noSOC} , spin/no spin-orbit bandgaps at k , a_0 lattice) ¹⁶ .	$\hat{\chi}_{\text{TI}} = -\frac{E_k^{\text{SOC}}(a_0)/a_0}{\delta E_k^{\text{noSOC}}(a)_0/\delta a_0 _{a_0}}$
Power conversion efficiency of a solar cell (spectroscopic limited maximum efficiency) PRL 108, 068701 (2012)	Ratio of the maximum output power density (P_m) to the incident solar nergy density (P_{in}) — a function (η) of the radiative electron-hole recombination current (f_r) and the photon absorptivity ($\alpha(E)$) — versus condgap energy (E_g) ⁶² .	$\eta(\alpha(E), f_r) = P_m / P_{in}; E_g$
Non-proportionality in scintillators IEEE Trans. Nucl. Sci. 56 , 2989 (2009)	Maximum mematch between effective masses of electrons ($m_{\rm e}$) and holes ($m_{\rm h}$) ⁷⁵ .	$\hat{\chi}_{np} = \max\left(\frac{m_{\rm e}}{m_{\rm h}}, \frac{m_{\rm h}}{m_{\rm e}}\right)$
Morphotropic phase boundary piezoelectrics PRB 84, 014103 (2011)	Energy proximity between tetragonal, rhombohedra and rotational distortions (ΔE_p). Angular poordinate (α_{AB}) of the energy minimum in the A-B off-centerings energy map for ABO ₃ systems ⁷⁹ .	$\Delta E_{\rm p} \le 0.5 {\rm eV}$ $\alpha_{AB} \approx 45^{\circ}$

EXAMPLE: Topological Insulators

EXAMPLES: going alloys and going surfaces

EXAMPLE

- Scan the aflowlib.org library
- Need of a **DESCRIPTOR** (need to grow... epixially).
- search for combination of heavy metals (potential strong spin-orbit coupling)
- search for ideal band structures with appropriate gaps
- calculate band structure with LS (thousand of compounds)
- calculate the bands for surfaces to see localized conducting surface stares

ARTICIES

• usually they contain Bi and/or Sb, Te, Pb.

Materials PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NMAT3332 A search model for topological insulators with high-throughput robustness descriptors

Kesong Yang¹, Wahyu Setyawan², Shidong Wang¹, Marco Buongiorno Nardelli^{3,4} and Stefano Curtarolo^{1,4,5}* Nature Materials, **11**(7), 614-619 (2012) DOI: 10.1038/nmat3332

nature

Let's precess, epitaxially !

 α) SPIN orbit calculations are expensive
 β) LS due to electrons precessing near cores

 γ) E^{soc} - $E^{noSOC} \sim const$

 δ) simulated epitaxial strain with E^{noSOC}

robustness descriptor varitional ("quasi-meaningful" quantity)

J = L + S

New compounds: tern. halides: Cs{Sn,Pb,Ge}{Cl,Br,I}₃

			Bulk						Simulate	d epitaxi	al growth	(a optiı	nized, c/	a free)		
Compound	Space group	ICSD # ref. 31	Pearson symbol	Latt. ref. 39	Exp. <i>a</i> ₀ , c ₀	DFT a ₀ ,c ₀	Pearson symbol	Latt. cleav.	a _{crit} (Å)	E ^{SOC} 'ref'	Ref. lattice	E ^{SOC} 'ref'	TRIM (mult.)	$\frac{\Delta E_k @}{(a_0,c_0)}$	$E_k^{SOC} @ (a_0, c_0)$	ز (%
Sb ₂ Te ₂ S	Rẫm	-	hR5	rhl ₁	-	4.192	hR5	rhl ₁	1.006a ₀	-0.106	1.019a ₀	0.106	Γ (1)	0.21	0.043	0
						31.001		(0001)	0.993c ₀		$0.975c_0$	(D)				
Bi ₂ Te ₂ S	R3m	617050	hR5	rhl ₁	4.33	4.297	hR5	rhl ₁	0.987a ₀	-0.089	ao	0.089	Γ(1)	0.62	-0.089	-
Fig. 2a					30.07	31.513		(0001)	1.013co		CO	(D)				
SnSb ₂ Te ₄	Rām	30392	hR7	rhl ₁	4.312	4.389	hR7	rhlı	0.999a ₀	-0.065	1.011a ₀	0.065	Z(1)	0.22	0.013	3 —
					41.72	42.347		(0001)	0.998c ₀		$0.984c_0$	(D)				
PbSb ₂ Te ₄	Rẩm	250250	hR7	rhl ₁	4.35	4.413	hR7	rhl	0.988a ₀	-0.017	ao	0.017	Z(1)	0.35	-0.017	′ –
					41.712	42.792		(0001)	1.011co		C ₀	(D)				
PbBi ₄ Se ₇	P3m1	ref. 49	hP12	hex	4.25	4.216	hP12	hex	1.018a0	-0.016	1.023 <i>a</i> 0	0.016	A(1)	0.41	0.128	2
					22.68	23.839		(0001)	0.971co		0.966co	(D)				
CsSnCl ₃	Pm3m	28082	cP5	cub	5.504	5.618	tP5	tet	0.951ao	-0.281	0.936ao	0.111	A(1)	0.34	0.646	-4
					5.504	5.618		(001)	1.022c0		1.209c ₀	(1)				H
CsPbCl₃	Pm3m	29072	cP5	cub	5.605	5.733	tP5	tet	0.914ao	-0.450	0.890 <i>a</i> 0	0.354	A(1)	1.11	1.073	-8
					5.605	5.733		(001)	1.037c ₀		1.050c ₀	(1)				H
CsGeBr₃	Pmẫm	80320	cP5	cub	5.36	5.603	tP5	tet	0.955a ₀	-0.055	0.952a0	0.026	A(1)	0.16	0.591	-4
					5.36	5.603		(001)	1.022c ₀		1.023c ₀	(1)				H
CsSnBr ₃	Pm3m	4071	cP5	cub	5.795	5.884	tP5	tet	0.972a ₀	-0.099	0.965a ₀	0.099	A(1)	0.34	0.288	-2
					5.795	5.884		(001)	1.010c ₀		1.013c ₀	(D)				F
CsPbBr ₃	Pm3m	29073	cP5	cub	5.874	5.993	tP5	tet	0.934a ₀	-0.120	0.926a ₀	0.120	A(1)	1.11	0.641	-6
					5.874	5.993		(001)	1.024c ₀		$1.027c_0$	(D)				H
CsSnl ₃	РтЗт	69997	cP5	cub	6.219	6.272	tP5	tet	0.993a ₀	-0.335	0.960a ₀	0.169	A(1)	0.39	0.070	-0
Fig. 2d					6.219	6.272		(001)	1.002c ₀		1.013c ₀	(1)				F
SnTe	Fm3m	52489	cF8	fcc	4.471	4.528	tl4	bct ₂	1.027a ₀	-0.058	1.010a ₀	0.058	N (4)	0.15	-0.107	2
					6.323	6.404		(001)	0.998co		$0.999c_0$	(D)				V

halides

novel ternary

 $(E_2^{SOC}(ref.))$ at the TRIM with the reference lattice, reference lattice, SOC band-gap at the reference lattice (direct/indirect) $(E_2^{SOC}(ref.))$, TRIMs having band inversion with multiplicity³⁹, SOC energy-gap (discrepancy (ΔE_2) at the ab initio equilibrium lattice, SOC band energy difference $(E_2^{SOC}(ra_0))$ at the TRIM with the ab initio equilibrium lattice, HT-descriptor (χ_{T1}) . The labels below χ_{T1} indicate: F(TragileA) (Krobust), KRevy robust), Protoentially leasible), and HF(rardy leasible) (Structural and electronic data is available by following the links listed in the Supplementary Information Extended Table).

if $E_k^{\text{SOC}}(a_0) \leq 0$, robustness: $|\hat{\chi}_{\mathrm{TI}}| \leq 1\% \Rightarrow \text{fragile},$ $1\% < |\hat{\chi}_{\mathrm{TI}}| \leq 2\% \Rightarrow \mathrm{robust},$ $2\% < |\hat{\chi}_{\rm TI}| \Rightarrow$ very-robust.

if $E_k^{\text{SOC}}(a_0) > 0$, feasibility: $|\hat{\chi}_{\rm TI}| \leq 3\% \Rightarrow$ potentially-feasible, $3\% < |\hat{\chi}_{\rm TI}| \Rightarrow$ hardly-feasible.

EXAMPLE: Thermoelectrics

without the constant relaxation time approximation

Table 1 Examples of descriptors intro	duced in the literature. Nature Mater. 12, 191 (2013)	
Problem	Combination of materials properties (gene)	Descriptor
Structure stability: convex hull of an alloy system	Formation enthalpy (H_f) as a function of concentration (x) and the enthalpies (H) of A and B.	$H_{f}(x) = H(A_{1-x}B_{x}) - (1-x)H(A) - xH(B)$
Phase stability in off-lattice alloys PRL 91 , 135503 (2003)	Spectral decomposition of alloy vector-energies ($E_{n,p}$, <i>n</i> -rows = species, <i>p</i> -columns = configurations) with principal-component-analysis coefficients (α_i) and truncation error ($\epsilon(d)$) (ref. 3).	$E_{n,p} \simeq \alpha_1 E_{n,1} + \dots + \alpha_{p-1} E_{n,p-1} + \epsilon(d)$
Nanosintered thermoelectrics PRX 1, 021012 (2011)	Ratio of the average power factor (P) to the grain size (L) (ref. 15).	$\hat{\chi}_{\text{thermo}} \equiv \frac{\langle P \rangle}{L}$
Topological insulators (epitaxial growth) Nature Mater. 11, 614 (2012)	Variational ratio of spin-orbit distortion versus non-spin-orbit derivative strain (E_k^{SOC} , E_k^{noSOC} , spin/no spin-orbit bandgaps at k , a_0 lattice) ¹⁶ .	$\hat{\chi}_{\text{TI}} = - \frac{E_k^{\text{SOC}}(a_0)/a_0}{\delta E_k^{\text{noSOC}}(a)_0/\delta a_0 _{a_0}}$
Power conversion efficiency of a solar cell (spectroscopic limited maximum efficiency) PRL 108, 068701 (2012)	Ratio of the maximum output power density (P_m) to the incident solar nergy density (P_{in}) — a function (η) of the radiative electron-hole recombination current (f_r) and the photon absorptivity ($\alpha(E)$) — versus condgap energy (E_g) ⁶² .	$\eta(\alpha(E), f_r) = P_m / P_{in}; E_g$
Non-proportionality in scintillators IEEE Trans. Nucl. Sci. 56, 2989 (2009)	Maximum mematch between effective masses of electrons ($m_{\rm e}$) and holes ($m_{\rm h}$) ⁷⁵ .	$\hat{\chi}_{np} = \max\left(\frac{m_{\rm e}}{m_{\rm h}}, \frac{m_{\rm h}}{m_{\rm e}}\right)$
Morphotropic phase boundary piezoelectrics PRB 84, 014103 (2011)	Energy proximity between tetragonal, rhombohedra and rotational distortions (ΔE_p). Angular coordinate (α_{AB}) of the energy minimum in the <i>A</i> - <i>B</i> off-centerings energy map for <i>ABO</i> ₃ systems ⁷⁹ .	$\Delta E_{\rm p} \le 0.5 {\rm eV}$ $\alpha_{AB} \approx 45^{\circ}$

EXAMPLE: Thermoelectricity

Thermoelectrics: convert flow of electronic entropy in electronic current

thermoelectrics

power factor

For sintered, depends on directions, project on principal axes

 $X_{thermo} = <P > /L$

					10 ³ (c) n-d	oped	Power factor Seebeck	10 ³	10 ⁴ (d) p	(d) p-doped Power factor Seebeck			10 ³
▲Name [1]	ICSD Number [1]	Bravais Lattice	Number of Atoms	< P n>/L (µW/cmK ² nm) [4]	< P _{n1} >/L (µW/cmK ² nm) [4]	<p<sub>n2>/L (µW/cmK²nm) [4]</p<sub>	<p<sub>n3>/L (µW/cmK²nm) [4]</p<sub>	<p<sub>p>/L (µW/cmK²nm) [4]</p<sub>	<p<sub>p1>/L (µW/cmK²nm) [4]</p<sub>	< P _{p2} >/L (µW/cmK ² nm) [4]	<p<sub>p3>/L (µW/cmK²nm) [4]</p<sub>	Sn (μV/K) [4]	Sp (μV/K) [4]
$F_3Fe_1K_1$	15424	CUB (Cubic)	5	0.15	0.15	0.15	0.15	2.17	2.17	2.17	2.17	-116.36	91.29
F ₃ Fe ₁ Rb ₁	49586	CUB (Cubic)	5	0.24	0.24	0.24	0.24	1.50	1.48	1.51	1.51	-91.73	91.04
Fe ₁ La ₁ O ₃	29118	CUB (Cubic)	5	0.31	0.31	0.31	0.31	2.00	2.00	2.00	2.00	-139.02	92.92
	-	-			્યું કરતું છે. કર્યું હુ				99) 89)			10 0 0 4 1 (40 40 0 0 0 1 (40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(eso (eso

 $max P_i/L$

AgAl, AgAs, AgAu, AgB, AgBi, AgCd, AgCo, AgCr, AgCu, AgFe, AgGa, AgGe, AgHf, AgHg, AgIn, AgIr, AgLa, AgMg, AgMn, AgMo, AgNb, AgNi, AgOs, AgP, AgPb, AgPd, AgPt, AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AgSn, AgTa, AgTc, AgTe, AgTi, AgV, AgV, AgY, AgZn, AgZr, AlAs, AlAu, AlB, AlBi, AlCd, AlCo, AlCr, AlCu, AlFe, AlGa, AlGe, AlCo, AIHf, AIHg, AIHf, AIPd, AIPt, AISc, Alln, Allr, AlLa, AIMg, AIMn, AIMo, AINb, AINi, AlOs, AIP, AIPb, AIPd, AIPt, AIRe, AIRh, AIRu, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AITI, AIV, AIV, AIY, AIZn, AIZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsV, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, AuIn, AuIr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTi, BeY, BeZn, BeZr, BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, BIn, BIr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BTc, BTe, BTi, BV, BW, BY, BZn, BZr, BiCd, BiCo, BiCr, BiCu, BiFe, BiGa, BiGe, BiHf, BiHg, Biln, Bilr, BiLa, BiMg, BiMn, BiMo, BiNb, BiNi, BiOs, BiP, BiPb, BiPd, BiPt, BiRe, BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, BiTa, BiTc, BiTe, BiTi, BiV, BiV, BiY, BiZn, BiZr, BHf, CaHf, CaMg, CaPd, CaPt, CdCo, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, CdHg, CdIn, CdIr, CdLa, CdMg, CdMn, CdMo, CdNb, CdNi, CdOs, CdP, CdPb, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdTl, CdV, CdV, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, CoIn, CoIr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTi, CoV, CoV, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, CrGe, CrHf, CrHg, CrIn, CrIr, CrLa, CrMg, CrMn, CrMo, CrNb, CrNi, CrOs, CrP, CrPb, CrPd, CrPt, CrRe, CrRh, CrRu, CrSb, CrSc, CrSe, CrSi, CrSn, CrTa, CrTc, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, CuIn, CuIr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuV, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, FeIn, FeIr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, GeIn, GeIr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeV, GeY, GeZn, GeZr, GeMg, HfHg, HfIn, HfIr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTl, HfV, HfV, HfY, HfZn, HfZr, HgIn, HgIr, HgLa, HgMg, HgMn, HgMo, HgNb, HgNi, HgOs, HgP, HgPb, HgPd, HgPt, HgRe, HgRh, HgRu, HgSb, HgSc, HgSe, HgSi, HgSn, HgTa, HgTc, HgTe, HgTi, HgV, HgV, HgY, HgZn, HgZr, InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InV, InY, InZn, InZr, IrLa, IrMg, IrMn, IrMo, IrNb, IrNi, IrOs, IrP, IrPb, IrPd, IrPt, IrRe, IrRh, IrRu, IrSb, IrSc, IrSe, IrSi, IrSn, IrTa, IrTc, IrTe, IrTi, IrV, IrW, IrY, IrZn, IrZr, KMg, KPd, KPt, LaMg, LaMn, LaMo, LaNb, LaNi, LaOs, LaP, LaPb, LaPd, LaPt, LaRe, LaRh, LaRu, LaSb, LaSc, LaSe, LaSi, LaSn, LaTa, LaTc, LaTe, LaTi, LaV, LaW, LaY, LaZn, LaZr, list, LiMg, LiPd, LiPt, MgMn, MgMo, MgNb, MgNi, MgOs, MgP, MgPb, MgPd, MgPt, MgRe, MgRh, MgRu, MgSb, MgSc, MgSe, MgSi, MgSn, MgTa, MgTc, MgTe, MgTi, MgTl, MgV, MgV, MgY, MgZn, MgZr, MnMo, MnNb, MnNi, MnOs, MnP, MnPb, MnPd, MnPt, MnRe, MnRh, MnRu, MnSb, MnSc, MnSe, MnSi, MnSn, MnTa, MnTc, MnTe, MnTi, MnV, MnV, MnY, MnZn, MnZr, MoMg, MoNb, MoNi, MoOs, MoP, MoPb, MoPd, MoPt, MoRe, MoRh, MoRu, MoSb, MoSc, MoSe, MoSi, MoSn, MoTa, MoTc, MoTe, MoTi, MoV, MoV, MoY, MoZn, MoZr, NaMg, NaPd, NaPt, NbMg, NbNi, NbOs, NbP, NbPb, NbPd, NbPt, NbRe, NbRh, NbRu, NbSb, NbSc, NbSe, NbSi, NbSn, NbTa, NbTc, NbTe, NbTi, NbV, NbW, NbY, NbZn, NbZr, NiOs, NiP, NiPb, NiPd, NiPt, NiRe, NiRh, NiRu, NiSb, NiSc, NiSe, NiSi, NiSn, NiTa, NiTc, NiTe, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsMg, OsP, OsPb, OsPd, OsPt, OsRe, OsRh, OsRu, OsSb, OsSc, OsSe, OsSi, OsSn, OsTa, OsTc, OsTe, OsTi, OsTl, OsV, OsV, OsY, OsZn, OsZr, PbMg, PbPd, PbPt, PbRe, PbRh, PbRu, PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbV, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdW, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PTa, PTc, PTe, PTi, PtRe, PtRh, PtRu, PtSb, PtSc, PtSe, PtSi, PtSn, PtTa, PtTc, PtTi, PtV, PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, ReRu, ReSb, ReSc, ReSe, ReSi, ReSn, ReTa, ReTc, ReTe, ReTi, ReTl, ReV, ReV, ReY, ReZn, ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, RhTl, RhV, RhV, RhY, RhZn, RhZr, RuMg, RuSb, RuSc, RuSe, RuSi, RuSn, RuTa, RuTc, RuTe, RuTi, RuTl, RuV, RuW, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, SbTe, SbTi, SbV, SbW, SbY, SbZn, SbZr, ScMg, ScSe, ScSi, ScSn, ScTa, ScTc, ScTe, ScTi, ScTl, ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, SeZn, SeZr, SiPd, SiPt, SiSn, SiTa, SiTc, SiTe, SiTi, SiV, SiW, SiY, SiZn, SiZr, SnMg, SnPd, SnPt, SnTa, SnTc, SnTe, SnTi, SnV, SnW, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, TaTe, TaTi, TaV, TaV, TaY, TaZn, TaZr, TcTe, TcTi, TcTi, TcV, TcV, TcY, TcZn, TcZr, TeTi, TeV, TeW, TeY, TeZn, TeZr, TiMg, TiTl, TiV, TiV, TiY, TiZn, TiZr, TIY, TIZn, TIZr, VMg, VW, VY, VZn, VZr, WMg, WY, WZn, WZr, YMg, YZn, YZr, ZnMg, ZnZr, ZrMg

AgAl, AgAs, AgAu, AgB, AgBi, AgCd, AgCo, AgCr, AgCu, AgFe, AgGa, AgGe, AgHf, AgHg, AgIn, AgIr, AgLa, AgMg, AgMn, AgMo, AgNb, AgNi, AgOs, AgP, AgPb, AgPd, AgPt, AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AgSn, AgTa, AgTc, AgTe, AgTi, AgV, AgV, AgY, AgZn, AgZr, AIAs, AIAu, AIB, AIBi, AICd, AICo, AICr, AICu, AIFe, AIGa, AIGe, AICo, AIHf, AIHg, AIHf, AIPd, AIPt, AISc, Alln, Allr, AlLa, AIMg, AIMn, AIMo, AINb, AINi, AIOs, AIP, AIPb, AIPd, AIPt, AIRe, AIRh, AIRu, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AITI, AIV, AIV, AIY, AIZn, AIZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsV, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, AuIn, AuIr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTi, BeY, BeZn, BeZr, BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, BIn, BIr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BTc, BTe, BTi, BV, BW, BY, BZn, BZr, BiCd, BiCo, BiCr, BiCu, BiFe, BiGa, BiGe, BiHf, BiHg, BiIn, BiIr, BiLa, BiMg, BiMn, BiMo, BiNb, BiNi, BiOs, BiP, BiPb, BiPd, BiPt, BiRe, BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, BiTa, BiTc, BiTe, BiTi, BiV, BiV, BiY, BiZn, BiZr, BHf, CaHf, CaMg, CaPd, CaPt, CdCo, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, CdHg, CdIn, CdIr, CdLa, CdMg, CdMn, CdMo, CdNb, CdNi, CdOs, CdP, CdPb, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdTl, CdV, CdV, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, CoIn, CoIr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTi, CoV, CoV, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, CrGe, CrHf, CrHg, CrIn, CrIr, CrLa, CrMg, CrMn, CrMo, CrNb, CrNi, CrOs, CrP, CrPb, CrPd, CrPt, CrRe, CrRh, CrRu, CrSb, CrSc, CrSe, CrSi, CrSn, CrTa, CrTc, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, CuIn, CuIr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuV, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, FeIn, FeIr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, GeIn, GeIr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeV, GeY, GeZn, GeZr, GeMg, HfHg, HfIn, HfIr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTl, HfV, HfV, HfY, HfZn, HfZr, HgIn, HgIr, HgLa, HgMg, HgMn, HgMo, HgNb, HgNi, HgOs, HgP, HgPb, HgPd, HgPt, HgRe, HgRh, HgRu, HgSb, HgSc, HgSe, HgSi, HgSn, HgTa, HgTc, HgTe, HgTi, HgV, HgV, HgY, HgZn, HgZr, InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InV, InY, InZn, InZr, IrLa, IrMg, IrMn, IrMo, IrNb, IrNi, IrOs, IrP, IrPb, IrPd, IrPt, IrRe, IrRh, IrRu, IrSb, IrSc, IrSe, IrSi, IrSn, IrTa, IrTc, IrTe, IrTi, IrV, IrW, IrY, IrZn, IrZr, KMg, KPd, KPt, LaMg, LaMn, LaMo, LaNb, LaNi, LaOs, LaP, LaPb, LaPd, LaPt, LaRe, LaRh, LaRu, LaSb, LaSc, LaSe, LaSi, LaSn, LaTa, LaTc, LaTe, LaTi, LaV, LaW, LaY, LaZn, LaZr, list, LiMg, LiPd, LiPt, MgMn, MgMo, MgNb, MgNi, MgOs, MgP, MgPb, MgPd, MgPt, MgRe, MgRh, MgRu, MgSb, MgSc, MgSe, MgSi, MgSn, MgTa, MgTc, MgTe, MgTi, MgTl, MgV, MgV, MgY, MgZn, MgZr, MnMo, MnNb, MnNi, MnOs, MnP, MnPb, MnPd, MnPt, MnRe, MnRh, MnRu, MnSb, MnSc, MnSe, MnSi, MnSn, MnTa, MnTc, MnTe, MnTi, MnV, MnV, MnY, MnZn, MnZr, MoMg, MoNb, MoNi, MoOs, MoP, MoPb, MoPd, MoPt, MoRe, MoRh, MoRu, MoSb, MoSc, MoSe, MoSi, MoSn, MoTa, MoTc, MoTe, MoTi, MoV, MoV, MoY, MoZn, MoZr, NaMg, NaPd, NaPt, NbMg, NbNi, NbOs, NbP, NbPb, NbPd, NbPt, NbRe, NbRh, NbRu, NbSb, NbSc, NbSe, NbSi, NbSn, NbTa, NbTc, NbTe, NbTi, NbV, NbW, NbY, NbZn, NbZr, NiOs, NiP, NiPb, NiPd, NiPt, NiRe, NiRh, NiRu, NiSb, NiSc, NiSe, NiSi, NiSn, NiTa, NiTc, NiTe, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsMg, OsP, OsPb, OsPd, OsPt, OsRe, OsRh, OsRu, OsSb, OsSc, OsSe, OsSi, OsSn, OsTa, OsTc, OsTe, OsTi, OsTl, OsV, OsV, OsY, OsZn, OsZr, PbMg, PbPd, PbPt, PbRe, PbRh, PbRu, PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbV, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdVV, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PT PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, Re S. Curtarolo, O. Levy, W. Setyawan, ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, Rh I. Takeuchi, A. Kolmogorov, S. Wang, RuTi, RuTl, RuV, RuV, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, Sb M. Jahnatek, M. Buongiorno Nardelli, M. Fornari, ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, Se SnTa, SnTc, SnTe, SnTi, SnV, SnW, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, R. Taylor, Z. Wang, K. Yang, N. Mingo, S. Sanvito

TeW, TeY, TeZn, TeZr, TiMg, TiTl, TiV, TiW, TiY, TiZn, TiZr, TIY, TIZn, TIZr, VMg, VW,

AgAl, AgAs, AgAu, AgB, AgBi, AgCd, AgCo. AgCr. AgCu. AgFe. AgGa. AgGe. AgHf. AgHg. AgIn. AgIr. AgIr. AgAa. AgMg. AgMn. AgMo, AgNb, AgNi, AgOs, AgP, AgPb, AgPd, AgPt,

AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AIHf, AIHg, AIHf, AIPd, AIPt, AISc, Alln, All AITi, AIV, AIW, AIY, AIZn, AIZr, AsAu, AsE AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb AuGe, AuHf, AuHg, AuIn, AuIr, AuLa, AuMg AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BeZr, BBi, BCd, BCo, BCr, BCu, BFe, BGa BTc, BTe, BTi, BV, BW, BY, BZn, BZr, BiCc BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, Bi CdHg, CdIn, CdIr, CdLa, CdMg, CdMn, C

~1300 systems and counting ~170,000 calculations ~100 million cpu hours

d, AlCo, AlCr, AlCu, AlFe, AlGa, AlGe, AlCo, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, uBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, b, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, h, BeRu, BeSc, BeTc, BeTi, BeTl, BeY, BeZn, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BiNb, BiNi, BiOs, BiP, BiPb, BiPd, BiPt, BiRe, o, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, dSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe,

CdTi, CdTl, CdV, CdV, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, CoIn, CoIr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTi, CoV, CoV, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, CrGe, CrHf, CrHg, CrIn, CrIr, CrLa, CrMg, CrMn, CrMo, CrNb, CrNi, CrOs, CrP, CrPb, CrPd, CrPt, CrRe, CrRh, CrRu, CrSb, CrSc, CrSe, CrSi, CrSn, CrTa, CrTc, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, CuIn, CuIr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuV, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, FeIn, FeIr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, GeIn, GeIr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeV, GeY, GeZn, GeZr, GeMg, HfHg, HfIn, HfIr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTl, HfV, HfV, HfY, HfZn, HfZr, HgIn, HgIr, HgLa, HgMg, HgMn, HgMo, HgNb, HgNi, HgOs, HgP, HgPb, HgPd, HgPt, HgRe, HgRh, HgRu, HgSb, HgSc, HgSe, HgSi, HgSn, HgTa, HgTc, HgTe, HgTi, HgV, HgV, HgY, HgZn, HgZr, InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InV, InY, InZn, InZr, IrLa, IrMg, IrMn, IrMo, IrNb, IrNi, IrOs, IrP, IrPb, IrPd, IrPt, IrRe, IrRh, IrRu, IrSb, IrSc, IrSe, IrSi, IrSn, IrTa, IrTc, IrTe, IrTi, IrV, IrW, IrY, IrZn, IrZr, KMg, KPd, KPt, LaMg, LaMn, LaMo, LaNb, LaNi, LaOs, LaP, LaPb, LaPd, LaPt, LaRe, LaRh, LaRu, LaSb, LaSc, LaSe, LaSi, LaSn, LaTa, LaTc, LaTe, LaTi, LaV, LaW, LaY, LaZn, LaZr, list, LiMg, LiPd, LiPt, MgMn, MgMo, MgNb, MgNi, MgOs, MgP, MgPb, MgPd, MgPt, MgRe, MgRh, MgRu, MgSb, MgSc, MgSe, MgSi, MgSn, MgTa, MgTc, MgTe, MgTi, MgTl, MgV, MgV, MgY, MgZn, MgZr, MnMo, MnNb, MnNi, MnOs, MnP, MnPb, MnPd, MnPt, MnRe, MnRh, MnRu, MnSb, MnSc, MnSe, MnSi, MnSn, MnTa, MnTc, MnTe, MnTi, MnV, MnV, MnY, MnZn, MnZr, MoMg, MoNb, MoNi, MoOs, MoP, MoPb, MoPd, MoPt, MoRe, MoRh, MoRu, MoSb, MoSc, MoSe, MoSi, MoSn, MoTa, MoTc, MoTe, MoTi, MoV, MoV, MoY, MoZn, MoZr, NaMg, NaPd, NaPt, NbMg, NbNi, NbOs, NbP, NbPb, NbPd, NbPt, NbRe, NbRh, NbRu, NbSb, NbSc, NbSe, NbSi, NbSn, NbTa, NbTc, NbTe, NbTi, NbV, NbW, NbY, NbZn, NbZr, NiOs, NiP, NiPb, NiPd, NiPt, NiRe, NiRh, NiRu, NiSb, NiSc, NiSe, NiSi, NiSn, NiTa, NiTc, NiTe, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsMg, OsP, OsPb, OsPd, OsPt, OsRe, OsRh, OsRu, OsSb, OsSc, OsSe, OsSi, OsSn, OsTa, OsTc, OsTe, OsTi, OsTl, OsV, OsV, OsY, OsZn, OsZr, PbMg, PbPd, PbPt, PbRe, PbRh, PbRu, PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbV, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdVV, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PT PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, Re S. Curtarolo, O. Levy, W. Setyawan, ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, Rh I. Takeuchi, A. Kolmogorov, S. Wang, RuTi, RuTl, RuV, RuV, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, Sb M. Jahnatek, M. Buongiorno Nardelli, M. Fornari, ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, Se SnTa, SnTc, SnTe, SnTi, SnV, SnW, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, R. Taylor, Z. Wang, K. Yang, N. Mingo, S. Sanvito

TeW, TeY, TeZn, TeZr, TiMg, TiTl, TiV, TiW, TiY, TiZn, TiZr, TIY, TIZn, TIZr, VMg, VW,

Thursday, August 15, 13

AgAl, AgAs, AgAu, AgB, AgBi, AgCd, AgCo, AgCr, AgCu, AgFe, AgGa, AgGe, AgHf, AgHg, AgIn, AgIr, AgLa, AgMg, AgMn, AgMo, AgNb, AgNi, AgOs, AgP, AgPb, AgPd, AgPt, AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AgSn, AgTa, AgTc, AgTe, AgTi, AgV, AgV, AgY, AgZn, AgZr, AlAs, AlAu, AlB, AlBi, AlCd, AlCo, AlCr, AlCu, AlFe, AlGa, AlGe, AlCo, AIHf, AIHg, AIHf, AIPd, AIPt, AISc, Alln, Allr, AlLa, AIMg, AIMn, AIMo, AINb, AINi, AlOs, AIP, AIPb, AIPd, AIPt, AIRe, AIRh, AIRu, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AITI, AIV, AIV, AIY, AIZn, AIZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsV, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, AuIn, AuIr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTi, BeY, BeZn, BeZr, BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, BIn, BIr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BTc, BTe, BTi, BV, BW, BY, BZn, BZr, BiCd, BiCo, BiCr, BiCu, BiFe, BiGa, BiGe, BiHf, BiHg, BiIn, BiIr, BiLa, BiMg, BiMn, BiMo, BiNb, BiNi, BiOs, BiP, BiPb, BiPd, BiPt, BiRe, BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, BiTa, BiTc, BiTe, BiTi, BiV, BiV, BiY, BiZn, BiZr, BHf, CaHf, CaMg, CaPd, CaPt, CdCo, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, CdHg, CdIn, CdIr, CdLa, CdMg, CdMn, CdMo, CdNb, CdNi, CdOs, CdP, CdPb, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdTl, CdV, CdV, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, CoIn, CoIr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTi, CoV, CoV, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, CrGe, CrHf, CrHg, CrIn, CrIr, CrLa, CrMg, CrMn, CrMo, CrNb, CrNi, CrOs, CrP, CrPb, CrPd, CrPt, CrRe, CrRh, CrRu, CrSb, CrSc, CrSe, CrSi, CrSn, CrTa, CrTc, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, CuIn, CuIr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuV, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, FeIn, FeIr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, GeIn, GeIr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeV, GeY, GeZn, GeZr, GeMg, HfHg, HfIn, HfIr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTl, HfV, HfV, HfY, HfZn, HfZr, HgIn, HgIr, HgLa, HgMg, HgMn, HgMo, HgNb, HgNi, HgOs, HgP, HgPb, HgPd, HgPt, HgRe, HgRh, HgRu, HgSb, HgSc, HgSe, HgSi, HgSn, HgTa, HgTc, HgTe, HgTi, HgV, HgV, HgY, HgZn, HgZr, InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InV, InY, InZn, InZr, IrLa, IrMg, IrMn, IrMo, IrNb, IrNi, IrOs, IrP, IrPb, IrPd, IrPt, IrRe, IrRh, IrRu, IrSb, IrSc, IrSe, IrSi, IrSn, IrTa, IrTc, IrTe, IrTi, IrV, IrW, IrY, IrZn, IrZr, KMg, KPd, KPt, LaMg, LaMn, LaMo, LaNb, LaNi, LaOs, LaP, LaPb, LaPd, LaPt, LaRe, LaRh, LaRu, LaSb, LaSc, LaSe, LaSi, LaSn, LaTa, LaTc, LaTe, LaTi, LaV, LaW, LaY, LaZn, LaZr, list, LiMg, LiPd, LiPt, MgMn, MgMo, MgNb, MgNi, MgOs, MgP, MgPb, MgPd, MgPt, MgRe, MgRh, MgRu, MgSb, MgSc, MgSe, MgSi, MgSn, MgTa, MgTc, MgTe, MgTi, MgTl, MgV, MgV, MgY, MgZn, MgZr, MnMo, MnNb, MnNi, MnOs, MnP, MnPb, MnPd, MnPt, MnRe, MnRh, MnRu, MnSb, MnSc, MnSe, MnSi, MnSn, MnTa, MnTc, MnTe, MnTi, MnV, MnV, MnY, MnZn, MnZr, MoMg, MoNb, MoNi, MoOs, MoP, MoPb, MoPd, MoPt, MoRe, MoRh, MoRu, MoSb, MoSc, MoSe, MoSi, MoSn, MoTa, MoTc, MoTe, MoTi, MoV, MoV, MoY, MoZn, MoZr, NaMg, NaPd, NaPt, NbMg, NbNi, NbOs, NbP, NbPb, NbPd, NbPt, NbRe, NbRh, NbRu, NbSb, NbSc, NbSe, NbSi, NbSn, NbTa, NbTc, NbTe, NbTi, NbV, NbW, NbY, NbZn, NbZr, NiOs, NiP, NiPb, NiPd, NiPt, NiRe, NiRh, NiRu, NiSb, NiSc, NiSe, NiSi, NiSn, NiTa, NiTc, NiTe, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsMg, OsP, OsPb, OsPd, OsPt, OsRe, OsRh, OsRu, OsSb, OsSc, OsSe, OsSi, OsSn, OsTa, OsTc, OsTe, OsTi, OsTl, OsV, OsV, OsY, OsZn, OsZr, PbMg, PbPd, PbPt, PbRe, PbRh, PbRu, PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbV, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdW, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PTa, PTc, PTe, PTi, PtRe, PtRh, PtRu, PtSb, PtSc, PtSe, PtSi, PtSn, PtTa, PtTc, PtTi, PtV, PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, ReRu, ReSb, ReSc, ReSe, ReSi, ReSn, ReTa, ReTc, ReTe, ReTi, ReTl, ReV, ReV, ReY, ReZn, ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, RhTl, RhV, RhV, RhY, RhZn, RhZr, RuMg, RuSb, RuSc, RuSe, RuSi, RuSn, RuTa, RuTc, RuTe, RuTi, RuTl, RuV, RuW, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, SbTe, SbTi, SbV, SbW, SbY, SbZn, SbZr, ScMg, ScSe, ScSi, ScSn, ScTa, ScTc, ScTe, ScTi, ScTl, ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, SeZn, SeZr, SiPd, SiPt, SiSn, SiTa, SiTc, SiTe, SiTi, SiV, SiW, SiY, SiZn, SiZr, SnMg, SnPd, SnPt, SnTa, SnTc, SnTe, SnTi, SnV, SnW, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, TaTe, TaTi, TaV, TaV, TaY, TaZn, TaZr, TcTe, TcTi, TcTi, TcV, TcV, TcY, TcZn, TcZr, TeTi, TeV, TeW, TeY, TeZn, TeZr, TiMg, TiTl, TiV, TiV, TiY, TiZn, TiZr, TIY, TIZn, TIZr, VMg, VW, VY, VZn, VZr, WMg, WY, WZn, WZr, YMg, YZn, YZr, ZnMg, ZnZr, ZrMg

AgAl, AgAs, AgAu, AgB, AgBi, AgCd, AgCo, AgCr, AgCu, AgFe, AgGa, AgGe, AgHf, AgHg, AgIn, AgIr, AgLa, AgMg, AgMn, AgMo, AgNb, AgNi, AgOs, AgP, AgPb, AgPd, AgPt, AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AgSn, AgTa, AgTc, AgTe, AgTi, AgV, AgV, AgY, AgZn, AgZr, AIAs, AIAu, AIB, AIBi, AICd, AICo, AICr, AICu, AIFe, AIGa, AIGe, AICo, AIHf, AIHg, AIHf, AIPd, AIPt, AISc, Alln, Allr, AlLa, AIMg, AIMn, AIMo, AINb, AINi, AIOs, AIP, AIPb, AIPd, AIPt, AIRe, AIRh, AIRu, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AITi, AIV, AIV, AIY, AIZn, AIZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsV, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, AuIn, AuIr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTi, BeY, BeZn, BeZr, BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, BIn, BIr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BTc, BTe, BTi, BV, BW, BY, BZn, BZr, BiCd, BiCo, BiCr, BiCu, BiFe, BiGa, BiGe, BiHf, BiHg, BiIn, BiIr, BiLa, BiMg, BiMn, BiMo, BiNb, BiNi, BiOs, BiP, BiPb, BiPd, BiPt, BiRe, BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, BiTa, BiTc, BiTe, BiTi, BiV, BiV, BiY, BiZn, BiZr, BHf, CaHf, CaMg, CaPd, CaPt, CdCo, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, CdHg, CdIn, CdIr, CdLa, CdMg, CdMn, CdMo, CdNb, CdNi, CdOs, CdP, CdPb, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdTl, CdV, CdV, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, CoIn, CoIr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTi, CoV, CoV, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, CrGe, CrHf, CrHg, CrIn, CrIr, CrLa, CrMg, CrMn, CrMo, CrNb, CrNi, CrOs, CrP, CrPb, CrPd, CrPt, CrRe, CrRh, CrRu, CrSb, CrSc, CrSe, CrSi, CrSn, CrTa, CrTc, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, CuIn, CuIr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuV, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, FeIn, FeIr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, GeIn, GeIr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeV, GeY, GeZn, GeZr, GeMg, HfHg, HfIn, HfIr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTl, HfV, HfV, HfY, HfZn, HfZr, HgIn, HgIr, HgLa, HgMg, HgMn, HgMo, HgNb, HgNi, HgOs, HgP, HgPb, HgPd, HgPt, HgRe, HgRh, HgRu, HgSb, HgSc, HgSe, HgSi, HgSn, HgTa, HgTc, HgTe, HgTi, HgV, HgV, HgY, HgZn, HgZr, InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InV, InY, InZn, InZr, IrLa, IrMg, IrMn, IrMo, IrNb, aMg, LaMn, LaMo, LaNb, LaNi, LaOs LiPd, LiPt, MgMn, www.aflowlib.org MgY, MgZn, MgZr,

MgMo, MgNb, Mg MnMo, MnNb, Mr MoMg, MoNb, Mc MoZr, NaMg, NaF NbY, NbZn, NbZı OsPd, OsPt, OsRo

Comput. Mater. Sci. (2012), doi:10.1016/j.commatsci.2012.02.002 Comput. Mater. Sci. (2012), doi:10.1016/j.commatsci.2012.02.005 n, InZr, IrLa, IrMg, aMg, LaMn, LaMo, LiPd, LiPt, MgMn, MgY, MgZn, MgZr, 1nY, MnZn, MnZr, oW, MoY, MoZn, NbTi, NbV, NbVV, OsMg, OsP, OsPb, 'bRe, PbRh, PbRu,

PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbV, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdV, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PT PtW, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, Re ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, RhT RuTi, RuTi, RuV, RuW, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, Sb ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, Se SnTa, SnTc, SnTe, SnTi, SnV, SnV, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, TeW, TeY, TeZn, TeZr, TiMg, TiTI, TiV, TiW, TiY, TiZn, TiZr, TIY, TIZn, TIZr, VMg, VW,

AgAl, AgAs, AgAu, AgB, AgBi, AgCd, AgCo, AgCr, AgCu, AgFe, AgGa, AgGe, AgHf, AgHg, AgIn, AgIr, AgLa, AgMg, AgMn, AgMo, AgNb, AgNi, AgOs, AgP, AgPb, AgPd, AgPt, AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AgSn, AgTa, AgTc, AgTe, AgTi, AgV, AgW, AgY, AgZn, AgZr, AlAs, AlAu, AlB, AlBi, AlCd, AlCo, AlCr, AlCu, AlFe, AlGa, AlGe, AlCo, AlHf, AlHg, AlHf, AlPd, AlPt, AlSc, AlIn, AlIr, AlLa, AlMg, AlMn, AlMo, AlNb, AlNi, AlOs, AlP, AlPb, AlPd, AlPt, AlRe, AlRh, AlRu, AlSb, AlSc, AlSe, AlSi, AlSn, AlTa, AlTc, AlTe, AlTi, AlV, AlW, AlY, AlZn, AlZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsW, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, Auln, Aulr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuTa, AuTc, AuTe, AuTi, AuV, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTI, BeY, BeZn, BeZr, BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, Bln, Blr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, Bse, BSi, BSn, BTa, BTc, BTe, BTi, BV, BY, BZn, BZr, BiCd, BiCo, BiCr, BiCu, BiFe, BiGa, BiGe, BiHf, BiHg, Biln, Bilr, BiLa, BiMg, BiMn, BiMo, BiNb, BiNi, BiOs, BiN, BiNi, BiOs, BiP, BiPb, BiPd, BiPt, BiPb, BiPd, BiPt, BiPe, BiPd, BiPt, BiPe, BiRh, BiRu, BiSb, BiSc, CdSe, CdSi, CdSn, CdNo, CdNb, CdNi, CdOs, CdP, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdT, CdV, CdY, CdY, CdZn, CdZr, CeMg, CNi, CoOs, CoSe, CoSi, CoSe, CoSi, CoSe, CoHf, CoHg, CoIn, CoIr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSi, CoSi, CoTa, CoTa,

CrGe, CrHf, CrHg, CrIn, CrIr, CrLa, CrMg, C CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPc CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FeP Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, C HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSl HgMn, HgMo, HgNb, HgNi, HgOs, HgP, HgPb,

Beyond the direct results, are there other things we can learn from the data?

ku, CrSb, CrSc, CrSe, CrSi, CrSn, CrTa, CrTc,
ku, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt,
Ge, FeHf, FeHg, Feln, Felr, FeLa, FeMg, FeMn,
eV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg,
Se, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV,
GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb,
HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs,
fW, HfY, HfZn, HfZr, Hgln, Hglr, HgLa, HgMg,
Tc, HgTe, HgTi, HgV, HgV, HgY, HgZn, HgZr,

InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InV, InY, InZn, InZr, IrLa, IrMg, IrMn, IrMo, IrNb, LaNb, LaNi, LaOs MgMo, MgNb, Mg Ma Ma MaNih, Mr

MnMo, MnNb, Mr MoMg, MoNb, Mc MoZr, NaMg, NaF NbY, NbZn, NbZı OsPd, OsPt, OsRc Comput. Mater. Sci. (2012), doi:10.1016/j.commatsci.2012.02.002 Comput. Mater. Sci. (2012), doi:10.1016/j.commatsci.2012.02.005 in, InZr, IrLa, IrMg, aMg, LaMn, LaMo, LiPd, LiPt, MgMn, MgY, MgZn, MgZr, 1nY, MnZn, MnZr, oVV, MoY, MoZn, NbTi, NbV, NbVV, OsMg, OsP, OsPb, 'bRe, PbRh, PbRu,

PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbV, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdW, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PT PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, Re ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, Rh1 RuTi, RuTi, RuY, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, Sb ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, Se SnTa, SnTc, SnTe, SnTi, SnV, SnW, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, TeW, TeY, TeZn, TeZr, TiMg, TiTl, TiV, TiW, TiY, TiZn, TiZr, TIY, TIZn, TIZr, VMg, VW,

High Throughput is the future...

High Throughput is the future...

Need: 3 post-docs and 4 PhD students

Compressed sensing model building in a nutshell: **Better models, faster**

Basic idea:

Instead of adding complexity (terms) to a model until it fits the data and predicts well...(normal approach)...

...start with an infinite set of models (containing all possible terms). Discard all models except the simplest one (Compressive Sensing approach). Surprisingly perhaps, this is really efficient.

Physical quantities vs. experimental parameters

Finding functions for observables (signal recovery)

Making measurements (signal sampling)

1. Model may have the wrong functional form (physics is incorrect)

1. Model may have the wrong functional form (physics is incorrect)

2. Least-squares error may not reflect the actual errors in the measurements

1. Model may have the wrong functional form (physics is incorrect)

2. Least-squares error may not reflect the actual errors in the measurements

 $f(x,y) = a_0 + a_1x + a_2y + a_3xy + a_4x^2 + a_5y^2 + \cdots$

 $f(x,y) = a_0 + a_1x + a_2y + a_3xy + a_4x^2 + a_5y^2 + \cdots$

$$f(x,y) = \boxed{a_0 + a_1 x + a_2 y + a_3 x y} + a_4 x^2 + a_5 y^2 + \cdots$$

$$\begin{pmatrix} 1 & x_1 & y_1 & x_1 y_1 \\ 1 & x_2 & y_2 & x_2 y_2 \\ 1 & x_3 & y_3 & x_3 y_3 \\ 1 & x_4 & y_4 & x_4 y_4 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix}$$

 $f(x,y) = |a_0 + a_1x + a_2y + a_3xy + a_4x^2 + a_5y^2 +$ $\begin{pmatrix} 1 & x_1 & y_1 & x_1y_1 \\ 1 & x_2 & y_2 & x_2y_2 \\ 1 & x_3 & y_3 & x_3y_3 \\ 1 & x_4 & y_4 & x_4y_4 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix}$

Going beyond a linear model fit (adding terms) $f(x,y) = a_0 + a_1x + a_2y + a_3xy + a_4x^2 + a_5y^2$ a_0 $\begin{bmatrix} J_{1} \\ f_{2} \\ f_{3} \\ f_{4} \end{bmatrix}$ 1 1

Going beyond a linear model fit (adding terms) $f(x,y) = a_0 + a_1x + a_2y + a_3xy + a_4x^2 + a_5y^2$ a_0 $egin{array}{ccc} a_1 & & & \ a_2 & & & \ a_3 & & & \ a_4 & & & \ a_5 & & \end{pmatrix}$ x_1 $= \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix}$ x_2 1 x_3 x_4 1 $\mathbb{M}\vec{a} =$

$$\mathbb{M}\vec{a} = \vec{f}$$

$$\mathbb{M}\vec{a} = \vec{f}$$
$$\min_{\vec{a}} \left\{ \|\vec{a}\|_1 : \mathbb{M}\vec{a} = \vec{f} \right\}$$

$$\mathbb{M}\vec{a} = \vec{f}$$
$$\min_{\vec{a}} \left\{ \|\vec{a}\|_{1} : \mathbb{M}\vec{a} = \vec{f} \right\}$$
$$\ell_{1} \equiv \|\vec{u}\| = \sum_{i} |u_{i}|$$
$$\ell_{2} \equiv \left(\sum_{i} |u_{i}|^{2}\right)^{\frac{1}{2}} \quad \ell_{1} \equiv \left(\sum_{i} |u_{i}|^{1}\right)^{\frac{1}{1}}$$

Explain the magic

Basic ideas of Compressive Sensing

- Solution must be "sparse" in some basis
- Numerical application of ell-1 norm is fast
- Choose a big basis so that you've captured all the relevant components

Like a Fourier Transform...except that you can sample way below the Nyquist frequency
Sample points must be "uncorrelated"— selected at random from the domain.

A sensing/sampling paradigm that goes against the common knowledge in data acquisition

Emmanuel J. Candès and Michael B. Wakin

C DIGITAL VISION

onventional approaches to sampling signals or images follow Shannon's celebrated theorem: the sampling rate must be at least twice the maximum frequency present in the signal (the so-called Nyquist rate). In fact, this principle underlies nearly all signal acquisition protocols used in consumer

Compressive Sampling

Under-determined problem: Example

Under-determined problem: Example

Under-determined problem: Example

Bayesian Compressive Sensing vs.

or (meV)

KIMS error (mev)

Bayesian Compressive Sensing vs. G.

00 lit loo 125 OF 1600 1200 $\| \mathbf{J}_{\mathrm{fit}} \|_1$ 800

0

500_r

375

Further reading

Lance J. Nelson, Gus L. W. Hart, Fei Zhou, and Vidvuds Ozolins, "*Cluster expansion made easy with Bayesian compressive sensing*," <u>arXiv:</u> <u>1307.2938</u> [cond-mat.mtrl-sci]

Lance J. Nelson, Gus L. W. Hart, Fei Zhou, and Vidvuds Ozolins, "*Compressive sensing as a paradigm for building physics models,*" Phys. Rev. B **87** 035125 (2013).

E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 21–30 (2008).

T. Strohmer, "Measure What Should be Measured: Progress and Challenges in Compressive Sensing," Signal Processing Letters **19** 887 (2012).