High-throughput descriptors in materials development

Materials Genome Initiative

Materials Innovation Infrastructure

Curtarolo, Morgan, Persson, Rodgers, Ceder, Predicting Crystal Structures with Data Mining of Quantum Calculations, Phys. Rev. Lett. 91, 135503 (2003).

AFLOW: automatic flow of calculations and analysis

COMPUTATIONAL MATERIALS GENOME

 procedures of synthesis. Is there another way? Indeed, this is the burgeoning area of computational materials science called 'highthroughput' (HT) computational materials design. It is based on the marriage between computational quantum-mechanical-thermodynamic approaches ${ }^{1,2}$ and a multitude of techniques rooted in database construction and intelligent data mining ${ }^{3}$. The concept is simple yet powerful: create a large database containing the calculated thermodynamic and electronic properties of existing and hemathatimal matarinle and than intallimantly intarmanata tho data-
The high-throughput highway to computational materials design lones
Curtarolo, Hart, Buongiorno Nardelli, Mingo, Sanvito, Levy

COMPUTATIONAL High-Throughput

The practical implementation of computational HT is highly non-trivial. The method is employed in three strictly connected steps: (i) virtual materials growth: thermodynamic and electronic structure calculations of materials ${ }^{3,23 ;}$; (ii) rational materials storage: systematic storage of the information in database repositories ${ }^{24,25}$; (iii) materials characterization and selection: data analysis aimed at selecting novel materials or gaining new physical insights ${ }^{15,19,26}$.

> nature materials

REVIEW ARTICLE

PUBLISHED ONLINE: 20 FEBRUARY 2013 |DOI: 10.1038/NMAT3568
The high-throughput highway to computational materials design
Curtarolo, Hart, Buongiorno Nardelli, Mingo, Sanvito, Levy
DOI: 10.1038/NMAT3568 (March 2013)

MATERIALS GENOME: genes+descriptors

Table 1 | Examples of descriptors introduced in the literature. \quad Nature Mater. 12, 191 (2013)

MATERIALS GENOME

Automation is key

NEED fast standards

Calculate electronic structure of all reported compounds

- ICSD ~150,000 (well defined ~50\%)
- Work out all the prototype definitions/symmetries:
- Define standards in reciprocal space (on-line): a highly complex solution to an apparently simple problem
- Obtain LDAU parameters when required
- Adiabatic U
- Automatic switch to LS coupling when required
- Calculate stability, if necessary
- Discover properties through correlations
- Make ONLINE Tools
- Use results as STARTING POINTS
- Works for VASP and QE

STANDARD in Real Space and Reciprocal Space Algorithm has 25 self consistent points

$\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)_{B L}^{n+1}=\operatorname{Dual}\left[\operatorname{Minkowski}_{B L^{*}}\left[\operatorname{Dual}\left[\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)_{B L}^{n}\right]\right]\right]$
14 Bravais Lattices $\boldsymbol{\rightarrow} \mathbf{2 5}$ Brillouin Zones $\boldsymbol{\rightarrow} \mathbf{2 5}$ Bravais Definitions
CUBIC: cub, bcc, fcc
TETRAGONAL: tet, bct $_{1}$, bct $_{2}$
ORTHORHOMBIC: orc, $\operatorname{orcf}_{1}, \operatorname{orcf}_{2}, \operatorname{orcf}_{2}$, orci, orcc HEXAGONAL/TRIGONAL: hex, $\mathrm{rhl}_{1}, \mathrm{rhl}_{2}$
MONOCLINIC: mcl, mclc $_{1}$, mclc $_{2}$, mclc $_{3}$, mclc $_{4}$, mclc $_{5}$ TRICLINIC: tri $_{1 a}$, tri $_{2 a}$, tri $_{1 b}$, tri $_{2 b}$

STANDARD in Real Space and Reciprocal Space

Repository of quantum mechanics calculations

(a)

AFLOWLIB.ORG

Choose Databases

Curtarolo et al., "AFLOWLIB.ORG: a distributed materials properties repository from highthroughput ab initio calculations", Comp. Mat. Sci. 58, 227-235 (2012).

$\mathrm{Al}_{1} \mathrm{Ca}_{1} \mathrm{O}_{5} \mathrm{Ta}_{1}$ (ICSD\# 99001)

Real Space Lattices

Lattices:	$\mathrm{a}=7.40 \AA \quad \mathrm{~b}=7.97 \AA \mathrm{c}=7.71 \AA$
	$\alpha=68.69^{\circ} \beta=90.00^{\circ} \gamma=90.00^{\circ}$
Volume:	$423.76 \AA^{3}$
Unit Cell Atom Number:	32
Space Group Number:	14
Pearson Symbol:	mP32
Lattice Primitive:	MCL Al1Ca1O5Ta1 \#14.0 - (Al1Ca1O5Ta1_ICSD_99
Lattice Variation:	MCL
Crystal Family:	Monoclinic
Crystal System:	Monoclinic
Crystal Class:	Monoclinic-prismatic

$a=7.399 \AA$
$b=7.971 \AA$
$\mathrm{C}=7.713 \AA$
$\mathrm{c}=68.7^{\circ}$
$\beta=90.0^{\circ}$
$\gamma=90.0^{\circ}$

\checkmark Turn spin off
\square Show atom labels
ball and stick :

MCL path: Γ-Y-H-C-E-M $-A-X-\Gamma-Z-D-M|Z-A| D-Y \mid X-H_{1}$

Comp. Mat. Sci. 49, 299-312 (2010)

Repository of quantum mechanics calculations

AName $[1]$	$\underset{[1]}{\text { Number }}$	Bravais Lattice	Number of Atoms	$\underset{[4]}{\left(\mu \mathrm{W} / \mathrm{P}_{\mathrm{n}}>/ \mathrm{L} \mathrm{~K}^{2} \mathrm{~nm}\right)}$				$\underset{\left(\mu \mathrm{W} / \mathrm{PmK}^{2} \mathrm{~nm}\right)}{\left\langle\mathrm{P}_{\mathrm{p}}>/ \mathrm{L}\right.}$	$\underset{\left(\mu \mathrm{W} / \mathrm{cm}^{2} \mathbf{K}^{2} \mathrm{~nm}\right)}{\left\langle\mathrm{P}_{\mathrm{pr}}>\mathrm{L}\right)}$		$\begin{gathered} <\mathrm{P}_{\mathrm{p} 3}>/ \mathrm{L} \\ \left(\mu \mathrm{~W} / \mathrm{cmK}^{2} \mathrm{~nm}\right) \\ {[4]} \end{gathered}$	$\underset{(\mu \mathrm{V} / \mathrm{K})}{\substack{\mathbf{S}_{\mathbf{n}}}}$	$\underset{(\mu \mathrm{V} / \mathrm{K})}{[4]}$
$\mathrm{F}_{3} \mathrm{Fe}_{1} \mathrm{~K}_{1}$	15424	$\begin{gathered} \text { CUB } \\ \text { (Cubic) } \end{gathered}$	5	0.15	0.15	0.15	0.15	2.17	2.17	2.17	2.17	-116.36	91.29
$\mathrm{F}_{3} \mathrm{Fe}_{1} \mathrm{Rb}_{1}$	49586	$\begin{gathered} \text { CUB } \\ \text { (Cubic) } \end{gathered}$	5	0.24	0.24	0.24	0.24	1.50	1.48	1.51	1.51	-91.73	91.04
$\mathrm{Fe}_{1} \mathrm{La}_{1} \mathrm{O}_{3}$	29118	$\begin{gathered} \text { CUB } \\ \text { (Cubic) } \end{gathered}$	5	0.31	0.31	0.31	0.31	2.00	2.00	2.00	2.00	-139.02	92.92
$\mathrm{Ag}_{2} \mathrm{Fe}_{1} \mathrm{~S}_{4} \mathrm{Sn}_{1}$		42534		BCT (Tetragonal)		8		121 (I-42m)		tI16	4.77		

- Name [1]	$\underset{[1]}{\text { Number }}$	Bravais Lattice		Number of Atoms	$\begin{gathered} \text { Magnetic } \\ \text { Moment } \\ (\mu \mathrm{B} / \text { atom })[5] \end{gathered}$			Spin Polarization (1/atom) [5]		Spin Decomposition (μ_{B})			
$\mathrm{Ag}_{1} \mathrm{Fe}_{1} \mathrm{O}_{2}$	2786	HEX (Hexagonal)		8	1.25			0.00		$\{0.039,0.039,4.303,4.303,0.258,0.258,0.258,0.258\}$			
$\mathrm{Ag}_{1} \mathrm{Fe}_{1} \mathrm{O}_{2}$	31919	RHL (Rhombohedral)		4	1.25			0.00		$\{0.039,4.303,0.258,0.258\}$			
$\mathrm{Ag}_{2} \mathrm{Fe}_{1} \mathrm{~S}_{4} \mathrm{Sn}_{1}$	42534	BCT (Tetragonal)		8	0.50			0.00		$\{0.016,0.016,3.631,0.024,0.024,0.024,0.024,0.016\}$			
$\mathrm{F}_{2} \mathrm{Fe}_{1}$	9166	TET (Tetragonal)	6	$\begin{aligned} & 2.63 \\ & \text { (I) } \end{aligned}$	4.46	0.49	0.48	190.80	5.47	388.39	7.15	15.23	2.86700

Automatic Generation of Databases

Creating "aflow.in" input files:

```
HT Computational
Tools (AFLOW)
```


Materials Database (AFLOWLIB)

Automatic data/visualization analysis

Extract general materials properties: structural, electronic, magnetic properties...

```
kesong@nietzsche:~/Example/Fe2P1_ICSD_42402$ [
```



```
Develop new high-throughput programs based on the desired materials properties
```


Vibrational Free energy

2,FCC,cF12] (STD_PRIM doi:10.1016/j.commatsci.2010.05.010) [Standard_Primitive Unit Cell Form] [FCC,FDO,\$F12] (STD_PRIN

EXAMPLE: Topological Insulators

Table 1 | Examples of descriptors introduced in the literature. \quad Nature Mater. 12, 191 (2013)

Problem	Combination of materials properties (gene)	Descriptor
Structure stability: convex hull of an alloy system	Formation enthalpy $\left(H_{f}\right)$ as a function of concentration (x) and the enthalpies (H) of A and B.	$H_{f}(x)=H\left(A_{1-x} B_{x}\right)-(1-x) H(A)-x H(B)$
Phase stability in off-lattice alloys PRL 91, 135503 (2003)	Spectral decomposition of alloy vector-energies ($E_{n, p,} n$-rows $=$ species, p-columns = configurations) with principal-component-analysis coefficients (α_{i}) and truncation error (ϵ (d)) (ref. 3).	$E_{n, p} \simeq \alpha_{1} E_{n, 1}+\cdots+\alpha_{p-1} E_{n, p-1}+\epsilon(d)$
Nanosintered thermoelectrics PRX 1, 021012 (2011)	Ratio of the average power factor (<P>) to the grain size (L) (ref. 15).	$\hat{\chi}_{\text {thermo }} \equiv \frac{\langle P\rangle}{L}$
Topological insulators (epitaxial growth) Nature Mater. 11, 614 (2012)	Variational ratio of spin-orbit distortion versus non-spin-orbit derivative strain ($E_{k}^{\text {SOC }}, E_{k}^{\text {nosOC }}$, spin/no spin-orbit bandgaps at k, a_{0} lattice ${ }^{16}$.	$\hat{\chi}_{\text {TI }} \equiv-\frac{E_{k}^{\operatorname{soc}}\left(a_{0}\right) / a_{0}}{\delta E_{k}^{\text {Eosoc }}(a)_{0} /\left.\delta a_{0}\right\|_{a_{0}}}$
Power conversion efficiency of a solar cell (spectroscopic limited maximum efficiency) PRL 108, 068701 (2012)	Ratio of the maximum output power density $\left(P_{m}\right)$ to the incident solar ergy density $\left(P_{\text {in }}\right)$ - a function (η) of the radiative electron-hole reco nbination current $\left(f_{r}\right)$ and the photon absorptivity $(\alpha(E))$ versus undgap energy $\left(E_{g}\right)^{62}$.	$\eta\left(\alpha(E), f_{r}\right)=P_{m} / P_{\text {in }} ; E_{g}$
Non-proportionality in scintillators IEEE Trans. Nucl. Sci. 56, 2989 (2009)	Maximum match between effective masses of electrons (m_{e}) and holes $\left(m_{h}\right)^{\text {s/s }}$	$\hat{\chi}_{n p} \equiv \max \left(\frac{m_{\mathrm{e}}}{m_{\mathrm{h}}}, \frac{m_{\mathrm{h}}}{m_{\mathrm{e}}}\right)$
Morphotropic phase boundary piezoelectrics PRB 84, 014103 (2011)	Energy proximity betw en tetragonal, rhombohedra and rotational distortions (ΔE_{p}). Angula pordinate ($\alpha_{A B}$) of the energy minimum in the A-B off-centerings energy rap for $A B O_{3}$ systems ${ }^{79}$.	$\begin{gathered} \Delta E_{\mathrm{p}} \leq 0.5 \mathrm{eV} \\ \alpha_{A B} \approx 45^{\circ} \end{gathered}$

top. insul.

EXAMPLE: Topological Insulators

TI: insulator inside and conductor in the surface. The conducting state is protected by the symmetry of the system (inversion and time reversal).

Fu, Kane, Mele, PRL 98, 106803 (2007). Hasan, Kane, Rev. Mod. Phys. 82, 3045 (2010). Haldane, PRL 61, 2015 (1988).
Nielssen, Ninomiya, Phys. Lett. 130B, 389 (1983).

$$
\hat{h}(\mathbf{k})=\mathbf{h}(\mathbf{k}) /|\mathbf{h}(\mathbf{k})|
$$

$n=\frac{1}{4 \pi} \int d^{2} \mathbf{k}\left(\partial_{k_{x}} \hat{h} \times \partial_{k_{y}} \hat{h}\right) \cdot \hat{h} \quad$ (Berry Phase) number of times $\hat{h}(\mathbf{k})$ wraps around the unit sphere
each Dirac point contributes $\pm e^{2} / 2 h$ to $\sigma_{x y}$

Cones come in doubles (even).
Insulating state $=$ cancellation $=>\sigma_{x y}=0$
Quantum Hall State $=$ summation $=>\sigma_{x y} \neq 0$

EXAMPLES: going alloys and going surfaces

Surface $2 D B Z$ Surface states

EVEN crossing 2D Fermi surface: destructable by troubles

Time Reversal Invariant Momenta (TRIMs)

$$
\Gamma_{i=\left(n_{1} n_{2} n_{3}\right)}=\left(n_{1} \mathbf{b}_{1}+n_{2} \mathbf{b}_{2}+n_{3} \mathbf{b}_{3}\right) / 2, \text { with } n_{j}=0,1
$$

(a) Bulk: Roto-translational invariant (Noether's theorem)
$\rightarrow E^{S O C}<0 \rightarrow E_{p}<E_{s}$
(c) Surface: TRIM points (eigenpoints solid-solution disorder operator)
(b) Interface: Roto-translational variant (Noether's theorem) $\rightarrow E^{S O C} \sim 0 \rightarrow E_{p}>E_{s}$

EXAMPLE

- Scan the aflowlib.org library
- Need of a DESCRIPTOR (need to grow... epixially).
- search for combination of heavy metals (potential strong spin-orbit coupling)
- search for ideal band structures with appropriate gaps
- calculate band structure with LS (thousand of compounds)
- calculate the bands for surfaces to see localized conducting surface stares
- usually they contain Bi and/or $\mathrm{Sb}, \mathrm{Te}, \mathrm{Pb}$.

A search model for topological insulators with high-throughput robustness descriptors

Kesong Yang ${ }^{1}$, Wahyu Setyawan ${ }^{2}$, Shidong Wang ${ }^{1}$, Marco Buongiorno Nardelli,3,4 and Stefano Curtarolo ${ }^{1,4,5 \star}$

Nature Materials, 11(7), 614-619 (2012) DOI: 10.1038/nmat3332

Let's precess, epitaxially!

a) SPIN orbit calculations are expensive
β) $L S$ due to electrons precessing near cores
र) $E^{\text {soc }-E^{\text {noSOC }} \sim \text { const }}$
ס) simulated epitaxial strain with $E^{\text {noSOC }}$
robustness descriptor varitional ("quasi-meaningful" quantity)

$$
\mathrm{Bi}_{2} \mathrm{Te}_{2} \mathrm{~S} \text { at } k=\Gamma
$$

covalent systems

PbTe at $k=N$
ionic compounds

$$
\hat{\chi}_{\mathrm{TI}} \equiv-\frac{E_{k}^{\mathrm{SOC}}\left(a_{0}\right) / a_{0}}{\delta E_{k}^{\operatorname{noSOC}}(a) /\left.\delta(a)\right|_{a_{0}}}
$$

New compounds: tern. halides: Cs\{Sn, Pb, Ge\}\{Cl, Br,I\}3

EXAMPLE: Thermoelectrics

without the constant relaxation time approximation

Table 1 | Examples of descriptors introduced in the literature. Nature Mater. 12, 191 (2013)

Problem	Combination of materials properties (gene)	Descriptor
Structure stability: convex hull of an alloy system	Formation enthalpy $\left(H_{f}\right)$ as a function of concentration (x) and the enthalpies (H) of A and B.	$H_{f}(x)=H\left(A_{1-x} B_{x}\right)-(1-x) H(A)-x H(B)$
Phase stability in off-lattice alloys PRL 91, 135503 (2003)	Spectral decomposition of alloy vector-energies ($E_{n, p}, n$-rows $=$ species, p-columns = configurations) with principal-component-analysis coefficients (α_{i}) and truncation error ($\epsilon(d)$) (ref. 3).	$E_{n, p} \simeq \alpha_{1} E_{n, 1}+\cdots+\alpha_{p-1} E_{n, p-1}+\epsilon(d)$
Nanosintered thermoelectrics PRX 1, 021012 (2011)	Ratio of the average power factor (<P>) to the grain size (L) (ref. 15).	$\hat{\chi}_{\text {thermo }} \equiv \frac{\langle P\rangle}{L}$
Topological insulators (epitaxial growth) Nature Mater. 11, 614 (2012)	Variational ratio of spin-orbit distortion versus non-spin-orbit derivative strain ($E_{k}^{\text {SOC }}, E_{k}^{\text {noSOC }}$, spin/no spin-orbit bandgaps at k_{1}, a_{0} lattice $)^{16}$.	$\hat{\chi}_{T 1} \equiv-\frac{E_{k}^{\operatorname{soc}}\left(a_{0}\right) / a_{0}}{\delta E_{k}^{\text {osoc }}(a)_{0} /\left.\delta a_{0}\right\|_{a_{0}}}$
Power conversion efficiency of a solar cell (spectroscopic limited maximum efficiency) PRL 108, 068701 (2012)	Ratio of the maximum output power density $\left(P_{m}\right)$ to the incident solar rergy density $\left(P_{\text {in }}\right)$ - a function (η) of the radiative electron-hole recu \quad bination current $\left(f_{r}\right)$ and the photon absorptivity $(\alpha(E))$ versus undgap energy $\left(E_{g}\right)^{62}$.	$\eta\left(\alpha(E), f_{r}\right)=P_{m} / P_{\text {in }} ; E_{\mathrm{g}}$
Non-proportionality in scintillators IEEE Trans. Nucl. Sci. 56, 2989 (2009)	Maximum match between effective masses of electrons (m_{e}) and holes $\left(m_{h}\right)$	$\hat{\chi}_{n p} \equiv \max \left(\frac{m_{\mathrm{e}}}{m_{\mathrm{h}}}, \frac{m_{\mathrm{h}}}{m_{\mathrm{e}}}\right)$
Morphotropic phase boundary piezoelectrics PRB 84, 014103 (2011)	Energy proximity betw en tetragonal, rhombohedra and rotational distortions $\left(\Delta E_{\mathrm{p}}\right)$. Angula pordinate $\left(\alpha_{A B}\right)$ of the energy minimum in the A-B off-centerings energy nap for $A B O_{3}$ systems ${ }^{79}$.	$\begin{aligned} \Delta E_{\mathrm{p}} & \leq 0.5 \mathrm{eV} \\ \alpha_{A B} & \approx 45^{\circ} \end{aligned}$

EXAMPLE: Thermoelectricity

Thermoelectrics: convert flow of electronic entropy in electronic current

$$
\begin{aligned}
Z T & =\frac{\sigma S^{2} T}{\kappa} \\
P & =\sigma S^{2}
\end{aligned} \quad Z T>1 \Rightarrow S>156 \mu \mathrm{~V} / \mathrm{K}
$$

power factor

For sintered,

 depends on directions, project on principal axes$$
X_{\text {thermo }}=<P>/ L
$$

					$10^{3}=(\mathrm{c}) \mathrm{n}-\mathrm{d}$	oped	Power factor Seebeck	10^{3}		doped	Power factor Seebeck		10^{3}
Δ Name [1]	$\underset{[1]}{\text { ICSD }}$	Bravais Lattice	Number of Atoms	$\underset{[4]}{\left\langle\mathbf{P}_{\mathrm{n}}>/ \mathrm{L}\right.} \underset{\substack{ \\\left(\mu \mathrm{W} / \mathrm{cmK}^{2} \mathrm{~nm}\right)}}{\text { and }}$	$\underset{[4]}{\left\langle\mathbf{P}_{n 1}>/ \mathbf{L}\right.} \underset{\left(\mu \mathbf{W} / \mathrm{cmK}^{2} \mathrm{~nm}\right)}{ }$	$\underset{\left(\mu \mathrm{W} / \mathrm{cmK}^{2} \mathrm{~nm}\right)}{\left\langle\mathrm{P}_{\mathrm{n} 2}>/ \mathrm{L}\right.}$	$\underset{\underset{[4]}{<\mathrm{P}_{\mathrm{n}_{3}>/ \mathrm{L}}>\mathrm{L}}}{\left(\mu \mathrm{~W} / \mathrm{cmK}^{2} \mathrm{~nm}\right)}$	$\begin{gathered} <\mathrm{P}_{\mathrm{p}}>/ \mathrm{L} \\ \left(\mu \mathrm{~W} / \mathrm{cmK}^{2} \mathrm{~nm}\right) \\ {[4]} \end{gathered}$	$\begin{gathered} \left\langle\mathrm{P}_{\mathrm{pi} 1}>/ \mathrm{L}\right. \\ \left(\mu \mathrm{W} / \mathrm{cmK}^{2} \mathrm{~nm}\right) \end{gathered}$	$\begin{gathered} \left\langle\mathbf{P}_{\mathbf{p} 2}>/ \mathbf{L}\right. \\ \left(\mu \mathrm{W} / \mathrm{cmK}^{2} \mathrm{~nm}\right) \\ {[4]} \end{gathered}$	$\begin{gathered} <\mathrm{P}_{\mathrm{P} 3}>/ \mathrm{L} \\ \left(\mu \mathrm{~W} / \mathrm{cmK}^{2} \mathrm{~nm}\right) \\ {[4]} \end{gathered}$	$\underset{(\mu \mathbf{V} / K)}{\mathbf{S n}_{\mathbf{n}}}$ [4]	$\underset{(\mu \mathrm{V} / \mathrm{K})}{\mathbf{S}_{\mathrm{p}}}$
$\mathrm{F}_{3} \mathrm{Fe}_{1} \mathrm{~K}_{1}$	15424	$\begin{gathered} \text { CUB } \\ \text { (Cubic) } \end{gathered}$	5	0.15	0.15	0.15	0.15	2.17	2.17	2.17	2.17	-116.36	91.29
$\mathrm{F}_{3} \mathrm{Fe}_{1} \mathrm{Rb}_{1}$	49586	$\begin{gathered} \text { CUB } \\ \text { (Cubic) } \end{gathered}$	5	0.24	0.24	0.24	0.24	1.50	1.48	1.51	1.51	-91.73	91.04
$\mathrm{Fe}_{1} \mathrm{La}_{1} \mathrm{O}_{3}$	29118	$\begin{gathered} \text { CUB } \\ \text { (Cubic) } \end{gathered}$	5	0.31	0.31	0.31	0.31	2.00	2.00	2.00	2.00	-139.02	92.92

$\max P_{i} / L$

High-Throughput Materials Exploration

$\mathrm{AgAl}, \mathrm{AgAs}, \mathrm{AgAu}, \mathrm{AgB}, \mathrm{AgBi}, \mathrm{AgCd}, \mathrm{AgCo}, \mathrm{AgCr}, \mathrm{AgCu}, \mathrm{AgFe}, \mathrm{AgGa}, \mathrm{AgGe}, \mathrm{AgHf}, \mathrm{AgHg}, \mathrm{AgIn}, \mathrm{Aglr}, \mathrm{AgLa}, \mathrm{AgMg}, \mathrm{AgMn}, \mathrm{AgMo}, \mathrm{AgNb}, \mathrm{AgNi}, \mathrm{AgOs}, \mathrm{AgP}, \mathrm{AgPb}, \mathrm{AgPd}, \mathrm{AgPt}$, AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AgSn, AgTa, AgTc, AgTe, AgTi, AgV, AgW, AgY, AgZn, AgZr, AlAs, AlAu, AlB, AlBi, AlCd, AlCo, AlCr, AlCu, AlFe, AlGa, AlGe, AlCo, AlHf, AlHg, AlHf, AIPd, AIPt, AISc, Alln, Allr, Alla, AIMg, AlMn, AIMo, AINb, AINi, AIOs, AIP, AIPb, AIPd, AIPt, AIRe, AIRh, AIRu, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AITi, AIV, AIW, AIY, AIZn, AlZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsW, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, Auln, Aulr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTl, BeY, BeZn, BeZ , BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, Bln, Blr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BTc , BTe , BTi , $\mathrm{BV}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZn}, \mathrm{BZr}, \mathrm{BiCd}, \mathrm{BiCo}, \mathrm{BiCr}, \mathrm{BiCu}, \mathrm{BiFe}, \mathrm{BiGa}, \mathrm{BiGe}, \mathrm{BiHf}, \mathrm{BiHg}, \mathrm{Biln}, \mathrm{Bilr}, \mathrm{BiLa}, \mathrm{BiMg}, \mathrm{BiMn}, \mathrm{BiMo}, \mathrm{BiNb}, \mathrm{BiNi}, \mathrm{BiOs}, \mathrm{BiP}, \mathrm{BiPb}, \mathrm{BiPd}, \mathrm{BiPt}, \mathrm{BiRe}$, BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, BiTa, BiTc, BiTe, BiTi, BiV, BiW, BiY, BiZn, BiZr, BHf, CaHf, CaMg, CaPd, CaPt, CdCo, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, CdHg, Cdln, Cdlr, CdLa, CdMg, CdMn, CdMo, CdNb, CdNi, CdOs, CdP, CdPb, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdTI, CdV, CdW, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, Coln, Colr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTI, CoV, CoW, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, $\mathrm{CrGe}, \mathrm{CrHf}, \mathrm{CrHg}, \mathrm{CrIn}, \mathrm{CrIr}, \mathrm{CrLa}, \mathrm{CrMg}, \mathrm{CrMn}, \mathrm{CrMo}, \mathrm{CrNb}, \mathrm{CrNi}, \mathrm{CrOs}, \mathrm{CrP}, \mathrm{CrPb}, \mathrm{CrPd}, \mathrm{CrPt}, \mathrm{CrRe}, \mathrm{CrRh}, \mathrm{CrRu}, \mathrm{CrSb}, \mathrm{CrSc}, \mathrm{CrSe}, \mathrm{CrSi}, \mathrm{CrSn}, \mathrm{CrTa}, \mathrm{CrTc}$, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, Culn, Culr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuW, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, Feln, Felr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, Geln, Gelr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeW, GeY, GeZn, GeZr, GeMg, HfHg, Hfln, Hflr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTI, HfV, HfW, HfY, HfZn, HfZr, Hgln, Hglr, HgLa, HgMg, $\mathrm{HgMn}, \mathrm{HgMo}, \mathrm{HgNb}, \mathrm{HgNi}, \mathrm{HgOs}, \mathrm{Hg}, \mathrm{HgPb}, \mathrm{HgPd}, \mathrm{HgPt}, \mathrm{HgRe}, \mathrm{HgRh}, \mathrm{HgRu}, \mathrm{HgSb}, \mathrm{HgSc}, \mathrm{HgSe}, \mathrm{HgSi}, \mathrm{HgSn}, \mathrm{HgTa}, \mathrm{HgTc}, \mathrm{Hg} \mathrm{Te}, \mathrm{HgTi}, \mathrm{Hg} V, \mathrm{HgW}, \mathrm{Hg} Y, \mathrm{HgZn}, \mathrm{HgZr}$, InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InW, InY, InZn, InZr, IrLa, IrMg, IrMn, IrMo, IrNb, IrNi, IrOs, IrP, IrPb, IrPd, IrPt, IrRe, IrRh, IrRu, IrSb, IrSc, IrSe, IrSi, IrSn, IrTa, IrTc, IrTe, IrTi, IrV, IrW, IrY, IrZn, IrZr, KMg, KPd, KPt, LaMg, LaMn, LaMo, LaNb, LaNi, LaOs, LaP, LaPb, LaPd, LaPt, LaRe, LaRh, LaRu, LaSb, LaSc, LaSe, LaSi, LaSn, LaTa, LaTc, LaTe, LaTi, LaV, LaW, LaY, LaZn, LaZr, list, LiMg, LiPd, LiPt, MgMn,
 MnMo, MnNb, MnNi, MnOs, MnP, MnPb, MnPd, MnPt, MnRe, MnRh, MnRu, MnSb, MnSc, MnSe, MnSi, MnSn, MnTa, MnTc, MnTe, MnTi, MnV, MnW, MnY, MnZn, MnZr, MoMg, MoNb, MoNi, MoOs, MoP, MoPb, MoPd, MoPt, MoRe, MoRh, MoRu, MoSb, MoSc, MoSe, MoSi, MoSn, MoTa, MoTc, MoTe, MoTi, MoV, MoW, MoY, MoZn, MoZr, NaMg , NaPd, $\mathrm{NaPt}, \mathrm{NbMg}, \mathrm{NbNi}, \mathrm{NbOs}, \mathrm{NbP}, \mathrm{NbPb}, \mathrm{NbPd}, \mathrm{NbPt}, \mathrm{NbRe}, \mathrm{NbRh}, \mathrm{NbRu}, \mathrm{NbSb}, \mathrm{NbSc}, \mathrm{NbSe}, \mathrm{NbSi}, \mathrm{NbSn}, \mathrm{NbTa}, \mathrm{NbTc}, \mathrm{NbTe}, \mathrm{NbTi}, \mathrm{NbV}, \mathrm{NbW}$, NbY, NbZn, NbZr, NiOs, NiP, NiPb, NiPd, NiPt, NiRe, NiRh, NiRu, NiSb, NiSc, NiSe, NiSi, NiSn, NiTa, NiTc, NiTe, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsMg, OsP, OsPb, OsPd, OsPt, OsRe, OsRh, OsRu, OsSb, OsSc, OsSe, Ossi, OsSn, OsTa, OsTc, OsTe, OsTi, OsTl, OsV, OsW, OsY, OsZn, OsZr, PbMg, PbPd, PbPt, PbRe, PbRh, PbRu, PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbW, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdW, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PTa, PTc, PTe, PTi, PtRe, PtRh, PtRu, PtSb, PtSc, PtSe, PtSi, PtSn, PtTa, PtTc, PtTe, PtTi, PtV, PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, ReRu, ReSb, ReSc, ReSe, ReSi, ReSn, ReTa, ReTc, ReTe, ReTi, ReTl, ReV, ReW, ReY, ReZn, ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, RhTI, RhV, RhW, RhY, RhZn, RhZr, RuMg, RuSb, RuSc, RuSe, RuSi, RuSn, RuTa, RuTc, RuTe, RuTi, RuTl, RuV, RuW, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, SbTe, SbTi, SbV, SbW, SbY, SbZn, SbZr, ScMg, ScSe, ScSi, ScSn, ScTa, ScTc, ScTe, ScTi, ScTI, ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, SeZn, SeZr, SiPd, SiPt, SiSn, SiTa, SiTc, SiTe, SiTi, SiV, SiW, SiY, SiZn, SiZr, SnMg, SnPd, SnPt, SnTa, SnTc, SnTe, SnTi, SnV, SnW, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, TaTe, TaTi, TaV, TaW, TaY, TaZn, TaZr, TcTe, TcTi, TcTI, TcV, TcW, TcY, TcZn, TcZr, TeTi, TeV, TeW, TeY, TeZn, TeZr, TiMg, TiTI,TiV,TiW,TiY,TiZn, TiZr, TIY, TIZn, TIZr, VMg, VW,VY,VZn,VZr,WMg, WY,WZn,WZr, YMg, YZn, YZr, ZnMg, ZnZr, ZrMg

High-Throughput Materials Exploration

$\mathrm{AgAl}, \mathrm{AgAs}, \mathrm{AgAu}, \mathrm{AgB}, \mathrm{AgBi}, \mathrm{AgCd}, \mathrm{AgCo}, \mathrm{AgCr}, \mathrm{AgCu}, \mathrm{AgFe}, \mathrm{AgGa}, \mathrm{AgGe}, \mathrm{AgHf}, \mathrm{AgHg}, \mathrm{Ag} \mathrm{In}, \mathrm{Aglr}, \mathrm{AgLa}, \mathrm{AgMg}, \mathrm{AgMn}, \mathrm{AgMo}, \mathrm{AgNb}, \mathrm{AgNi}, \mathrm{AgOs}, \mathrm{AgP}, \mathrm{AgPb}, \mathrm{AgPd}, \mathrm{AgPt}$, AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AgSn, AgTa, AgTc, AgTe, AgTi, AgV, AgW, AgY, AgZn, AgZr, AlAs, AlAu, AlB, AlBi, AlCd, AlCo, AlCr, AlCu, AlFe, AlGa, AlGe, AlCo, AlHf, AlHg, AlHf, AIPd, AIPt, AISc, Alln, Allr, Alla, AIMg, AlMn, AIMo, AINb, AINi, AIOs, AIP, AIPb, AIPd, AIPt, AIRe, AIRh, AIRu, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AITi, AIV, AIW, AIY, AIZn, AlZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsW, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, Auln, Aulr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTl, BeY, BeZn, BeZ , BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, Bln, Blr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BTc , BTe , BTi , BV, BW, BY, BZn, BZr, BiCd, BiCo, BiCr, BiCu, BiFe, BiGa, BiGe, BiHf, BiHg, Biln, Bilr, BiLa, BiMg, BiMn, BiMo, BiNb, BiNi, BiOs, BiP, BiPb, BiPd, BiPt, BiRe, BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, BiTa, BiTc, BiTe, BiTi, BiV, BiW, BiY, BiZn, BiZr, BHf, CaHf, CaMg, CaPd, CaPt, CdCo, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, CdHg, Cdln, Cdlr, CdLa, CdMg, CdMn, CdMo, CdNb, CdNi, CdOs, CdP, CdPb, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdTI, CdV, CdW, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, Coln, Colr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTI, CoV, CoW, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, $\mathrm{CrGe}, \mathrm{CrHf}, \mathrm{CrHg}, \mathrm{CrIn}, \mathrm{CrIr}, \mathrm{CrLa}, \mathrm{CrMg}, \mathrm{CrMn}, \mathrm{CrMo}, \mathrm{CrNb}, \mathrm{CrNi}, \mathrm{CrOs}, \mathrm{CrP}, \mathrm{CrPb}, \mathrm{CrPd}, \mathrm{CrPt}, \mathrm{CrRe}, \mathrm{CrRh}, \mathrm{CrRu}, \mathrm{CrSb}, \mathrm{CrSc}, \mathrm{CrSe}, \mathrm{CrSi}, \mathrm{CrSn}, \mathrm{CrTa}, \mathrm{CrTc}$, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, Culn, Culr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuW, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, Feln, Felr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, Geln, Gelr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeW, GeY, GeZn, GeZr, GeMg, HfHg, Hfln, Hflr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTI, HfV, HfW, HfY, HfZn, HfZr, Hgln, Hglr, HgLa, HgMg, $\mathrm{HgMn}, \mathrm{HgMo}, \mathrm{HgNb}, \mathrm{HgNi}, \mathrm{HgOs}, \mathrm{HgP}, \mathrm{HgPb}, \mathrm{HgPd}, \mathrm{HgPt}, \mathrm{HgRe}, \mathrm{HgRh}, \mathrm{HgRu}, \mathrm{HgSb}, \mathrm{HgSc}, \mathrm{HgSe}, \mathrm{HgSi}, \mathrm{HgSn}, \mathrm{HgTa}, \mathrm{HgTc}, \mathrm{HgTe}, \mathrm{HgTi}, \mathrm{Hg} V, \mathrm{HgW}, \mathrm{Hg}, \mathrm{HgZn}, \mathrm{HgZr}$, InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InW, InY, InZn, InZr, IrLa, IrMg, IrMn, IrMo, IrNb, IrNi, IrOs, IrP, IrPb, IrPd, IrPt, IrRe, IrRh, IrRu, IrSb, IrSc, IrSe, IrSi, IrSn, IrTa, IrTc, IrTe, IrTi, IrV, IrW, IrY, IrZn, IrZr, KMg, KPd, KPt, LaMg, LaMn, LaMo, LaNb, LaNi, LaOs, LaP, LaPb, LaPd, LaPt, LaRe, LaRh, LaRu, LaSb, LaSc, LaSe, LaSi, LaSn, LaTa, LaTc, LaTe, LaTi, LaV, LaW, LaY, LaZn, LaZr, list, LiMg, LiPd, LiPt, MgMn,
 MnMo, MnNb, MnNi, MnOs, MnP, MnPb, MnPd, MnPt, MnRe, MnRh, MnRu, MnSb, MnSc, MnSe, MnSi, MnSn, MnTa, MnTc, MnTe, MnTi, MnV, MnW, MnY, MnZn, MnZr, MoMg, MoNb, MoNi, MoOs, MoP, MoPb, MoPd, MoPt, MoRe, MoRh, MoRu, MoSb, MoSc, MoSe, MoSi, MoSn, MoTa, MoTc, MoTe, MoTi, MoV, MoW, MoY, MoZn, MoZr, NaMg , NaPd, NaPt, NbMg, NbNi, NbOs, NbP, NbPb, NbPd, NbPt, NbRe, NbRh, NbRu, NbSb, NbSc, NbSe, NbSi, NbSn, NbTa, NbTc, NbTe, NbTi, NbV, NbW, NbY, NbZn, NbZr, NiOs, NiP, NiPb, NiPd, NiPt, NiRe, NiRh, NiRu, NiSb, NiSc, NiSe, NiSi, NiSn, NiTa, NiTc, NiTe, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsMg, OsP, OsPb, OsPd, OsPt, OsRe, OsRh, OsRu, OsSb, OsSc, OsSe, Ossi, OsSn, OsTa, OsTc, OsTe, OsTi, OsTl, OsV, OsW, OsY, OsZn, OsZr, PbMg, PbPd, PbPt, PbRe, PbRh, PbRu, PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbW, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdW, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PT PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, Re ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, Rh7 RuTi, RuTI, RuV, RuW, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, Sb ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, Se $\mathrm{SnTa}, \mathrm{SnTc}, \mathrm{SnTe}, \mathrm{SnTi}, \mathrm{SnV}, \mathrm{SnW}, \mathrm{SnY}, \mathrm{SnZn}, \mathrm{SnZr}, \mathrm{SrMg}, \mathrm{SrPd}, \mathrm{SrPt}, \mathrm{TaMg}, \mathrm{TaTc}$, TeW,TeY,TeZn,TeZr, TiMg, TiTl,TiV,TiW,TiY,TiZn,TiZr,TIY,TIZn,TIZr, VMg,VW,
S. Curtarolo, O. Levy, W. Setyawan, I. Takeuchi, A. Kolmogorov, S. Wang, M. Jahnatek, M. Buongiorno Nardelli, M. Fornari, R. Taylor, Z. Wang, K. Yang, N. Mingo, S. Sanvito

High-Throughput Materials Exploration

$\mathrm{AgAl}, \mathrm{AgAs}, \mathrm{AgAu}, \mathrm{AgB}, \mathrm{AgBi}, \mathrm{AgCd}, \mathrm{AgCo}. \mathrm{AgCr}. \mathrm{AgCu}. \mathrm{AgFe}. \mathrm{AgGa}. \mathrm{AgGe}. \mathrm{AgHf}. \mathrm{AgHg}. \mathrm{AgIn}. \mathrm{AgIr}. \mathrm{AgLa}. \mathrm{AgMg}. \mathrm{AgMn}. \mathrm{AgMo}, \mathrm{AgNb}, \mathrm{AgNi}, \mathrm{AgOs}, \mathrm{AgP}, \mathrm{AgPb}, \mathrm{AgPd}, \mathrm{AgPt}$, $\mathrm{AgRe}, \mathrm{AgRh}, \mathrm{AgRu}, \mathrm{AgSb}, \mathrm{AgSc}, \mathrm{AgSe}, \mathrm{AgSi}$, AlHf, AlHg, AlHf, AIPd, AlPt, AlSc, Alln, All AITi, AIV, AIW, AIY, AIZn, AIZr, AsAu, AsB AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb AuGe, AuHf, AuHg, Auln, Aulr, AuLa, AuM! AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, I $\mathrm{BeZr}, \mathrm{BBi}, \mathrm{BCd}, \mathrm{BCo}, \mathrm{BCr}, \mathrm{BCu}, \mathrm{BFe}, \mathrm{BGa}$ BTc, BTe, BTi, BV, BW, BY, BZn, BZr, BiCc BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, Bi-

~1300 systems and counting ~170,000 calculations ~100 million cpu hours

 ¿d, AlCo, AICr, AICu, AlFe, AIGa, AlGe, AlCo, , AISb, AlSc, AlSe, AISi, AISn, AITa, AITc, AITe, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, uBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, b, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, h, BeRu, BeSc, BeTc, BeTi, BeTI, BeY, BeZn, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, $\mathrm{BiNb}, \mathrm{BiNi}, \mathrm{BiOs}, \mathrm{BiP}, \mathrm{BiPb}, \mathrm{BiPd}, \mathrm{BiPt}, \mathrm{BiRe}$, o, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, : dSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdHg, Cdln, CdIr, CdLa, CdMg, CdMn, C CdTi, CdTI, CdV, CdW, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, Coln, Colr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTI, CoV, CoW, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, $\mathrm{CrGe}, \mathrm{CrHf}, \mathrm{CrHg}, \mathrm{CrIn}, \mathrm{CrIr}, \mathrm{CrLa}, \mathrm{CrMg}, \mathrm{CrMn}, \mathrm{CrMo}, \mathrm{CrNb}, \mathrm{CrNi}, \mathrm{CrOs}, \mathrm{CrP}, \mathrm{CrPb}, \mathrm{CrPd}, \mathrm{CrPt}, \mathrm{CrRe}, \mathrm{CrRh}, \mathrm{CrRu}, \mathrm{CrSb}, \mathrm{CrSc}, \mathrm{CrSe}, \mathrm{CrSi}, \mathrm{CrSn}, \mathrm{CrTa}, \mathrm{CrTc}$, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, Culn, Culr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuW, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, Feln, Felr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, Geln, Gelr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeW, GeY, GeZn, GeZr, GeMg, HfHg, Hfln, Hflr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTI, HfV, HfW, HfY, HfZn, HfZr, Hgln, Hglr, HgLa, HgMg, $\mathrm{HgMn}, \mathrm{HgMo}, \mathrm{HgNb}, \mathrm{HgNi}, \mathrm{HgOs}, \mathrm{HgP}, \mathrm{HgPb}, \mathrm{HgPd}, \mathrm{HgPt}, \mathrm{HgRe}, \mathrm{HgRh}, \mathrm{HgRu}, \mathrm{HgSb}, \mathrm{HgSc}, \mathrm{HgSe}, \mathrm{HgSi}, \mathrm{HgSn}, \mathrm{HgTa}, \mathrm{HgTc}, \mathrm{HgTe}, \mathrm{HgTi}, \mathrm{Hg} V, \mathrm{Hg} W, \mathrm{HgY}, \mathrm{HgZn}, \mathrm{HgZr}$, InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InW, InY, InZn, InZr, IrLa, IrMg, $\operatorname{IrMn}, \operatorname{IrMo}, \operatorname{IrNb}, \operatorname{IrNi}, \operatorname{IrOs}, \operatorname{IrP}, \operatorname{IrPb}, \operatorname{IrPd}, \operatorname{IrPt}, \operatorname{IrRe}, \operatorname{IrRh}, \operatorname{IrRu}, \operatorname{IrSb}, \operatorname{IrSc}, \operatorname{IrSe}, \operatorname{IrSi}, \operatorname{IrSn}, \operatorname{IrTa}, \operatorname{IrTc}, \operatorname{IrTe}, \operatorname{IrTi}, \operatorname{IrV}, \operatorname{IrW}, \operatorname{IrY}, \operatorname{IrZn}, \operatorname{IrZr}, \mathrm{KMg}, \mathrm{KPd}, \mathrm{KPt}, \mathrm{LaMg}, \mathrm{LaMn}, \mathrm{LaMo}$, LaNb, LaNi, LaOs, LaP, LaPb, LaPd, LaPt, LaRe, LaRh, LaRu, LaSb, LaSc, LaSe, LaSi, LaSn, LaTa, LaTc, LaTe, LaTi, LaV, LaW, LaY, LaZn, LaZr, list, LiMg, LiPd, LiPt, MgMn, MnMo, MnNb, MnNi, MnOs, MnP, MnPb, MnPd, MnPt, MnRe, MnRh, MnRu, MnSb, MnSc, MnSe, MnSi, MnSn, MnTa, MnTc, MnTe, MnTi, MnV, MnW, MnY, MnZn, MnZr, MoMg, MoNb, MoNi, MoOs, MoP, MoPb, MoPd, MoPt, MoRe, MoRh, MoRu, MoSb, MoSc, MoSe, MoSi, MoSn, MoTa, MoTc, MoTe, MoTi, MoV, MoW, MoY, MoZn, MoZr, NaMg, NaPd, NaPt, NbMg, NbNi, NbOs, NbP, NbPb, NbPd, NbPt, NbRe, NbRh, NbRu, NbSb, NbSc, NbSe, NbSi, NbSn, NbTa, NbTc, NbTe, NbTi, NbV, NbW, NbY, NbZn, NbZr, NiOs, NiP, NiPb, NiPd, NiPt, NiRe, NiRh, NiRu, NiSb, NiSc, NiSe, NiSi, NiSn, NiTa, NiTc, NiTe, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsMg, OsP, OsPb, OsPd, OsPt, OsRe, OsRh, OsRu, Ossb, OsSc, OsSe, OsSi, OsSn, OsTa, OsTc, OsTe, OsTi, OsTl, OsV, OsW, OsY, OsZn, OsZr, PbMg, PbPd, PbPt, PbRe, PbRh, PbRu, PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbW, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdW, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PT PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, Re ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, Rh7 RuTi, RuTI, RuV, RuW, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, Sb ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, Sé $\mathrm{SnTa}, \mathrm{SnTc}, \mathrm{SnTe}, \mathrm{SnTi}, \mathrm{SnV}, \mathrm{SnW}, \mathrm{SnY}, \mathrm{SnZn}, \mathrm{SnZr}, \mathrm{SrMg}, \mathrm{SrPd}, \mathrm{SrPt}, \mathrm{TaMg}, \mathrm{TaTc}$, TeW,TeY,TeZn,TeZr,TiMg,TiTI,TiV,TiW,TiY,TiZn,TiZr,TIY,TIZn,TIZr,VMg,VW,

[^0]

High-Throughput Materials Exploration

$\mathrm{AgAl}, \mathrm{AgAs}, \mathrm{AgAu}, \mathrm{AgB}, \mathrm{AgBi}, \mathrm{AgCd}, \mathrm{AgCo}, \mathrm{AgCr}, \mathrm{AgCu}, \mathrm{AgFe}, \mathrm{AgGa}, \mathrm{AgGe}, \mathrm{AgHf}, \mathrm{AgHg}, \mathrm{AgIn}, \mathrm{Aglr}, \mathrm{AgLa}, \mathrm{AgMg}, \mathrm{AgMn}, \mathrm{AgMo}, \mathrm{AgNb}, \mathrm{AgNi}, \mathrm{AgOs}, \mathrm{AgP}, \mathrm{AgPb}, \mathrm{AgPd}, \mathrm{AgPt}$, AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AgSn, AgTa, AgTc, AgTe, AgTi, AgV, AgW, AgY, AgZn, AgZr, AlAs, AlAu, AlB, AlBi, AlCd, AlCo, AlCr, AlCu, AlFe, AlGa, AlGe, AlCo, AlHf, AlHg, AlHf, AIPd, AIPt, AISc, Alln, Allr, Alla, AIMg, AlMn, AIMo, AINb, AINi, AIOs, AIP, AIPb, AIPd, AIPt, AIRe, AIRh, AIRu, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AITi, AIV, AIW, AIY, AIZn, AlZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsW, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, Auln, Aulr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTl, BeY, BeZn, BeZ , BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, Bln, Blr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BTc , BTe , BTi , $\mathrm{BV}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZn}, \mathrm{BZr}, \mathrm{BiCd}, \mathrm{BiCo}, \mathrm{BiCr}, \mathrm{BiCu}, \mathrm{BiFe}, \mathrm{BiGa}, \mathrm{BiGe}, \mathrm{BiHf}, \mathrm{BiHg}, \mathrm{Biln}, \mathrm{Bilr}, \mathrm{BiLa}, \mathrm{BiMg}, \mathrm{BiMn}, \mathrm{BiMo}, \mathrm{BiNb}, \mathrm{BiNi}, \mathrm{BiOs}, \mathrm{BiP}, \mathrm{BiPb}, \mathrm{BiPd}, \mathrm{BiPt}, \mathrm{BiRe}$, BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, BiTa, BiTc, BiTe, BiTi, BiV, BiW, BiY, BiZn, BiZr, BHf, CaHf, CaMg, CaPd, CaPt, CdCo, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, CdHg, Cdln, Cdlr, CdLa, CdMg, CdMn, CdMo, CdNb, CdNi, CdOs, CdP, CdPb, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdTI, CdV, CdW, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, Coln, Colr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTI, CoV, CoW, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, $\mathrm{CrGe}, \mathrm{CrHf}, \mathrm{CrHg}, \mathrm{CrIn}, \mathrm{CrIr}, \mathrm{CrLa}, \mathrm{CrMg}, \mathrm{CrMn}, \mathrm{CrMo}, \mathrm{CrNb}, \mathrm{CrNi}, \mathrm{CrOs}, \mathrm{CrP}, \mathrm{CrPb}, \mathrm{CrPd}, \mathrm{CrPt}, \mathrm{CrRe}, \mathrm{CrRh}, \mathrm{CrRu}, \mathrm{CrSb}, \mathrm{CrSc}, \mathrm{CrSe}, \mathrm{CrSi}, \mathrm{CrSn}, \mathrm{CrTa}, \mathrm{CrTc}$, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, Culn, Culr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuW, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, Feln, Felr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, Geln, Gelr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeW, GeY, GeZn, GeZr, GeMg, HfHg, Hfln, Hflr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTI, HfV, HfW, HfY, HfZn, HfZr, Hgln, Hglr, HgLa, HgMg, $\mathrm{HgMn}, \mathrm{HgMo}, \mathrm{HgNb}, \mathrm{HgNi}, \mathrm{HgOs}, \mathrm{Hg}, \mathrm{HgPb}, \mathrm{HgPd}, \mathrm{HgPt}, \mathrm{HgRe}, \mathrm{HgRh}, \mathrm{HgRu}, \mathrm{HgSb}, \mathrm{HgSc}, \mathrm{HgSe}, \mathrm{HgSi}, \mathrm{HgSn}, \mathrm{HgTa}, \mathrm{HgTc}, \mathrm{Hg} \mathrm{Te}, \mathrm{HgTi}, \mathrm{Hg} V, \mathrm{HgW}, \mathrm{Hg} Y, \mathrm{HgZn}, \mathrm{HgZr}$, InIr, InLa, InMg, InMn, InMo, InNb, InNi, InOs, InP, InPb, InPd, InPt, InRe, InRh, InRu, InSb, InSc, InSe, InSi, InSn, InTa, InTc, InTe, InTi, InV, InW, InY, InZn, InZr, IrLa, IrMg, IrMn, IrMo, IrNb, IrNi, IrOs, IrP, IrPb, IrPd, IrPt, IrRe, IrRh, IrRu, IrSb, IrSc, IrSe, IrSi, IrSn, IrTa, IrTc, IrTe, IrTi, IrV, IrW, IrY, IrZn, IrZr, KMg, KPd, KPt, LaMg, LaMn, LaMo, LaNb, LaNi, LaOs, LaP, LaPb, LaPd, LaPt, LaRe, LaRh, LaRu, LaSb, LaSc, LaSe, LaSi, LaSn, LaTa, LaTc, LaTe, LaTi, LaV, LaW, LaY, LaZn, LaZr, list, LiMg, LiPd, LiPt, MgMn,
 MnMo, MnNb, MnNi, MnOs, MnP, MnPb, MnPd, MnPt, MnRe, MnRh, MnRu, MnSb, MnSc, MnSe, MnSi, MnSn, MnTa, MnTc, MnTe, MnTi, MnV, MnW, MnY, MnZn, MnZr, MoMg, MoNb, MoNi, MoOs, MoP, MoPb, MoPd, MoPt, MoRe, MoRh, MoRu, MoSb, MoSc, MoSe, MoSi, MoSn, MoTa, MoTc, MoTe, MoTi, MoV, MoW, MoY, MoZn, MoZr, NaMg , NaPd, $\mathrm{NaPt}, \mathrm{NbMg}, \mathrm{NbNi}, \mathrm{NbOs}, \mathrm{NbP}, \mathrm{NbPb}, \mathrm{NbPd}, \mathrm{NbPt}, \mathrm{NbRe}, \mathrm{NbRh}, \mathrm{NbRu}, \mathrm{NbSb}, \mathrm{NbSc}, \mathrm{NbSe}, \mathrm{NbSi}, \mathrm{NbSn}, \mathrm{NbTa}, \mathrm{NbTc}, \mathrm{NbTe}, \mathrm{NbTi}, \mathrm{NbV}, \mathrm{NbW}$, NbY, NbZn, NbZr, NiOs, NiP, NiPb, NiPd, NiPt, NiRe, NiRh, NiRu, NiSb, NiSc, NiSe, NiSi, NiSn, NiTa, NiTc, NiTe, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsMg, OsP, OsPb, OsPd, OsPt, OsRe, OsRh, OsRu, OsSb, OsSc, OsSe, Ossi, OsSn, OsTa, OsTc, OsTe, OsTi, OsTl, OsV, OsW, OsY, OsZn, OsZr, PbMg, PbPd, PbPt, PbRe, PbRh, PbRu, PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbW, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdW, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PTa, PTc, PTe, PTi, PtRe, PtRh, PtRu, PtSb, PtSc, PtSe, PtSi, PtSn, PtTa, PtTc, PtTe, PtTi, PtV, PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, ReRu, ReSb, ReSc, ReSe, ReSi, ReSn, ReTa, ReTc, ReTe, ReTi, ReTl, ReV, ReW, ReY, ReZn, ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, RhTI, RhV, RhW, RhY, RhZn, RhZr, RuMg, RuSb, RuSc, RuSe, RuSi, RuSn, RuTa, RuTc, RuTe, RuTi, RuTl, RuV, RuW, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, SbTe, SbTi, SbV, SbW, SbY, SbZn, SbZr, ScMg, ScSe, ScSi, ScSn, ScTa, ScTc, ScTe, ScTi, ScTI, ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, SeZn, SeZr, SiPd, SiPt, SiSn, SiTa, SiTc, SiTe, SiTi, SiV, SiW, SiY, SiZn, SiZr, SnMg, SnPd, SnPt, SnTa, SnTc, SnTe, SnTi, SnV, SnW, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, TaTe, TaTi, TaV, TaW, TaY, TaZn, TaZr, TcTe, TcTi, TcTI, TcV, TcW, TcY, TcZn, TcZr, TeTi, TeV, TeW, TeY, TeZn, TeZr, TiMg, TiTI,TiV,TiW,TiY,TiZn, TiZr, TIY, TIZn, TIZr, VMg, VW,VY,VZn,VZr,WMg, WY,WZn,WZr, YMg, YZn, YZr, ZnMg, ZnZr, ZrMg

High-Throughput Materials Exploration

$\mathrm{AgAl}, \mathrm{AgAs}, \mathrm{AgAu}, \mathrm{AgB}, \mathrm{AgBi}, \mathrm{AgCd}, \mathrm{AgCo}, \mathrm{AgCr}, \mathrm{AgCu}, \mathrm{AgFe}, \mathrm{AgGa}, \mathrm{AgGe}, \mathrm{AgHf}, \mathrm{AgHg}, \mathrm{Ag} \ln , \mathrm{Ag} \mathrm{Ir}, \mathrm{AgLa}, \mathrm{AgMg}, \mathrm{AgMn}, \mathrm{AgMo}, \mathrm{AgNb}, \mathrm{AgNi}, \mathrm{AgOs}, \mathrm{AgP}, \mathrm{AgPb}, \mathrm{AgPd}, \mathrm{AgPt}$, AgRe, AgRh, AgRu, AgSb, AgSc, AgSe, AgSi, AgSn, AgTa, AgTc, AgTe, AgTi, AgV, AgW, AgY, AgZn, AgZr, AlAs, AlAu, AlB, AlBi, AlCd, AlCo, AlCr, AlCu, AlFe, AlGa, AlGe, AlCo, AlHf, AlHg, AlHf, AIPd, AIPt, AISc, Alln, Allr, Alla, AIMg, AlMn, AIMo, AINb, AINi, AIOs, AIP, AIPb, AIPd, AIPt, AIRe, AIRh, AIRu, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AITi, AIV, AIW, AIY, AIZn, AlZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsW, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, Auln, Aulr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTl, BeY, BeZn, BeZ , BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, Bln, Blr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BTc , BTe , BTi , BV, BW, BY, BZn, BZr, BiCd, BiCo, BiCr, BiCu, BiFe, BiGa, BiGe, BiHf, BiHg, Biln, Bilr, BiLa, BiMg, BiMn, BiMo, BiNb, BiNi, BiOs, BiP, BiPb, BiPd, BiPt, BiRe, BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, BiTa, BiTc, BiTe, BiTi, BiV, BiW, BiY, BiZn, BiZr, BHf, CaHf, CaMg, CaPd, CaPt, CdCo, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, CdHg, Cdln, Cdlr, CdLa, CdMg, CdMn, CdMo, CdNb, CdNi, CdOs, CdP, CdPb, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdTI, CdV, CdW, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, Coln, Colr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu, CoSb, CoSc, CoSe, CoSi, CoSn, CoTa, CoTc, CoTe, CoTi, CoTI, CoV, CoW, CoY, CoZn, CoZr, CrCu, CrFe, CrGa, $\mathrm{CrGe}, \mathrm{CrHf}, \mathrm{CrHg}, \mathrm{CrIn}, \mathrm{CrIr}, \mathrm{CrLa}, \mathrm{CrMg}, \mathrm{CrMn}, \mathrm{CrMo}, \mathrm{CrNb}, \mathrm{CrNi}, \mathrm{CrOs}, \mathrm{CrP}, \mathrm{CrPb}, \mathrm{CrPd}, \mathrm{CrPt}, \mathrm{CrRe}, \mathrm{CrRh}, \mathrm{CrRu}, \mathrm{CrSb}, \mathrm{CrSc}, \mathrm{CrSe}, \mathrm{CrSi}, \mathrm{CrSn}, \mathrm{CrTa}, \mathrm{CrTc}$, CrTe, CrTi, CrV, CrW, CrY, CrZn, CrZr, CsPd, CuFe, CuGa, CuGe, CuHf, CuHg, Culn, Culr, CuLa, CuMg, CuMn, CuMo, CuNb, CuNi, CuOs, CuP, CuPb, CuPd, CuPt, CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, CuSn, CuTa, CuTc, CuTe, CuTi, CuV, CuW, CuY, CuZn, CuZr, FeGa, FeGe, FeHf, FeHg, Feln, Felr, FeLa, FeMg, FeMn, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FePt, FeRe, FeRh, FeRu, FeSb, FeSc, FeSe, FeSi, FeSn, FeTa, FeTc, FeTe, FeTi, FeV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaNi, GaOs, GaP, GaPb, GaPd, GaPt, GaRe, GaRh, GaRu, GaSb, GaSc, GaSe, GaSi, GaSn, GaTa, GaTc, GaTe, GaTi, GaV, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeHg, Geln, Gelr, GeLa, GeMg, GeMn, GeMo, GeNb, GeNi, GeOs, GeP, GePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, GeTi, GeV, GeW, GeY, GeZn, GeZr, GeMg, HfHg, Hfln, Hflr, HfK, HfLa, HfLi, HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSb, HfSc, HfSe, HfSi, HfSn, HfSn, HfSr, HfTa, HfTc, HfTe, HfTi, HfTI, HfV, HfW, HfY, HfZn, HfZr, Hgln, Hglr, HgLa, HgMg, $\mathrm{HgMn}, \mathrm{HgMo}, \mathrm{HgNb}, \mathrm{HgNi}, \mathrm{HgOs}, \mathrm{HgP}, \mathrm{HgPb}, \mathrm{HgPd}, \mathrm{HgPt}, \mathrm{HgRe}, \mathrm{HgRh}, \mathrm{HgRu}, \mathrm{HgSb}, \mathrm{HgSc}, \mathrm{HgSe}, \mathrm{HgSi}, \mathrm{HgSn}, \mathrm{HgTa}, \mathrm{HgTc}, \mathrm{HgTe}, \mathrm{HgTi}, \mathrm{Hg} V, \mathrm{HgW}, \mathrm{Hg}, \mathrm{HgZn}, \mathrm{HgZr}$,

$\operatorname{IrMn}, \operatorname{IrMo}, \operatorname{IrNb}$,
LaNb, LaNi, LaOs $\mathrm{MgMo}, \mathrm{MgNb}, \mathrm{Mg} \mid$ MnMo, MnNb, Mr MoMg, MoNb, Mc MoZr, NaMg , NaF NbY, NbZn, NbZı OsPd, OsPt, OsRı

www.aflowlib.org

Comput. Mater. Sci. (2012), doi:10.1016/j.commatsci.2012.02.002 Comput. Mater. Sci. (2012), doi:10.1016/j.commatsci.2012.02.005
aMg, LaMn, LaMo, LiPd, LiPt, MgMn, MgY, MgZn, MgZr, 1nY, MnZn, MnZr, oW, MoY, MoZn, NbTi, NbV, NbW, OsMg, OsP, OsPb, 'bRe, PbRh, PbRu, $\mathrm{PbSb}, \mathrm{PbSc}, \mathrm{PbSe}, \mathrm{PbSi}, \mathrm{PbSn}, \mathrm{PbTa}, \mathrm{PbTc}, \mathrm{PbTe}, \mathrm{PbTi}, \mathrm{PbV}, \mathrm{PbW}, \mathrm{Pb} Y, \mathrm{PbZn}, \mathrm{PbZr}, \mathrm{PdPt}, \mathrm{PdRe}, \mathrm{PdRh}, \mathrm{PdRu}, \mathrm{PdSb}, \mathrm{PdSc}, \mathrm{PdSe}, \mathrm{PdSi}, \mathrm{Pd} \mathrm{Sn}, \mathrm{PdTa}, \mathrm{PdTc}, \mathrm{PdTe}, \mathrm{PdTi}, \mathrm{PdV}$, PdW, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PT PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, Re ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, Rh7 RuTi, RuTI, RuV, RuW, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, Sb ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, Se SnTa, SnTc, SnTe, SnTi, SnV, SnW, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, TeW,TeY,TeZn,TeZr, TiMg, TiTl,TiV,TiW,TiY,TiZn,TiZr,TIY,TIZn,TIZr,VMg,VW,
S. Curtarolo, O. Levy, W. Setyawan, I. Takeuchi, A. Kolmogorov, S. Wang, M. Jahnatek, M. Buongiorno Nardelli, M. Fornari, R. Taylor, Z. Wang, K. Yang, N. Mingo, S. Sanvito

High-Throughput Materials Exploration

$\mathrm{AgAl}, \mathrm{AgAs}, \mathrm{AgAu}, \mathrm{AgB}, \mathrm{AgBi}, \mathrm{AgCd}, \mathrm{AgCo}, \mathrm{AgCr}, \mathrm{AgCu}, \mathrm{AgFe}, \mathrm{AgGa}, \mathrm{AgGe}, \mathrm{AgHf}, \mathrm{AgHg}, \mathrm{Agln}, \mathrm{Aglr}, \mathrm{AgLa}, \mathrm{AgMg}, \mathrm{AgMn}, \mathrm{AgMo}, \mathrm{AgNb}, \mathrm{AgNi}, \mathrm{AgOs}, \mathrm{AgP}, \mathrm{AgPb}, \mathrm{AgPd}, \mathrm{AgPt}$, $A g R e, A g R h, A g R u, A g S b, A g S c, A g S e, A g S i, A g S n, A g T a, A g T c, A g T e, A g T i, A g V, A g W, A g Y, A g Z n, A g Z r, A I A s, A I A u, A I B, A I B i, A I C d, A I C o, A I C r, A I C u, A I F e, A I G a, A I G e, A I C o$, AlHf, AlHg, AlHf, AIPd, AIPt, AISc, Alln, Allr, Alla, AIMg, AlMn, AIMo, AINb, AINi, AIOs, AIP, AIPb, AIPd, AIPt, AIRe, AIRh, AIRu, AISb, AISc, AISe, AISi, AISn, AITa, AITc, AITe, AITi, AIV, AIW, AIY, AIZn, AlZr, AsAu, AsB, AsBi, AsCd, AsCo, AsCr, AsCu, AsFe, AsGa, AsGe, AsHf, AsHg, AsIn, AsIr, AsLa, AsMg, AsMn, AsMo, AsNb, AsNi, AsOs, AsP, AsPb, AsPd, AsPt, AsRe, AsRh, AsRu, AsSb, AsSc, AsSe, AsSi, AsSn, AsTa, AsTc, AsTe, AsTi, AsV, AsW, AsY, AsZn, AsZr, AuB, AuBi, AuCd, AuCo, AuCr, AuCu, AuFe, AuGa, AuGe, AuHf, AuHg, Auln, Aulr, AuLa, AuMg, AuMn, AuMo, AuNb, AuNi, AuOs, AuP, AuPb, AuPd, AuPt, AuRe, AuRh, AuRu, AuSb, AuSc, AuSe, AuSi, AuSn, AuTa, AuTc, AuTe, AuTi, AuV, AuW, AuY, AuZn, AuZr, BaHf, BaMg, BaPd, BaPt, BeHf, BeCd, BeCo, BeMg, BeMn, BeOs, BePd, BePt, BeRe, BeRh, BeRu, BeSc, BeTc, BeTi, BeTl, BeY, BeZn, BeZ , BBi, BCd, BCo, BCr, BCu, BFe, BGa, BGe, BHf, BHg, Bln, Blr, BLa, BMg, BMn, BMo, BNb, BNi, BOs, BP, BPb, BPd, BPt, BRe, BRh, BRu, BSb, BSc, BSe, BSi, BSn, BTa, BTc , BTe , BTi , BV, BW, BY, BZn, BZr, BiCd, BiCo, BiCr, BiCu, BiFe, BiGa, BiGe, BiHf, BiHg, Biln, Bilr, BiLa, BiMg, BiMn, BiMo, BiNb, BiNi, BiOs, BiP, BiPb, BiPd, BiPt, BiRe, BiRh, BiRu, BiSb, BiSc, BiSe, BiSi, BiSn, BiTa, BiTc, BiTe, BiTi, BiV, BiW, BiY, BiZn, BiZr, BHf, CaHf, CaMg, CaPd, CaPt, CdCo, CdCr, CdCu, CdFe, CdGa, CdGe, CdHf, CdHg, Cdln, Cdlr, CdLa, CdMg, CdMn, CdMo, CdNb, CdNi, CdOs, CdP, CdPb, CdPd, CdPt, CdRe, CdRh, CdRu, CdSb, CdSc, CdSe, CdSi, CdSn, CdTa, CdTc, CdTe, CdTi, CdTI, CdV, CdW, CdY, CdZn, CdZr, CeMg, CNi, CoCr, CoCu, CoFe, CoGa, CoGe, CoHf, CoHg, Coln, Colr, CoLa, CoMg, CoMn, CoMo, CoNb, CoNi, CoOs, CoP, CoPb, CoPd, CoPt, CoRe, CoRh, CoRu CnSh CnSr CnSe CnSi CnSn CnTa CnTr CnTe CnTi CnTI CnV CoW, CoY, CoZn, CoZr, CrCu, CrFe, CrGa,
$\mathrm{CrGe}, \mathrm{CrHf}, \mathrm{CrHg}, \mathrm{CrIn}, \mathrm{CrIr}, \mathrm{CrLa}, \mathrm{CrMg}, \mathrm{C}$ $\mathrm{CrTe}, \mathrm{CrTi}, \mathrm{CrV}, \mathrm{CrW}, \mathrm{CrY}, \mathrm{CrZn}, \mathrm{CrZr}, \mathrm{CsPc}$ CuRe, CuRh, CuRu, CuSb, CuSc, CuSe, CuSi, FeMo, FeNb, FeNi, FeOs, FeP, FePb, FePd, FeP Galn, Galr, GaLa, GaMg, GaMn, GaMo, GaNb, GaW, GaY, GaZn, GaZr, GaMg, GdMg, GeHf, GeSc, GeSe, GeSi, GeSn, GeTa, GeTc, GeTe, C. HfP, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfS

> Beyond the direct results, are there other things we can learn from the data?
iu, $\mathrm{CrSb}, \mathrm{CrSc}, \mathrm{CrSe}, \mathrm{CrSi}, \mathrm{CrSn}, \mathrm{CrTa}, \mathrm{CrTc}$, , $\mathrm{CuNb}, \mathrm{CuNi}, \mathrm{CuOs}, \mathrm{CuP}, \mathrm{CuPb}, \mathrm{CuPd}, \mathrm{CuPt}$, $\mathrm{Ge}, \mathrm{FeHf}$, FeHg , Feln, Felr, FeLa, FeMg, FeMn, eV, FeW, FeY, FeZn, FeZr, GaGe, GaHf, GaHg, $\mathrm{Se}, \mathrm{GaSi}, \mathrm{GaSn}, \mathrm{GaTa}, \mathrm{GaTc}, \mathrm{GaTe}, \mathrm{GaTi}, \mathrm{GaV}$, JePb, GePd, GePt, GeRe, GeRh, GeRu, GeSb, , HfMg, HfMn, HfMo, HfNa, HfNb, HfNi, HfOs, fW, HfY, HfZn, HfZr, Hgln, Hglr, HgLa, HgMg, ;Tc, $\mathrm{Hg} \mathrm{Te}, \mathrm{HgTi}, \mathrm{Hg}, \mathrm{HgW}, \mathrm{Hg}, \mathrm{HgZn}, \mathrm{HgZr}$, $\mathrm{HgMn}, \mathrm{HgMo}, \mathrm{HgNb}, \mathrm{HgNi}, \mathrm{HgOs}, \mathrm{Hg}, \mathrm{HgPb}$,
 $\operatorname{IrMn}, \operatorname{IrMo}, \operatorname{IrNb}$,
LaNb, LaNi, LaOs
$\mathrm{MgMo}, \mathrm{MgNb}, \mathrm{Mg} \mid$ MnMo, MnNb, Mr MoMg, MoNb, Mc $\mathrm{MoZr}, \mathrm{NaMg}, \mathrm{NaF}$ NbY, NbZn, NbZı OsPd, OsPt, OsRı
aMg, LaMn, LaMo, LiPd, LiPt, MgMn,

www.aflowlib.org

Comput. Mater. Sci. (2012), doi:10.1016/j.commatsci.2012.02.002 Comput. Mater. Sci. (2012), doi:10.1016/j.commatsci.2012.02.005 MgY, MgZn, MgZr, 1nY, MnZn, MnZr, oW, MoY, MoZn, NbTi, NbV, NbW, JsMg, OsP, OsPb, 'bRe, PbRh, PbRu, PbSb, PbSc, PbSe, PbSi, PbSn, PbTa, PbTc, PbTe, PbTi, PbV, PbW, PbY, PbZn, PbZr, PdPt, PdRe, PdRh, PdRu, PdSb, PdSc, PdSe, PdSi, PdSn, PdTa, PdTc, PdTe, PdTi, PdV, PdW, PdY, PdZn, PdZr, PPb, PPd, PPt, PRe, PRh, PRu, PSb, PSc, PSe, PSi, PSn, PT PtW, PtY, PtZn, PtZr, PV, PW, PY, PZn, PZr, RbMg, RbPd, RbPt, ReMg, ReRh, R ϵ ReZr, RhMg, RhRu, RhSb, RhSc, RhSe, RhSi, RhSn, RhTa, RhTc, RhTe, RhTi, Rh7 RuTi, RuTI, RuV, RuW, RuY, RuZn, RuZr, SbSc, SbSe, SbSi, SbSn, SbTa, SbTc, Sb ScV, ScW, ScY, ScZn, ScZr, SeSi, SeSn, SeTa, SeTc, SeTe, SeTi, SeV, SeW, SeY, Se. SnTa, SnTc, SnTe, SnTi, SnV, SnW, SnY, SnZn, SnZr, SrMg, SrPd, SrPt, TaMg, TaTc, TeW,TeY,TeZn,TeZr, TiMg,TiTI,TiV,TiW,TiY,TiZn,TiZr,TIY,TIZn,TIZr,VMg,VW,
S. Curtarolo, O. Levy, W. Setyawan, I. Takeuchi, A. Kolmogorov, S. Wang, M. Jahnatek, M. Buongiorno Nardelli, M. Fornari, R. Taylor, Z. Wang, K. Yang, N. Mingo, S. Sanvito

High Throughput is the future...

84

High Throughput is the future...

Need: 3 post-docs and 4 PhD students

Compressed sensing model building in a nutshell: Better models, faster

Basic idea:

Instead of adding complexity (terms) to a model until it fits the data and predicts well...(normal approach)...
...start with an infinite set of models (containing all possible terms). Discard all models except the simplest one (Compressive Sensing approach). Surprisingly perhaps, this is really efficient.

Physical quantities vs. experimental parameters

Finding functions for observables (signal recovery)

Making measurements (signal sampling)

Assume a model, least squares fitting

Assume a model, least squares fitting

Assume a model, least squares fitting

1. Model may have the wrong functional form (physics is incorrect)

Assume a model, least squares fitting

1. Model may have the wrong functional form (physics is incorrect)
2. Least-squares error may not reflect the actual errors in the measurements

Assume a model, least squares fitting

Assume a model, least squares fitting

Going beyond a linear model fit (adding terms)

$$
f(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} x y+a_{4} x^{2}+a_{5} y^{2}+\cdots
$$

Going beyond a linear model fit (adding terms)

$$
f(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} x y+a_{4} x^{2}+a_{5} y^{2}+\cdots
$$

Going beyond a linear model fit (adding terms)

$$
\begin{aligned}
& f(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} x y \\
& f\left(\begin{array}{llll}
1 \\
x_{4} x^{2}+a_{5} y^{2}+\cdots \\
\left(\begin{array}{llll}
x_{1} & y_{1} & x_{1} y_{1} \\
1 & x_{2} & y_{2} & x_{2} y_{2} \\
1 & x_{3} & y_{3} & x_{3} y_{3} \\
1 & x_{4} & y_{4} & x_{4} y_{4}
\end{array}\right) \\
\text { Sensing matrix }
\end{array}\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right)\right.
\end{aligned}
$$

Going beyond a linear model fit (adding terms)

$$
\begin{aligned}
& f(x, y)=\square a_{0}+a_{1} x+a_{2} y+a_{3} x y+a_{4} x^{2}+a_{5} y^{2}+\cdots \\
& \left(\begin{array}{llll}
1 & x_{1} & y_{1} & x_{1} y_{1} \\
1 & x_{2} & y_{2} & x_{2} y_{2} \\
1 & x_{3} & y_{3} & x_{3} y_{3} \\
1 & x_{4} & y_{4} & x_{4} y_{4}
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right)
\end{aligned}
$$

Going beyond a linear model fit (adding terms)

$$
\begin{aligned}
& f(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} x y+a_{4} x^{2}+a_{5} y^{2}+\cdots \\
& \left(\begin{array}{llll}
1 & x_{1} & y_{1} & x_{1} y_{1} \\
1 & x_{2} & y_{2} & x_{2} y_{2} \\
1 & x_{3} & y_{3} & x_{3} y_{3} \\
1 & x_{4} & y_{4} & x_{4} y_{4}
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right)
\end{aligned}
$$

Going beyond a linear model fit (adding terms)

$$
f(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} x y+a_{4} x^{2}+a_{5} y^{2}+\cdots
$$

Going beyond a linear model fit (adding terms)

$$
\begin{gathered}
f(x, y)=0 \\
\left(\begin{array}{llllll}
1 & x_{1} & y_{1}+x_{1} x+x_{2} y+a_{3} x y+x_{4} x^{2}+a_{5} y^{2} \\
1 & x_{2} & y_{2} & x_{2} y_{2} & x_{2}^{2} & y_{2}^{2} \\
1 & x_{3} & y_{3} & x_{3} y_{3} & x_{3}^{2} & y_{3}^{2} \\
1 & x_{4} & y_{4} & x_{4} y_{4} & x_{4}^{2} & y_{4}^{2}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right) \\
\mathbb{a}=\vec{f}
\end{gathered}
$$

"Solving" an under-determined problem
 $\mathbb{M} \vec{a}=\vec{f}$

"Solving" an under-determined problem

$$
\begin{gathered}
\mathbb{M} \vec{a}=\vec{f} \\
\min _{\vec{a}}\left\{\|\vec{a}\|_{1}: \mathbb{M} \vec{a}=\vec{f}\right\}
\end{gathered}
$$

"Solving" an under-determined problem

$$
\begin{gathered}
\mathbb{M}[\vec{a}=\vec{f} \\
\min _{\vec{a}}\left\{\|\vec{a}\|_{1}: \mathbb{M} \vec{a}=\vec{f}\right\} \\
\ell_{1} \equiv\|\vec{u}\|=\sum_{i}\left|u_{i}\right|
\end{gathered}
$$

"Solving" an under-determined problem

$$
\begin{gathered}
\mathbb{M}[\vec{a}=\vec{f} \\
\min _{\vec{a}}\left\{\|\vec{a}\|_{1}: \mathbb{M} \vec{a}=\vec{f}\right\} \\
\ell_{1} \equiv\|\vec{u}\|=\sum_{i}\left|u_{i}\right| \\
\ell_{2} \equiv\left(\sum_{i}\left|u_{i}\right|^{2}\right)^{\frac{1}{2}} \ell_{1} \equiv\left(\sum_{i}\left|u_{i}\right|^{1}\right)^{\frac{1}{1}}
\end{gathered}
$$

Explain the magic

Basic ideas of Compressive Sensing

- Solution must be "sparse" in some basis
- Numerical application of ell-1 norm is fast - Choose a big basis so that you've captured all the relevant components
- Like a Fourier Transform...except that you can sample way below the Nyquist frequency
- Sample points must be "uncorrelated"selected at random from the domain.

A sensing/sampling paradigm that goes against the common knowledge in data acquisition]

Emmanuel J. Candès and Michael B. Wakin
onventional approaches to sampling signals or images follow Shannon's celebrated theorem: the sampling rate must be at least twice the maximum frequency present in the signal (the so-called Nyquist rate). In fact, this

Under-determined problem: Example

Under-determined problem: Example

8

Under-determined problem: Example

Bayesian Compressive Sensing vs. GA

Bayesian Compressive Sensing vs. GA

Bayesian Compressive Sensing vs. GA

Further reading

Lance J. Nelson, Gus L. W. Hart, Fei Zhou, and Vidvuds Ozolins, "Cluster expansion made easy with Bayesian compressive sensing," arXiv: 1307.2938 [cond-mat.mtrl-sci]

Lance J. Nelson, Gus L. W. Hart, Fei Zhou, and Vidvuds Ozolins, "Compressive sensing as a paradigm for building physics models," Phys. Rev. B 87035125 (2013).
E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 21-30 (2008).
T. Strohmer, "Measure What Should be Measured: Progress and Challenges in Compressive Sensing," Signal Processing Letters 19887 (2012).

[^0]: Thursday, August 15, 13

