Beyond DFT for extended systems

Sergey V. Levchenko

Fritz Haber Institute of the Max Planck Society, Berlin, Germany

- DFT versus wave function methods
- Electron repulsion integrals and resolution of identity
- Beyond DFT methods for extended (periodic) systems
- Conclusions

DFT versus wave function methods

Ground-state electronic structure problem

$$-\frac{1}{2}\sum_{i}\frac{\partial^{2}}{\partial \mathbf{r}_{i}^{2}}-\sum_{i}\sum_{J}\frac{Z_{J}}{|\mathbf{r}_{i}-\mathbf{R}_{J}|}+\sum_{i>j}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|}+V^{\text{ext}}(\{\mathbf{r}_{i}\}) \left|\Psi(\{\mathbf{r}_{i}\},\{\sigma_{i}\})\right|$$
$$=E\Psi(\{\mathbf{r}_{i}\},\{\sigma_{i}\})$$

 $\Psi(\{\mathbf{r}_i\}, \{\sigma_i\}) - \text{many-body wave function, depends on spatial } (\mathbf{r}_i) \\ \text{and spin } (\sigma_i) \text{ coordinates of particles (also on nuclear coordinates (} \mathbf{R}_J) \text{ and } V^{\text{ext}}(\{\mathbf{r}_i\}) \text{)}$

- already include approximations (Born-Oppenheimer, non-relativistic, no spin-orbit coupling, no magnetic field)
- wave function depends on 4N variables (spatial + spin)
- electrons interact via Coulomb forces

Non-interacting fermions

$$\hat{H} = -\frac{1}{2} \sum_{i} \frac{\partial^{2}}{\partial \mathbf{r}_{i}^{2}} - \sum_{i} \sum_{J} \frac{Z_{J}}{|\mathbf{r}_{i} - \mathbf{R}_{J}|} + \sum_{i > i} |\mathbf{r}_{i} - \mathbf{r}_{j}| + \frac{V^{\text{ext}}(\{\mathbf{r}_{i}\})}{|\mathbf{r}_{i}|} + \frac{V^{\text{ext}}(\{\mathbf{r}_{i}\})}{|\mathbf{r}_{i}$$

Non-interacting fermions – periodic system

Born-von Karman periodic boundary conditions $\psi_{nk}(\mathbf{r}) = \psi_{nk}(\mathbf{r} + \mathbf{R})$ \rightarrow finite number of k-points, infinite (macroscopic) system as physical limit

From reciprocal to real space

$$W_{n\mathbf{R}}(\mathbf{r}) = \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\mathbf{R}} \sum_{m} U_{nm}^{(\mathbf{k})} \psi_{m\mathbf{k}}(\mathbf{r})$$

Wannier functions: not unique, can be chosen more or less localized

An arbitrary unitary transformation within occupied and virtual subspaces

Wannier functions in each unit cell

 $\Psi = \frac{1}{\sqrt{N!}} \det |w_{1\mathbf{R}_1}(\mathbf{r}_1) \dots w_{N\mathbf{R}_1}(\mathbf{r}_N) \dots|$

Interacting fermions (electrons)

The Hartree-Fock (HF) approximation

$$\Psi(\mathbf{r}_{1}\sigma_{1},...,\mathbf{r}_{N}\sigma_{N}) \approx \frac{1}{\sqrt{N!}} \det |\psi_{1}(\mathbf{r}_{1},\sigma_{1}),...,\psi_{N}(\mathbf{r}_{N},\sigma_{N})|$$

$$E_{\text{tot}} = \sum_{n=1}^{N} \langle \psi_{n} | \hat{h} | \psi_{n} \rangle + \frac{1}{2} \sum_{I=1}^{M} \sum_{J=1}^{M} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} + \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r d^{3}r' - \frac{1}{2} \sum_{m,n=1}^{N} \int \frac{\psi_{m}^{*}(\mathbf{r},\sigma)\psi_{n}(\mathbf{r},\sigma)\psi_{n}^{*}(\mathbf{r}',\sigma')\psi_{m}(\mathbf{r}',\sigma')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r d^{3}r' d\sigma d\sigma'$$
HF (exact) exchange energy

(exact) exchange energy

No self-interaction

• Coulomb mean-field \rightarrow no dynamic correlation, single determinant \rightarrow no static correlation

The Hartree-Fock (HF) approximation

Non-dynamic (static) correlation:

(quasi)degenerate HOMO-LUMO)

HF approximation $\rightarrow \geq 90\%$ of total energy, overestimates ionicity

Density functional theory

Density functional theory: Hohenberg-Kohn theorem

$$n(\mathbf{r}) \xrightarrow{\hat{H}} - \text{many-body Hamiltonian}$$

$$n(\mathbf{r}) \xrightarrow{\Psi(\mathbf{r}_{1}\sigma_{1}, \dots, \mathbf{r}_{N}\sigma_{N}) - \text{many-body wave function}}_{E_{\text{tot}} - \text{total energy}}$$

$$E_{\text{tot}} = T[n] - \sum_{I=1}^{M} Z_{I} \int \frac{n(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_{I}|} d^{3}r + \frac{1}{2} \sum_{I=1}^{M} \sum_{J=1}^{M} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} + \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r d^{3}r' + E_{\text{XC}}[n]$$

Approximations to $E_{\rm XC}[n]$: Local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA

Standard DFT and the self-interaction error

$$E_{\text{tot}} = T[n] - \sum_{I=1}^{M} Z_I \int \frac{n(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_I|} d^3r + \frac{1}{2} \sum_{I=1}^{M} \sum_{J=1}^{M} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} + \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3r d^3r' + E_{\text{XC}}[n]$$

exchange-
(includes self-
interaction) (XC) energy

LDA, GGA, meta-GGA: $E_{\rm XC}[n] = E_{\rm X}^{\rm loc}[n] + E_{\rm C}^{\rm loc}[n]$

Standard DFT: (Semi)local XC operator \rightarrow low computational cost Removing self-interaction + preserving fundamental properties (e.g., invariance with respect to subspace rotations) is non-trivial \rightarrow residual self-interaction (error) in standard DFT

Consequences of self-interaction (no cancellation of errors): localization/delocalization errors, incorrect level alignment (charge transfer, reactivity, etc.)

Hybrid DFT

 $E_{\rm XC}[\{\psi\}] = \alpha E_{\rm X}^{\rm HF}[\{\psi\}] + (1-\alpha)E_{\rm X}^{\rm loc}[n] + E_{\rm C}^{\rm loc}[n]$ -- easy in Kohn-Sham formalism ($n = \sum_{n} f_{n} |\psi_{n}|^{2}$)

Perdew, Ernzerhof, Burke (J. Chem. Phys. 105, 9982 (1996)): α = 1/N

MP4 \rightarrow N = 4, but "An ideal hybrid would be sophisticated enough to optimize N for each system and property."

$$E_{\rm XC}^{\rm PBE0} = \alpha E_{\rm X}^{\rm HF} + (1 - \alpha) E_{\rm X}^{\rm PBE} + E_{\rm C}^{\rm PBE}$$

Hartree-Fock exchange – the problem

Lots of integrals, naïve implementation $\rightarrow N^4$ scaling (storage impractical for N > 500 basis functions)

- need fast evaluation
- need efficient use of sparsity (screening)

"Resolution of identity" (RI) (density fitting)

independent auxiliary basis

Basis-pair space is overcomplete, since $\{\varphi_i(\mathbf{r})\}$ approaches completeness \rightarrow size of $\{P_\mu(\mathbf{r})\}$ ~4-5 times size of $\{\varphi_i(\mathbf{r})\}$

"Resolution of identity" (RI) (density fitting)

independent auxiliary basis

Whitten, J. Chem. Phys. **58**, 4496 (1973); Dunlap, Rösch, and Trickey, Mol. Phys. **108**, 3167 (2010); Dunlap, J. Mol. Structure: THEOCHEM **501-502**, 221 (2000)

Finding the RI coefficients: RI-SVS

Finding better RI coefficients

$$\rho_{ij}(\mathbf{r}) = \varphi_i(\mathbf{r})\varphi_j(\mathbf{r}), \quad (ij \mid kl) = \int \frac{\rho_{ij}(\mathbf{r})\rho_{kl}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3r$$

Let us calculate the error in (*ij*|*ij*) – the largest integrals:

$$\delta(ij \mid ij) = 2\int \frac{\delta\rho_{ij}(\mathbf{r}) \left(\sum_{\nu} C_{ij}^{\nu} P_{\nu}(\mathbf{r}')\right)}{|\mathbf{r} - \mathbf{r}'|} d^{3}r d^{3}r' + \Delta(\delta\rho_{ij}^{2})$$

first-order correction does not vanish in RI-SVS!

Is it possible to do better without increasing the size of the auxiliary basis?

Finding better RI coefficients: RI-V

Set the first-order correction to zero, minimize second-order:

Finding better RI coefficients: RI-V

Distant aux. functions contribute to the integrals \rightarrow a lot of memory and operations \rightarrow scaling N^3

Localized RI-V (RI-LVL, Jürgen Wieferink)

Hartree-Fock exchange in extended systems

Electron repulsion integrals in periodic systems

RI-V is impractical for extended systems

RI-LVL: Sparse, easier to calculate, linear scaling is possible!

$$I_{ij\mathbf{R}',k\mathbf{R}/\mathbf{R}+\mathbf{R}''} = \sum_{\mu\mathbf{Q}'}\sum_{\nu\mathbf{Q}''}C_{i,j\mathbf{R}'}^{\mu\mathbf{Q}'}V_{\mu\nu(\mathbf{R}+\mathbf{Q}''-\mathbf{Q}')}C_{k,l\mathbf{R}''}^{\nu\mathbf{Q}''}$$

Scaling

Zincblend GaAs, standard tight settings, PBE0 (no symmetry!)

System size (number of atoms / unit cell), 48 CPUs

N atoms, kpt	Time/iter (s)	Scaling expon.
2, 8x8x8	140	1
16, 4x4x4	900	0.9
128, 2x2x2	9500	1.1-1.0

~ O(N_{atoms}) scaling!

Beyond mean-field for extended systems

Experiment

Experiment

Best possible theory

Experiment

Best possible theory

Exact solution within given well-defined approximations

Diffusion Monte Carlo (DMC) method

$$-\frac{\partial\Psi}{\partial(it)} = \hat{H}\Psi \Longrightarrow \left(\frac{\partial}{\partial\tau} - \frac{1}{2}\sum_{i}\nabla^{2}\right)\Psi = -V\Psi$$

Diffusion Monte Carlo (DMC) method

$$-\frac{\partial \Psi}{\partial(it)} = \hat{H}\Psi \Longrightarrow \left(\frac{\partial}{\partial \tau} - \frac{1}{2}\sum_{i}\nabla^{2}\right)\Psi = -V\Psi$$

Green's function - solution of the
same equation with initial
condition $G(\{\mathbf{r}\},\{\mathbf{r}'\},0) = \delta(\{\mathbf{r}\},\{\mathbf{r}'\})$
 $\Psi(\{\mathbf{r}\},\tau) = \int G(\{\mathbf{r}\},\{\mathbf{r}'\},\tau)\Psi(\{\mathbf{r}'\},0)d\{\mathbf{r}'\}$

Diffusion Monte Carlo (DMC) method

$$-\frac{\partial \Psi}{\partial(it)} = \hat{H}\Psi \Longrightarrow \left(\frac{\partial}{\partial \tau} - \frac{1}{2}\sum_{i}\nabla^{2}\right)\Psi = -V\Psi$$

Formal solution:

$$\int_{\mathbf{r}}^{\mathbf{Green's function - solution of the same equation with initial condition } G(\{\mathbf{r}\},\{\mathbf{r}'\},0) = \delta(\{\mathbf{r}\},\{\mathbf{r}'\},0) = \delta(\{\mathbf{r}\},\{\mathbf{r}\},0) = \delta(\{\mathbf{r}\},\{\mathbf{r}\},0)$$

DMC advantages and disadvantages

DMC advantages and disadvantages

DMC advantages and disadvantages

+ Very accurate for small systems

- + linear scaling implementations were demonstrated , easily parallelizable on many CPUs
- Sign problem (especially solids)→ fixed-node approximation (solutions exist, but computationally expensive)
- Computational cost increases as Z⁶ in all-electron calculations → need pseudopotentials
- Accurate calculation of energy gradients is difficult

The concept of mixing excitations

$$\hat{H}_{0}\Phi_{i} = E_{i}^{0}\Phi_{i} - \text{non-interacting effective particles (HF, DFT, etc.)}$$

$$|\Phi_{0}\rangle = \overline{+}, |\Phi_{1}\rangle = \overline{+}, |\Phi_{2}\rangle = \overline{+}, |\Phi_{2}\rangle = \overline{+}, ...$$

$$\{\Phi_{i}\} - \text{a basis set for N-electron wave functions}$$

$$\Psi_{i} = \sum_{j} c_{ij}\Phi_{j}, \quad [\hat{H}_{0} + (\hat{H} - \hat{H}_{0})]\sum_{j} c_{ij}\Phi_{j} = E_{i}\sum_{j} c_{ij}\Phi_{j}$$

$$Project \text{ onto } \langle\Phi_{k}| \neq \text{ equations for } C_{ij}:$$

$$\sum_{j} c_{ij}\langle\Phi_{k}|\Delta\hat{H}|\Phi_{j}\rangle = (E_{i} - E_{k}^{0})c_{ik}$$

$$configuration interaction$$

Configuration interaction in periodic systems

n – band index,*k* – k-point

excitations can change not only *n* but also *k*-point

Full configuration interaction (FCI)

$$\Psi_i = \sum_j c_{ij} \Phi_j$$
 - include ALL excitations of N electrons on M
orbitals (M is determined by the basis set size)

- + FCI is exact within given basis set
- + The result does not depend on the choice of orbitals in Φ_0
- + Gives ground and excited states
- The scaling with system size is combinatorial:

M!

(M - N)!N!

50 electrons on 100 orbitals \rightarrow 10²⁹x10²⁹ matrix diagonalization

Sparsity:
$$\left\langle \Phi^{(n)} \left| \hat{H} \right| \Phi^{(n\pm 2)} \right\rangle \neq 0$$
; need to evaluate ERIs

FCI quantum Monte Carlo (FCIQMC) method

Timing example: diamond, 4x4x4 k-points – 25,000 CPU hours, ±20 meV per atom remaining error in correlation energy

Booth, Grüneis, Kresse, and Alavi, Nature 493, 365 (2013)

FCI quantum Monte Carlo (FCIQMC) method

Percent of correlation energy captured by different methods relative to FCI (VASP, PAW)

Ferromagneticantiferromagnetic spin gap in NiO (VASP, PAW)

> Booth, Grüneis, Kresse, and Alavi, Nature **493**, 365 (2013)

Hierarchies of GS wave-function methods

Truncated CI (CISD, CISDT,...) Møller-Plesset perturbation theory (MP2, MP3, MP4,...)

Coupled-cluster (CCD,CCSD,CCSDT,...)

$$\Psi_0^{\{m\}} \rangle = \mathrm{e}^{\sum \hat{T}_i} \left| \Phi_0 \right\rangle$$

CI{*m*}: ~*n*^{*m*}*N*^{*m*+2}

MP*m***:** ~*n***N**^{*m*+2}

 $\left|\Psi_{0}^{\{m\}}\right\rangle = \sum_{i \leq m} \hat{T}_{i} \left|\Phi_{0}\right\rangle \quad E_{0}^{(2)} = \sum_{i \neq 0} \frac{\left|\left\langle\Phi_{0}\left|\hat{H}'\right|\Phi_{i}\right\rangle\right|^{2}}{E_{0}^{(0)} - E_{i}^{(0)}}$

CC{*m*}: ~*n^mN^{m+2}*

CCSDTQ

R.J. Bartlett, private communication

Ripples in the charged Fermi liquid

Random-phase approximation

Second-order energy correction (MP2, HF orbitals):

$$E_{0}^{(2)} = \sum_{i} \frac{\left| \left\langle \Phi_{0} \left| V \right| \Phi_{i} \right\rangle \right|^{2}}{E_{0}^{(0)} - E_{i}^{(0)}} = \sum_{ij,ab} \frac{2(ia \mid jb)((ia \mid jb) - (ib \mid ja))}{\varepsilon_{i} + \varepsilon_{j} - \varepsilon_{a} - \varepsilon_{b}}$$

$$(ia \mid jb) = \int \frac{\psi_i^*(\mathbf{r})\psi_a(\mathbf{r})\psi_j^*(\mathbf{r}')\psi_b(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Random-phase approximation

Second-order energy correction (MP2, HF orbitals):

$$E_{0}^{(2)} = \sum_{i} \frac{\left|\left\langle \Phi_{0} \left| V \right| \Phi_{i} \right\rangle\right|^{2}}{E_{0}^{(0)} - E_{i}^{(0)}} = \sum_{ij,ab} \frac{2(ia \mid jb)((ia \mid jb) - (ib \mid ja))}{\varepsilon_{i} + \varepsilon_{j} - \varepsilon_{a} - \varepsilon_{b}}$$

$$(ia \mid jb) = \int \frac{\psi_{i}^{*}(\mathbf{r})\psi_{a}(\mathbf{r})\psi_{j}^{*}(\mathbf{r}')\psi_{b}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|}$$

$$(correlation exchange)$$

Random-phase approximation

Second-order energy correction (MP2, HF orbitals):

Random-phase approximation and beyond

 $E_{\rm c}^{\rm RPA} = \int_{0}^{\infty} \left[\ln(\det(1 - \{\chi_0(\omega)V\}_{\mu\nu})) + \operatorname{Tr}(\{\chi_0(\omega)V\}_{\mu\nu})\right] d\omega$

Kohn-Sham polarizability:

$$\chi_0(\mathbf{r},\mathbf{r}',\omega) = \sum_{i}^{\operatorname{occ}} \sum_{a}^{\operatorname{unocc}} \frac{\psi_i^*(\mathbf{r})\psi_a(\mathbf{r})\psi_a^*(\mathbf{r}')\psi_i(\mathbf{r}')}{i\omega - (\varepsilon_a - \varepsilon_i)} + \operatorname{c.c.}$$

Renormalized second-order perturbation theory (rPT2):

$$E_{\rm c}^{\rm rPT2} = \underbrace{\bigcirc}_{\times}^{\times} + \underbrace{\bigcirc}_{\times} + \ldots$$

single excitations RPA second-order screened exchange Ren, Rinke, Joas, and Scheffler, Invited Review, Mater. Sci. 47, 21 (2012)

Conclusions

• Practically all beyond-DFT methods involve calculation of the electron repulsion integrals (ERIs)

• ERIs can be evaluated efficiently by using resolution of identity (density fitting) and taking into account sparsity

• Wave function methods slowly but steadily enter the arena of condensed matter physics

• Exploration of the connection between wave-function methods (coupled-cluster) and many-body perturbation theory (beyond RPA) continues

Acknowledgements

Volker Blum

Patrick Rinke

Rainer Johanni

Jürgen Wieferink

Xinguo Ren

Igor Ying Zhang

Matthias Scheffler

Finding better RI coefficients: RI-V

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \int V^{\frac{1}{2}}(\mathbf{r}, \mathbf{r}'') V^{\frac{1}{2}}(\mathbf{r}', \mathbf{r}'') d^3 r''$$

$$\varphi_i(\mathbf{r}'') \varphi_j(\mathbf{r}'') V^{\frac{1}{2}}(\mathbf{r}, \mathbf{r}'') d^3 r'' \approx \sum_{v} C_{ij}^v \int P_v(\mathbf{r}'') V^{\frac{1}{2}}(\mathbf{r}, \mathbf{r}'') d^3 r''$$

$$(ij \mid ij) = \int \tilde{\rho}_{ij}(\mathbf{r})^2 d^3 r$$

J

$$(ij \mid ij) = \int \widetilde{\rho}_{ij}(\mathbf{r})^2 d^3 r, \ \widetilde{\rho}_{ij}(\mathbf{r}) = \int \varphi_i(\mathbf{r}'') \varphi_j(\mathbf{r}'') V^{\frac{1}{2}}(\mathbf{r},\mathbf{r}'') d^3 r''$$