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Chapter 1

What PLUMED is and what it can do

PLUMED is a series of open source (L-GPL) routines that are now interfaced to a number
of molecular dynamics engines (beyond FHI-aims: NAMD, GROMACS, LAMMPS, ACEMD,
SANDER, CPMD, G09-ADMP, and more) that enable the code to perform a number of en-
hanced sampling calculations. Its core consists in a routine that takes the position of the atoms
at each timestep and introduces forces according to the specific configuration of the system:
this is the core of many enhanced sampling calculations. Since this is a very tiny link to the
MD code, this can be done in a rather general way and that is on of the main reasons why
many MD codes incorporates it.

The usefulness of these enhanced sampling calculations is that they allow for calculating
free-energy differences associated to conformational transitions, chemical reaction and phase
transitions.

In general, the free energy of a system in a specific point can be defined as

F (s) = − 1

β
logP (s) (1.1)

where F is the Helmoltz’s free energy, s is a descriptor of the system (a bond distance, angle,
or another generic order parameter of some sort), P (s) is the probability that the system is in
the state labelled by the descriptor s, β = 1/kBT where kB is the Boltzmann constant and T
is the temperature of the system.

Therefore, building an histogram of the conformations is the easiest way one can build a
free-energy profile as a function of some parameter.

Unfortunately, very often it happens that the exploration via MD is all but exhaustive. In
fact the system may stay trapped in some minimum inasmuch the kinetic energy provided from
the thermostat (which is 0.5kBT = 0.3 kcal/mol per degree of freedom at 300 K) very often does
not allow for the the overcoming of barriers within the usual time span of a MD simulations
(typically tens to hundreds of ps for ab initio MD, up to several µs for classical-force-field-based
MD). In this case we say that the system is in a ”metastable state” which is exemplified in the
Fig. 1

In order to illustrate this, let us consider a typical barrier for a chemical reaction: ∆U ‡ ' 8
kcal/mol. One can estimate the rate of a reaction by using the Arrhenius equation that reads

ν(T ) = ν0 exp
−∆U‡

kBT . (1.2)

By considering ν0 for a typical covalent bond, ν0 = 5 109s−1, as an upper bound, one easily get
a rate of 7 103 events per second. Therefore, each single event can well take up to a millisecond
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and the observation of one single event is (very) fortuitous in the typical timescales of a DFT-
based MD. Moreover, since the estimate of the probability requires converged statistics, the
converged free-energy calculation can require even much more time.

Figure 1.1: Sketch of the typical case where the dynamics is locked in a metastable state. Upper panel: the
real free energy landscape is represented for a model landscape. Since the kinetic energy is low compared to
the barrier, the crossing is highly unlikely and the system stays trapped. The observed probability is reported
in the middle panel and in the lower panel is the computed free energy from the histogram. This is clearly
different from the actual one which is reported in the upper panel.

What PLUMED can do is to physically displace the system from where it is so that you can
measure the slope of the free-energy landscape in various ways and then reconstruct the free
energy or simply make some event happen. In the next we’ll show some basic functionalities.
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Chapter 2

Basics: how to enable PLUMED in
FHI-aims

Enabling PLUMED from FHI-aims requires a separate compilation. A separate

Makefile.meta

is provided (see FHI-aims manual).
For this workshop, however, you are provided with a pre-compiled version: NAME-O’-THE-

FILE? which is already compiled with the PLUMED capability switched on.

The actual use of the plugin is switched on by this single line in control.in:

plumed .true.

With plumed .false. (default) or nothing, the code would behave exactly as compiled without
this plugin. It is implied that some MD scheme must be used in control.in, in order to see
PLUMED acting. What PLUMED does, in facts, is to modify the molecular dynamics forces
according to the selected scheme.
All the specific controls of the free-energy calculation are contained in the file plumed.dat

(which must be in the working directory, together with control.in and geometry.in, if plumed
.true. is set).

Figure 2.1: A sketch of SN2 reaction

As a simple example, let’s consider a methyl-chloride molecule and a chlorine ion. This is
a well studied system and computationally convenient. Additionally, the chlorine anion is able
to displace the second chlorine and give a SN2 (bimolecular nucleophilic substitution) type of
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reaction represented in Fig 2.1. This is a well studied system (see [?]) and yet computationally
convenient.

Concerning FHI-aims setup, all the results reported below are performed with a ”first tier”
basis set and an outer grid of 302. Runs of this size may take almost two hours on 4 proc
machine for 5 ps (typical run time in these calculations). In order to fit into a tutorial time,
pw-lda density functional and an outer grid of 194 could be used. Here we report a minimal
example of plumed.dat that just calculates a couple of distances between one atom and (the
geometric center of) a group of atoms along the simulation:

#

# Note: distances are reported in bohr

#

DISTANCE LIST 1 <g1>

g1->

3 4 5 6

g1<-

DISTANCE LIST 2 <g1>

PRINT W_STRIDE 2

ENDMETA

The first line tells PLUMED that a distance should be calculated between the bound chlorine,
which is atom number 1 (the first atom in FHI-aims geometry.in file) and the geometric center
of a group of three atom represented by the symbol <g1> that correspond to the methyl group.
The notation

g1->

3 4 5 6

g1<-

starts the group, puts the number of the atoms included in it, and closes the group. The other
line DISTANCE LIST 2 <g1> asks for the calculation of the distance between the unbound
chlorine and the methyl group. The line

PRINT W_STRIDE 2

determines that the distance (and other relevant informations) will be printed later every 2
timesteps in the COLVAR file. Every time that you restart a simulation, the old COLVAR file is
backed up in COLVAR.old and a new COLVAR file is written. Beware that if you do this two
times the first COLVAR file will be lost.

PLUMED produces also a PLUMED.OUT file which is very important for understanding whether
PLUMED is really doing what you asked it to do. We really warmly recommend everyone to
give a read to it. You can find there also useful citations for specific methods implemented.
This file is never backed up and is overwritten every time.

Please note that all the settings and examples reported for this molecule are meant only to
allow you to do some exercise within the time of the tutorial and are NOT, BY ANY MEANS,
similar to a good production setup which is much more computational intensive. Therefore, for
the same reasons, we do not enter in the details of the simulations but for one single exception:
the calculation is a molecular dynamics. In our case the input contains a section that looks
like:
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MD_run 5.0 NVT_parrinello 300 0.1

MD_time_step 0.001

MD_clean_rotations .true.

MD_restart .false.

output_level MD_light

MD_MB_init 300

MD_RNG_seed 12345

plumed .true.

which denotes a molecular dynamics setup where one specifies the ensemble NVT parrinello

300 0.1 (a stochastic thermostat [?] at 300K with a coupling parameter τ of value 0.1 ps), with
the initial temperature set to 300 K (MD MB init 300) and a timestep of 1 fs (MD time step

0.001) which is an upper limit for hydrogen containing molecules (we would recommend 0.25 fs
for production). Additionally the statement plumed .true. denotes the activation of plumed,
therefore a plumed.dat file should be present in the same directory where geometry.in and
control.in are.

When sending the calculation, one obtains a PLUMED.OUT file in which it is reported, among
the other things:

::::::::::::::::: READING PLUMED INPUT :::::::::::::::::

|- GROUP FOUND: g1

|- GROUP MEMBERS: 3 4 5 6

1-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 4 ATOMS); PBC ON

|- DISCARDING DISTANCE COMPONENTS (XYZ): 000

|- 1st SET MEMBERS: 1

|- 2nd SET MEMBERS: 3 4 5 6

2-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 4 ATOMS); PBC ON

|- DISCARDING DISTANCE COMPONENTS (XYZ): 000

|- 1st SET MEMBERS: 2

|- 2nd SET MEMBERS: 3 4 5 6

|-PRINTING ON COLVAR FILE EVERY 2 STEPS

|-INITIAL TIME OFFSET IS 0.000000 TIME UNITS

|-ANALYSIS: YOU WILL ONLY MONITOR YOUR CVs DYNAMICS

This means that the groups are detected correctly and that the distances are correctly inter-
preted along with the PRINT command.

Along with it the COLVAR file is obtained. Its format is typically like

#! FIELDS time cv1 cv2

0.0020 3.624455684 5.681056610

0.0040 3.645635574 5.666974513

0.0060 3.667778896 5.652366040

0.0080 3.690936439 5.637267098
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In the first line is a summary of the fields that one is seeing, namely the time (in ps, the time
units of FHI-aims) and the two CVs (in this case two distances, reported in bohr which is the
natural distance unit used internally to FHI-aims).

What we observe, by plotting this distance is that the second CV (the distance between the
unbound chlorine and the methyl group) is oscillating around 5.75 bohr and never reach the
distance of the other C-Cl bond which is around 3.7 bohr. As a matter of fact this represent
a metastability since it never shows the other symmetric complex. The metastability is due to
the fact that the chlorine atom creates a partial positive charge on the methyl group and the
negative anion feels a Coulombic attraction to it.

It is worth mentioning that, since FHI-aims dumps the coordinate at each timestep, one can
do this analysis a posteriori via the driver utility included in PLUMED distribution and by
using the nice interface of VMD (Extensions-Analysis-Collective Variable analyis (PLUMED))
created by Toni Giorgino.
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Chapter 3

A simple bias on the system

Now let’s try to apply a simple harmonic bias, often called “harmonic potential”, that stretches
the bond and thus “encourages” the transition. This is the first example that shows how
PLUMED biases the simulation.

First, in addition to the previous descriptor, we add another one, namely the difference
between the two distances. This is a rather well known and used descriptor whenever some
bond breaking/bond forming reaction is involved since, by moving from one value to its negative
(in the case of such symmetric reaction), it allows to simultaneously breaking one bond while
forming another one.

The plumed.dat file therefore will look like:

#

# monitor the two components

#

g1->

3 4 5 6

g1<-

DISTANCE LIST 1 <g1>

DISTANCE LIST 2 <g1>

PRINT W_STRIDE 1

# the distance between C-Cl’ and C-Cl

DISTANCE LIST 1 <g1> DIFFDIST 2 <g1>

UMBRELLA CV 3 AT 0.0 KAPPA 0.01

ENDMETA

Note that here we have additionally put the directive:
UMBRELLA CV 1 AT 0.0 KAPPA 0.01

This enables the addition of the harmonic potential that has the form:

Ubias(x) =
k

2
(CV (x)− CV0)2 (3.1)

in which AT determines the CV0, KAPPA determines the k value. In this case the units of k are
hartee/bohr2 so that the energy is in hartree.

The output of PLUMED.OUT in this case shows a line like

|-UMBRELLA SAMPLING OF COLVAR 3 AT 0.00: SPRING=0.010 SLOPE=0.00
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Figure 3.1: A plot of time evolution of the distances of the two chlorine atoms to the central methyl group in
case of plain dynamics and biased dynamics.

which denotes the addition of the harmonic bias.
The output of COLVAR changes in something like:

#! FIELDS time cv1 cv2 cv3 vwall XX XX RST3 WORK3

0.002 3.604 5.694 -2.090 0.021 RST 3 0.000 0.000

0.004 3.668 5.644 -1.975 0.019 RST 3 0.000 0.000

0.006 3.709 5.607 -1.897 0.018 RST 3 0.000 0.000

0.008 3.768 5.555 -1.787 0.015 RST 3 0.000 0.000

0.010 3.834 5.495 -1.661 0.013 RST 3 0.000 0.000

0.012 3.898 5.434 -1.535 0.011 RST 3 0.000 0.000

in which it appears a new field: vwall. This is the potential energy calculated by the harmonic
potential. The other remaining fields on the right are only relevant with a moving restraint
(see below).

Now, in order to compare with the unbiased results, let’s compare the two bond distances
in the plain simulation and in the biased one. In Fig. 3.1 it is evident that the umbrella
potential is biasing the two distance toward a set of values whose difference is centered on zero
value. Since at the beginning the simulation is starting far from the zero value imposed by the
umbrella potential, initially the simulation is dominated by this spring and oscillates strongly
around the center of the harmonic potential. Generally this behavior disappeares after a while,
when the system reaches equilibrium. For this reason it is generally better to use some moving
restrain potential that gently drags the system in the desired position (see below).

Conceptually, this procedure is not only allowing to see a transition that otherwise will never
happen in a system, but has also a thermodynamic meaning that we can explore here. Let’s
start from the common definition of Helmoltz free energy as function of an order parameter.

F (s0) = − 1

β
lnP (s0) (3.2)
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= − 1

β
ln

∫
e−βV (x)δ(s(x)− s0)dx

Q
(3.3)

with Q being the canonical partition function:

Q =
∫
e−βV (x)dx . (3.4)

Now we can relate this free energy with the one obtained from a biased ensemble in which we
use a function Vb(s) (in the example was the harmonic function). This would read

Fb(s0) = − 1

β
lnPb(s0) (3.5)

= − 1

β
ln

∫
e−β(V (x)+Vb(s(x)))δ(s(x)− s0)dx

Qb

(3.6)

with

Qb =
∫
e−β(V (x)+Vb(s(x))dx (3.7)

Since all the points selected by the delta function δ(s(x)−s0) present the same value of Vb(s(x)),
the exponential related to the bias can be pulled out from the integral to give:

Fb(s0) = − 1

β
ln e−βVb(s0)

∫
e−βV (x)δ(s(x)− s0)dx

Qb

(3.8)

= Vb(s0)−
1

β
ln

∫
e−βV (x)δ(s(x)− s0)dx

Qb

(3.9)

= Vb(s0)−
1

β
lnP (s)

Q

Qb

(3.10)

= Vb(s0)−
1

β
lnP (s) +

1

β
ln
Q

Qb

(3.11)

= Vb(s0)−
1

β
lnP (s) + C (3.12)

Fb(s0) = Vb(s0) + F (s0) + C (3.13)

from which one has:

F (s0) = Fb(s0)− Vb(s0) + C (3.14)

that means that, from a biased simulation, one can retrieve the correct free energy just by
knowing the bias and the histogram in the biased ensemble. So, if one can find a function that
compensates the free-energy landscape, then the system is free to travel in the space of CVs and
the histogram can be acquired with accuracy since all the metastabilities are removed. This
is crucial for many enhanced sampling methods, e.g., Metadynamics (MetaD) [?] that relies
exactly on an iterative procedure aimed to produce the compensating potential.

Let’s try this approach on this case. Please consider that, in order to obtain a good-quality
estimate of the free energy, one should have a long trajectory and check the convergence, the
easiest way being the comparison of histograms from the first half of the trajectory and the
second half of the trajectory. First we retrieve the probability from the trajectory. This can be
done with the awk script provided.

grep -v FIELDS COLVAR >f1

awk ’{print $1,$4}’ f1 |./distribution.awk >dist
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Figure 3.2: A sketch of the distribution from the umbrella potential for the SN2 reaction.
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Figure 3.3: A sketch of the unbiasing procedure and the results for the SN2 reaction
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then the free energy can be calculated with one liner in gnuplot

p "dist" u 1:(-(0.597)*log($2)-0.5*0.01*627.51*($1*$1)) w lp

that aim to plot the probability of the biased ensemble -(0.597)*log($2) where 0.597 is kBT
in kcal/mol at 300K and -0.5*0.01*627.51*($1*$1) is the harmonic bias, converted from
hartee into kcal/mol (the results of this calculation can be exported through set term table;

rep commands in gnuplot).
It is worth noting that the calculation involves a logarithm of a probability that around +/-2

bohr goes to zero. This number is actually unreliable and therefore the free energy is trustable
only in the region where most of the probability is concentrated.

For this reason generally one imposes many umbrella potentials centered on different points
along the reaction coordinate and then combine the probabilities only in the regions where they
are reliable. This is achieved by imposing the minimization of the errors. The most applied
procedure for doing this is called Weighted Histogram Analysis Method (WHAM) (see [?, ?]
and [?]).

Another necessary word is to be spent on the plausibility of results: a plot like the one shown
in Fig. 3.2 is clearly suspicious since the reaction should be symmetric while the distribution
has some spikes. This is generally a sign of bad convergence. This is of course inevitable in
the short running time of a tutorial but should be carefully checked in production runs and
its origin should be understood. Very often it is the character of the descriptor itself that can
produce various aberrations since it may compress the phase space in anisotropic way. This
is not a problem as far as it is understood as an issue different from the convergence of the
calculations.
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Chapter 4

A moving bias on the system

Another possibility that plumed offers is the use of time dependent biases. The simplest of
them has the following form:

Ubias(x, t) =
k

2
(CV (x)− CV0(t))2 (4.1)

where

CV0(t) = CV ′0 + vt (4.2)

which represents a harmonic restraint whose center is displaced linearly with time. This might
be useful whenever a single umbrella is very far from a desired target configuration in CV space
or, more simply, to produce nice movies in which a lot happens in a small time (but at the cost
of the real physics).

The plumed.dat file then is:

g1->

3 4 5 6

g1<-

DISTANCE LIST 1 <g1>

DISTANCE LIST 2 <g1>

DISTANCE LIST 1 <g1> DIFFDIST 2 <g1>

STEER CV 3 TO 2.35 VEL 2.50 KAPPA 0.1

PRINT W_STRIDE 1

ENDMETA

where the added line with the directive STEER is gently dragging the system to the value of 2.35
bohr with a velocity of 2.5 bohr each 1000 steps. The spring constant is set 0.1 hartree/bohr2

and the initial center CV ′0 is taken as the value of the descriptor at the initial step. in a
simulation where there is a time dependent restraint very often, especially for small systems,
a more aggressive thermostatting (reduced period) is needed to dissipate the thermal energy
externally added by the moving potential. This is true also for metadynamics.

It is important to bear in mind that such ”steered MD” simulations may have very little
physical meaning and are here reported just to let the reader be familiar with PLUMED and
its capabilities. The reason behind their limited usefulness is that in most of the cases these are
”out-of-equilibrium” simulations and they are not representative of equilibrium ensemble that
is generally of interest for simulations. However, Jarzynski [?] inequality provides a connection
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between out-of-equilibrium trajectories and equilibrium free energy differences. This inequality
consists in:

∆F = −β−1 ln < exp(−βW ) > (4.3)

where the average is calculated over the work obtained from a number of out-of-equilibrium
trajectories. The value of W can be obtained via

W =
∫ ts

0
dt

∂Hb(x, t)

∂t
(4.4)

where Hb is a modified hamiltonian which contains an additional term, namely:

Hb(x, t) = H(x) + Ubias(x, t) (4.5)

From which it comes naturally that the derivative is simply:

∂Hb(x, t)

∂t
= −vk(CV (x)− CV ′0 − vt) (4.6)

= −vk(CV (x)− λ(t)) (4.7)

and therefore the integralW can be obtained simply by quadrature summing up all the deviation
respect to the position of the mobile center of the harmonic restraint. In the limit of lots of
pulling therefore meaningful free-energy differences can be retrieved.

The COLVAR output reads

#! FIELDS time cv1 cv2 cv3 XX XX RST3 WORK3

0.0020 3.604 5.694 -2.090 RST 3 -2.090 0.000000000

0.0040 3.642 5.669 -2.026 RST 3 -2.088 -0.000011999

0.0060 3.655 5.662 -2.006 RST 3 -2.085 -0.000029506

0.0080 3.669 5.658 -1.988 RST 3 -2.083 -0.000051119

0.0100 3.680 5.658 -1.978 RST 3 -2.080 -0.000075653

0.0120 3.685 5.665 -1.979 RST 3 -2.078 -0.000100674

where in the RST3 column it is reported the center of the moving harmonic potential and in
the WORK3 the accumulated work up to that time (in hartree units).

It is rather important to understand that a calculation of such kind can be very challenging
since the exponential average in Eq. 4.3 tends to give enormous weight to the trajectories
that have less work. Additionally, slow steering speed and tight spring constant in which the
descriptor follows closely the center of the moving harmonic potential generally deliver better
results but in general, if the descriptor is wrong or the landscape is dominated by entropy and
is degenerate (presents multiple pathways), generally it is not advisable to use this technique.

Additionally it is worth mentioning that forward and backward pulling can be combined via
the Crooks’ theorem [?].

The resulting work profile 4.2 is rather plausible if compared with [?]. The reason for this
is that the system presents very few orthogonal degrees of freedom and is highly symmetrical,
therefore the pathways are not degenerate and the reaction coordinate is well oriented respect
to the real reaction coordinate. This is a rather unique case since in many other systems the
value of work can be as large as 10-fold the expected free energy.
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Figure 4.1: The instantaneous value of the descriptor follows closely the red line of the center of the harmonic
potential.
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Chapter 5

A metadynamics example

Metadynamics adds an adaptive potential to the simulation that grows with simulation time.
Intuitively its functioning relies on Eq. 3.14 and, in order to find the best possible approximation
to the perfectly compensating bias it adopts a history dependent potential. This bias potential
acts on a restricted number of degrees of freedom of the system s(x) = (s1(x), ..., sd(x)) often
referred to as collective variables or CVs. The metadynamics potential V (s, t) varies with time
t and is constructed as a sum of Gaussian functions, or hills, deposited during the simulation:

V (s, t) =
∫ t

0
dt′ω exp

(
−

d∑
i=1

(si(x)− Si(x(t′))2

2σ2
i

)
, (5.1)

where σi is the Gaussian width corresponding to the i-th CV and ω the rate at which the
bias grows. In the practice, Gaussians of height equal to W are deposited every τ MD steps,
so that ω = W/τ .

The function of these Gaussian potentials is to discourage the system to revisit the previously
visited points in CV space and reach the point in which all the points in CV space are equally
sampled in time that delivers a flat histogram which has no contribution on the free energy.
Under this assumption the Helmoltz free energy results to be the negative of the deposited bias.

In order to perform a metadynamics simulation we have to:

• Choose wisely the set of CVs to address the problem. This is a long story. To cut it
short, CVs a) should clearly distinguish between the initial state, the final state and the
intermediates, b) should describe all the slow events that are relevant to the process of
interest, c) their number should not be too large, otherwise it will take a very long time
to fill the free energy surface.

• Choose the Gaussian height W and the deposition stride τ . These two variables determine
the rate of energy added to your simulation. If this is too large, the free-energy surface will
be explored at a fast pace, but the reconstructed profile will be affected by large errors. If
the rate is small, the reconstruction will be accurate, but it will take a longer time. The
error on the reconstructed FES depends on the ratio W/τ , not on the two parameters
alone [?].

• Choose the Gaussian width σi. This parameter determines the resolution of the recon-
structed FES. The sum of Gaussians reproduces efficiently (i.e. in a finite simulation time)
features of the FES on a scale larger than σi. A practical rule is to choose the width as a
fraction (half or one third) of the CV fluctuations in an unbiased simulation. This is not a
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Figure 5.1: The fluctuation calculated during the unbiased dynamics for the two methyl-chloride distances. A
gaussian fit is overlapped with the distribution calculated. The σ=0.11 bohr for the black profile and σ=0.440
bohr for the red profile.

golden rule, since the value of the fluctuations is not universal but usually depends on the
position in the CV space (see Fig. 5.1 for the calculation of the fluctuation on the CVs
used for tracking the unbiased dynamics). In particular, although intuitively a larger σ
could bring to a faster filling, very often, when the choice is not clear as in 5.1 it is much
better to adopt the smaller one since it guarantees a better resolution and ability to fill
up both narrow and large wells.

To activate a metadynamics calculation in PLUMED you have to use the directive HILLS. The
deposition stride τ is specified in unit of time steps by the keyword W STRIDE, the height W
by HEIGHT in internal units of energy of the MD code used. The Gaussian width σi must be
specified on the line of each CVs with the keyword SIGMA.

Generally metadynamics is to be preferred for multidimensional problems that require no
more than 3/4 CVs. The reason is that in metadynamics one does not need to explore all
the space in CV to have an estimate of the free-energy landscape in a region of interest since
metadynamics start exploring and filling with potential the regions at low free energy, which
are the most interesting. In other methods, like WHAM combined with e.g. umbrella sampling,
one has to define a priori the grid and the systematic exploration becomes cumbersome in a
high-dimensional space.

For the usual case of the SN2 reaction one could think that, instead of exploring the differ-
ence of distances, one could be interested in exploring independently the two methyl-chloride
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distances (so that we show how to set up a multidimensional calculation). Nevertheless, we
expect that we are not really interested in unbound states where the methyl-Cl distance is
above 6.5 Bohr. This require to introduce an artificial soft wall to prevent the system from
visiting nonreactive regions which might be trivially low in energy.

A possible input therefore reads:

DISTANCE LIST 1 <g1> SIGMA 0.11

g1->

3 4 5 6

g1<-

DISTANCE LIST 2 <g1> SIGMA 0.11

UWALL CV 1 LIMIT 7. KAPPA 0.5

UWALL CV 2 LIMIT 7. KAPPA 0.5

HILLS HEIGHT 0.00047 W_STRIDE 50

PRINT W_STRIDE 2

ENDMETA

which present a SIGMA value for each of the CVs on which the metadynamics is active (it could
be a subset of all the CVs) and a specific line starting with HILLS that specify the height and
the deposition time. Additionally we included the confining potential, denoted by UWALL (upper
wall) which impose a quartic wall in order to prevent the system to escape from the reactive
region.

The typical COLVAR files that one obtains is similar to this:

#! FIELDS time cv1 cv2 vbias vwall

0.8240 3.723740474 6.868711550 0.000029924 0.000000000

0.8280 3.691187802 6.931429351 0.000013739 0.000000000

0.8320 3.639273674 6.998560142 0.000004823 0.000000000

0.8360 3.558399168 7.083118628 0.000000000 0.000023865

0.8400 3.478637841 7.159044915 0.000000000 0.000319926

0.8440 3.424739803 7.208958444 0.000000000 0.000953256

0.8480 3.428390769 7.207133491 0.000000000 0.000920389

0.8520 3.493585587 7.155388196 0.000000000 0.000291502

0.8560 3.601809461 7.072873461 0.000000000 0.000014101

0.8600 3.707646538 6.990032405 0.000002236 0.000000000

0.8640 3.779941165 6.922057261 0.000001894 0.000000000

0.8680 3.815026536 6.863783677 0.000004640 0.000000000

0.8840 3.708208013 6.668182930 0.000348923 0.000000000

in which two additional fields are present vbias which is the potential energy due to the hills
potentials of metadynamics and vwall which is the potential exerted by the quartic wall (in
fact is acting only for values of the second CV larger than 7).

In addition to this, PLUMED produces a HILLS. For two-dimensional Gaussian potentials each
line consists of time, the position of the centers in the two dimension, the width of the Gaussian
potential in the two dimensions (in bohr since distances are used as CVs), the height (in hartree)
and a multiplicative factor that is only useful when welltemperered metadynamics[?] is enabled.

0.100 3.797 5.972 0.110 0.110 0.00047 0.000

0.200 3.731 6.191 0.110 0.110 0.00047 0.000
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Figure 5.2: The partial 2-dimensional free energy surface after 15 ps of metadynamics. Each isosurface represents
kcal/mol.

0.300 3.668 5.823 0.110 0.110 0.00047 0.000

0.400 3.769 5.619 0.110 0.110 0.00047 0.000

During the simulation one can inspect the instantaneous estimate of the free energy by using
the sum hills program included in PLUMED. which integrate the HILLS file over a domain and
produce a surface called fes.dat. This is invoked with

sum_hills -ndim 2 -ndw 1 2 -file HILLS

Note that, after 15 ps of metadynamics, the system has still not crossed the transition state
that should be located at 4.5 bohr in both dimensions. This reflects the intrinsic difficulty of
a multidimensional calculation that should be taken into account whenever setting a multidi-
mensional free-energy calculation (the same holds also for methods other than metadynamics,
as WHAM). In this case a better choice of CVs, like the difference of distances shown before,
allow to reduce the dimensionality of the problem and allow a faster exploration.

Another important fact that should be taken into account when running a metadynamics
run is that it allows for a ”prior”, which means that at the beginning the free-energy landscape
is assumed flat (no hills). With the evolution of the bias potential, the estimate of free energy
landscape is progressively revised and improved. Nevertheless, those regions for which the
potential is zero means that they are not sampled by metadynamics and therefore should not
be interpreted. For other methods based on the logarithm of probabilities this would turn into
the negative logarithm of zero which is infinite and therefore cannot be interpreted.
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Figure 5.3: The timeline of the two distances during metadynamics. The two main basins are filled and then
the dynamics proceeds in an almost diffusive regime.

After more than 20 ps of metadynamics the transition state is crossed and the system
spends other more than 20 ps to fill the second basin. After that point the system spends
considerable less time for each transition and the transition state is repeatedly recrossed. Within
this regime the metadynamics can be considered to provide a valid representation of the free
energy. Additionally it is worth remembering that metadynamics samples the lowest basin
first, therefore it scales with a computational effort which is less then a power law of the
dimensionality used in the metadynamics itself if the landscape is not too complex.
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Chapter 6

Other features and conclusions

This brief summary is intended only to give a first approach to the free-energy calculation
problem with PLUMED. We recommend, before embarking any serious project, to devote time to
read the literature and in particular the classic books [?, ?, ?] to acquire a solid background
in both simulation techniques and statistical mechanics. PLUMED itself includes many more
techniques than those outlined here. Among all it is worth citing multiple walkers metadynamics
[?], well-tempered metadynamics [?], d-AFED [?],well-tempered ensemble[?] reconnaissance
metadynamics [?] to name a few that are implemented an ready to use in conjuction with FHI-
aims (other replica-exchange-based methods will be available soon on a script based method
as the plain replica exchange MD already available for FHI-aims, see manual). Additionally,
flexible steering schedules are available via STEERPLAN directives. More than this, PLUMED

allows to have plenty of CVs available: from angles to torsion to coordination number up to
path collective variables [?]. The investigation of the optimal space for projection of the free
energy is a very active field indeed.

This is rather central every time one wants to perform a free-energy calculation and should
be carefully explored and analyzed. Literature very often helps a lot in this respect.
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