

Morten N. Gjerding mogje@fysik.dtu.dk Department of Physics, Technical University of Denmark

Hands-On DFT, Barcelona August 30, 2019

HIGH-THROUGHPUT COMPUTATIONS WITH THE ATOMIC SIMULATION ENVIRONMENT

Outline

- A high-throughput case study: The Computational 2D Materials Database (C2DB)
 - Model testing
 - Searching for novel materials
- The Atomic Simulation Recipes (ASR)
- Conclusions

Acknowledgements

CNG

Center for nanostructured graphene Center of Excellence: Nanostructured Graphene, 2012-2022.

Danmarks Grundforskningsfond Danish National Research Foundation

ERC

European Research Council Designing Light-matter Interactions with Quantum Designed 2D Materials (LIMA) ERC project 2018-2023

CAMD@DTU

- Sten Haastrup, PhD
- Anders Riis-Jensen, PhD
- Daniele Torelli, PhD
- Simone Manti, PhD
- Morten Gjerding, postdoc
- Thorsten Deilmann, postdoc
 Münster
- Mikkel Strange, Industry
- Fabian Felix Bertoldo, PhD
- Luca Vanucci, postdoc

- Kirsten Winther, postdoc
 Stanford
- Mohnish Pandey, postdoc Ulm
- Thomas Olsen, Assoc. Prof. DTU
- Kristian Thygesen, Prof. DTU
- Jens J. Mortensen, software developer
- Ole H. Nielsen, HPC Officer

The GPAW code

GPAW – projector augmented wave method for DFT and beyond

J. Enkovaara *et al.* J. Phys.:Cond. Mat. **22** (2010) ← **Review article** https://wiki.fysik.dtu.dk/gpaw/ ← **Free download, GPL**

□ High accuracy: Wave functions expanded on real space grids or plane waves

- □ High efficiency: Wave functions expanded in atomic-like orbitals (LCAO)
- \Box Efficient parallelization (good scalability up to > 32.000 CPUs)
- □ Time-dependent DFT (linear response+time propagation)
- □ Many-body perturbation theory (GW and Bethe-Salpeter equation)
- $\hfill\square$ Electron-phonon coupling
- QM/MM
- □ Very well integrated with the ASE

Why study 2D materials?

- **Novel properties** driven by reduced screening and quantum confinement
- Extreme thinness makes it possible to control electrons, spins, photons at the atomic scale
- Stacked 2D materials provide defect free, atomically sharp interfaces
- Ideal for benchmarking and advancing *ab-initio* computational methods
- Potential for new technologies, e.g. nanophotonics, spintronics, catalysis, batteries,...

Cui *et al.* Nature Nano 10, 534 (2015)

Massicotte *et al.* Nature Nano (2015)

The Computational 2D Materials Database

http://c2db.fysik.dtu.dk Haastrup *et al.* 2D Materials **5** 042002 (2018)

Organizes structural, thermodynamic, elastic, electronic, magnetic, and optical properties of 4000 monolayers distributed over 40 different crystal structures

The workflow

When is a material stable?

Stability of all materials in the C2DB

Exploring the *property dimension* of materials space

materials

c2db.fysik.dtu.dk -> click browse

+

Computational 2D materials database

Search formula e.g. N	loS2 Q	
Structure prototype:	- v	
Class of material:	X.	
Dynamic stability:	- · · ·	
Thermodynamic stability	/	
Magnetic state:	- V.	
Band gap range [eV]:	- PBE ~	
Help with constructing adva	anced search queries	
Toggle list of keys		

Displaying rows 1-25 out of 3712

G

俞

Formula X Prototype X Magnetic state X Space group X Heat of formation X Band gap (PBE) X Work function X Ag₂O₂ AuSe NM Pm -0.046 0.164 -NM AuSe Pm 0.064 0.962 Ag₂S₂ _ Ag₂Se₂ AuSe NM Pm 0.022 0.751 _ AuSe NM Pm 0.059 0.478 Ag₂Te₂ -Au₂O₂ AuSe NM P2/m -0.010 0.175 _ AuSe NM Pm -0.091 1.218 Au₂S₂ -NM -0.116 0.957 Au₂Se₂ AuSe Pm -Au₂Te₂ AuSe NM Pm -0.105 0.622 -AuSe FM Co₂O₂ Pm -0.557 0.000 6.263 Co₂S₂ NiSe FM Pm -0.266 0.000 5.350

Rows: 25 🗸 🛛 Add Column 🗸

☆

Ξ

 \times

=

٢

~

G Û

←

 \rightarrow

A https://cmrdb.fysi **i**

+

☆ ${igsidential}$

111 ٢ 1

MoS_2

Property			Value		
Structure p	ralatype		Mc52		
Case of m	sterial		тмосн		
Space group			P-6m2 1.55 eV		<u> </u>
Band gap (PBE) Magnetic state					
		NM			
ICSO id of garent bulk structure		38401		_ \	
Dynamic stability		HIGH			
Thermodyn	amic stability		нсн		
Monoleyer i	001		10.1103/PhysRev	Lett. 105.128505	
Acce	x	v	z	Penodic	
1	2.154	0.000	0.000	True	Download - Unitcell
z	-1.592	2.757	0.000	True	
3	0.000	0.000	18.127	False	
Lengths:	3	184	2.154	18.127	
Angles:		0.000	90.000	120.000	

Property	Value
Heat of formation	-0.92 eWatom
Energy above convex hull	-0.01 eWatom
Minimum eigenvalue of Hessian	-0.00 eWAng ²
Monolayer formation energies	
Mo254 (Mn52-AFM)	0.135 eWatom
Mo254 (Mn52-FM)	0.102 eWatom
Mo252 (GaS-NM)	-0.150 eW/stom
Mc252 (Undefined-NM)	-0.215 eWatom
Mo252 (CH-NM)	-0.274 eW/atom
MoS2 (GeS2-NM)	-0.307 eWatom
Mc258 (TI52-NM)	-0.333 eWatom
MoZSZ (FeSe-NM)	-0.374 eW/atom
MoS2 (Cdl2-NM)	-0.545 eWatom

-0.740 eWatom

Mo254 (WTe2-NM)

 \times

 \equiv

ASE Modules used

File Edit Options Buffers Tools Python Virtual Envs Elpy Flymake YASnippet Help from ase.optimize import BFGS # Relax structure from ase import phonons # Calculate phonons and diagonalize dynamic matrix from ase.dft.band_structure import BandStructure # Make band structure from ase.formula import Formula # Data type for chemical formulas from ase.lattice import HEX2D # Bravais lattice knows band path from ase.db import connect # Connect or create a new ASE database

-UUU:----F1 ase-modules.py All L7 (Python WS || Flymake[0 6] Elpy) ----End of buffer

CORRELATIONS & MODEL VALIDATION

Evaluating band gaps

	PBE	HSE06	GLLBSC
MAD w.r.t. G_0W_0 (band gap)	1.49	0.82	0.38
MAD w.r.t. G_0W_0 (gap center)	0.37	0.32	0.76

Modelling exciton binding energies

The Computational 2D Materials Database

Ferromagnetic 2D semiconductors

Anisotropy terms

Heisenberg Hamiltonian:

$$H = -\frac{1}{2} \sum_{i \neq j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j - \sum_i A_i (S_i^z)^2 - \frac{1}{2} \sum_{i \neq j} B_{ij} S_i^z S_j^z$$

Classical Monte Carlo simulations:

Parameters from total energy of different spin configurations:

D. Torelli *et al.* arXiv:1903.11466

Ferromagnetic 2D semiconductors

Screening 550 ferromagnetic materials. spin-wave gap (Δ) >0 \rightarrow out-of-plane easy axis

Most interesting compounds:

Formula	Structure	$J \; [meV]$	$\Delta \text{ [meV]}$	$S \ [\hbar]$	$T_{\rm C}$ [K]
MnO_2	CdI_2	6.37	0.125	1.5	81
\mathbf{CrI}_3	BiI_3	3.95	1.280	1.5	50
\mathbf{CrBr}_3	BiI_3	2.82	0.185	1.5	24
\mathbf{CrCl}_3	${ m BiI}_3$	2.19	0.016	1.5	10
\mathbf{CoCl}_2	CdI_2	0.26	0.249	1.5	8
MnI_2	CdI_2	0.05	0.081	2.5	4
$MnBr_2$	CdI_2	0.05	0.024	2.5	3
\mathbf{NiCl}_2	CdI_2	1.18	$\sim 10^{-4}$	1.0	2
FeBr_3	BiI_3	0.04	0.124	2.5	2
CoO	FeSe	106.54	0.199	1.5	520
FeS	FeSe	28.99	0.591	2.0	413

Predicted unstable

D. Torelli et al. arXiv:1903.11466

Topological insulators

Topological insulator:

Material with non-trivial symmetryprotected topological order. The bulk is an insulator, but symmetry-protected conducting states exist at the edges.

(Wikipedia)

spin down insulation does not insulated and insulated and

The challenge:

Various types of topological classes are known, but the small size of the bulk band gap remains an issue for them all.

Topological invariants

Hybrid Wannier function of band n localized along x

$$|W_{njk_2}\rangle = \int_0^1 dk_1 e^{-i\mathbf{k}\cdot(\hat{\mathbf{r}}+\hat{\mathbf{R}}_j)}|\tilde{u}_{n\mathbf{k}}\rangle$$

Center of Wannier function

$$x_{1,n}(k_2) \equiv \langle W_{n0k_2} | \hat{x}_1 | W_{n0k_2} \rangle = \gamma_{1,n}(k_2)/2\pi$$

Berry's phase

$$\gamma_{1,n}(k_2) = i \int_0^1 dk_1 \langle \tilde{u}_{n\mathbf{k}} | \partial_{k_1} \tilde{u}_{n\mathbf{k}} \rangle$$

Topological invariants determined by the number of Berry phases crossing any horizontal line.

Equivalently: The amount of charges shifted by one unit cell when k_2 is cycled.

Topological insulators: New materials

Material	Prototype	Topology	KS gap (meV)	HOF (eV)	EACH (eV)
AuCl	FeSe	$\nu = 1$	20	0.10	0.30
CrAsBi	BiTeI	$\nu = 1$	35	0.31	0.46
IrSe	GaSe	$\nu = 1$	134	0.18	0.45
TiTe	GaSe	$\nu = 1$	109	-0.08	0.63
ZrTe	GaSe	$\nu = 1$	207	-0.28	0.65
AuI ₃	BiI ₃	$\nu = 1$	109	0.10	0.10
TiIN	FeOCl	$\nu = 1$	62	- 1.18	-0.26
TlClSe	FeOCl	$\nu = 1$	27	- 0.36	0.32
TiS	CH	$\nu = 1$	54	- 1.13	0.31
TiCl	CH	$\nu = 1$	13	-0.64	0.45
ZrS	CH	$\nu = 1$	132	- 1.16	0.26
ZrSe	CH	$\nu = 1$	20	- 0.91	0.25
ZrCl	CH	$\nu = 1$	37	-0.59	0.73
ZrBr	СН	$\nu = 1$	45	-0.34	0.68
SbCl	СН	$\nu = 1$	434	- 0.46	0.13
SbBr	CH	$\nu = 1$	442	-0.31	0.10
SbI	CH	$\nu = 1$	584	-0.12	0.13
HfS	СН	$\nu = 1$	158	- 0.89	0.43
HfSe	CH	$\nu = 1$	42	-0.64	0.54
ReS	CH	$\nu = 1$	309	0.10	0.54
HgCl	CH	$\nu = 1$	129	-0.37	0.23
HgBr	CH	$\nu = 1$	188	-0.25	0.22
PbF	CH	$\nu = 1$	116	- 1.43	0.45

New quantum spin Hall insulators (from screening of 3331 materials)

Dynamically stable materials in bold

Olsen et al. Phys. Rev. M 3, 024005 (2019)

Topological edge states on SbCl

Atomic structure of SbCl monolayer. (graphane crystal structure)

Band structure of infinite SbCl sheet.

Gap is due to spin-orbit coupling.

Work by Luca Vanucci, CAMD

Topological edge states on SbCl

HIGH-THROUGHPUT IN PRACTICE (@CAMD)

MyQueue

\$ mq submit relax.py -R 8:1h Si/ Ge/ C/

Atomic Simulation Recipes (ASR)

Dependencies

Command line mode

MyQueue workflow example

```
File Edit Options Buffers Tools Python Virtual Envs Help
      🛛 💥 🖾 Save 🔦 Undo 🔏 🛅 📋 🔍
from myqueue.task import task
from asr.utils import isstable
def create tasks():
    tasks = [task('asr.relax@8:1d'),
               task('asr.gs@8:1h'),
               task('asr.stiffness@8:6h'),
               task('asr.phonons@8:14h'),
               task('asr.convexhull@1:1h')]
    if isstable():
         tasks += [task('asr.bandstructure@8:3h'),
                     task('asr.pdos@8:1h')]
    return tasks
    asr_workflow.py All L17
                     (Python +4)
End of buffer
```


mq kick; mq workflow workflow.py Si/ Ge/ C/

Kick-The-Donkey

5 min interval (auto)

Conclusions

- Atomic Simulation Environment
- Computational 2D Materials Database (C2DB): A free platform for modeling and discovery of 2D materials
- Data can be used to validate models
- Novel 2D materials discovered.
- **MyQueue:** Simple frontend for SLURM.
- Atomic Simulation Recipes (ASR): A new open source Python library for setting up, managing, and analyzing high throughput computations.

Software & Links

- ASE: <u>https://wiki.fysik.dtu.dk/ase/</u>
- GPAW: <u>https://wiki.fysik.dtu.dk/gpaw/</u>
- C2DB: <u>https://c2db.fysik.dtu.dk</u>
- Myqueue: <u>https://myqueue.readthedocs.io</u>
- ASR: <u>https://gitlab.com/mortengjerding/asr/</u>