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Reminder: electronic-structure problem

h; = &;p;

~

1 .
h = —EVZ +Vext(1‘) +f|1" 1 |d3r +VXC

Y; - unknown functions (one-electron wave functions)
Y;(r) = Z Cip ¢p (rr) -basis set expansion
qbp (1) - known functions (basis functions)

Generalized eigenvalue problem:
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Extended (periodic) systems

There are 102 electrons per 1 mm? of bulk Cu

Position of every atom in the crystal (Bravais lattice):
I‘(I”ll » N, n3) = I‘(0,0,0) +may +npay +nzaj

lattice vector: R(nl, ny, n3) =nma; +nya, +n3aj
n,Nny,Nn3 = O, il, i2,



Example: two-dimensional Bravais lattice
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332 — 231
primitive unit cells

The shape of the primitive unit cell is not unique



From molecules to solids

Electronic bands as limit of bonding and anti-bonding combinations of
atomic orbitals:
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Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)



Bloch’s theorem

Periodic potential U(r +R)=U(r)
(translational symmetry)

R = map +npa,y +n3ay
In an infinite periodic solid, the solutions of the

one-particle Schrodinger equations must
behave like

(r+R) = exp(ikR)y(r)

Index K is a vector in reciprocal space o Sl °
k=x1g +x,8) +x383  8;-a; =270; )
a, xXa
g; =272 —" —reciprocal lattice vectors

Consequently:

w(r) =exp(ikr)u(r), u(r+R) =u(r)



The meaning of K

da d d d
Q Q O Q O chain of hydrogen atoms

v, = exp(ike,) x,, (j-a)

J
K shows the phase with which the orbitals are combined:

k=0: w,=2exp(0),,(j @) = (@) + 1,2a) +K
D—U—— 20—

k=": W,=D expiz- ) x,,(j-a) ==y, (@) + x,,(2a) — 7,,(3a) +K
J

I ) )
O—D— O—2—CO
K is a symmetry label and a node counter, and also
represents electron momentum

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)



Bloch’s theorem: consequences

In a periodic system, the solutions of the Schrodinger equations are
characterized by an integer number n (called band index) and a vector k:

AWk = EnkVnk
Wk (1) = exp(iKr )u, i (r), uy (r+R) =u, (r)
For any reciprocal lattice vector

G =mg +nygs +n3g3

= exp(ikr)[uy .G exp(iGr)] = exp(ikr)i@

a Bloch state a lattice-periodic a Bloch state at k with
at k+G with function 7

index n

Can choose to consider only K within single primitive
unit cell in reciprocal space

a different index n’



Brillouin zones

A conventional choice for the reciprocal lattice unit cell

For a square lattice In three dimensions:
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Time-reversal symmetry

For Hermitian /1 , £, can be chosen to be real

A A % %
h ¥k (l‘) = &k Wk (r) = h Wk (l‘) = &pk Wk (l‘)
From Bloch’s theorem:

Wk (0 + R) = exp(iKR)W i (1) = 1 e (1 + R) = exp(—ikR)y . (1)

4

X
Yk = Vn(—k) En(-k) = €nk

Electronic states at k and —k are at least doubly degenerate

(in the absence of magnetic field)



Basis sets

wi(r) = Cipg,(r)
p
Commonly used basis sets:

plane waves exp(ik -r) (delocalized, analytic integrals)

k

gaussians xiyjz exp(—arz) (localized, analytic integrals)

Slater-type x’ yj F exp(—ar) (localized, nuclear cusp)

u(r)

Numeric atomic orbitals Y1, (0, 9) (localized, flexible)

o
grid-based o(r —r;) (localized)

Core electrons are often treated separately
(pseudopotentials, plane-wave + localized basis)



Numeric atomic orbitals

( ) Many popular implementations:
U\ T DMol® (Delley), FPLO (Eschrig et
[ Pi[lm] (T) — . YE?’J’L(Q) J al.), PLATO (Horsfield et al.),

T PAOs (Siesta, Conquest, OpenMX?,

Fireball, ...)
* 1i(7): Flexible choice - “Anything you like.”

+ 0 (1) + Veus (r) | wi(r) = €u;(r)

2

9 dr2

- free-atom like: V3(T) = Vet o (T) u(r) ﬁ:‘_cutoff
- Hydrogen-like: v;(r) = z/r ! i pot
: >

- free ions, harm. osc. (Gaussians), ... U radius

[ 1 d? +l(z+1)




Numeric atomic orbitals

Many popular implementations:

ui(7) DMoP (Delley), FPLO (Eschrig et
P [im] (T) — : }/Em, (Q) al), PLATO (Horsfield et al.),
r PAOs (Siesta, Conquest, OpenMX?,
Fireball, ...)

* ui(r): Flexible choice - “Anything you like.”

— Localized; "naturally” all-electron

— The choice of efficient and of enough radial functions is obviously
important

— We have a basis set library for all elements (1-102), from
fast qualitative to meV-converged (total energy, LDA/GGA) calculations -
efficient and accurate approach

V. Blum, R. Gehrke, F. Hanke, P. Havu,V. Havu, X. Ren, K. Reuter and M. Scheffler,
“Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals”,
Computer Physics Communications 180, 2175-2196 (2009)



Localized basis sets and periodic systems

Xok(@) = ) "R, (r + R)
/ R

New basis functions satisfying Bloch’s theorem:

ka(r +R) = eikRka(r)

s
\\"'-....-’I, ~
| | |

Yu(r) = z Cikp Xpk(T) Vi (r + R) = e* Ry, (1)
D




Localized basis sets and periodic systems

h lzp: ch Z e "Ry, (r + R) | = ¢, [Zp: Cﬁ(zR: e *Rep,(r + R)

Multiply by ¢, and integrate over all space:

D Ch D ek, |y (r+ R) = e ) Ch ) e R(ig |, (r + RO)
Pk ; P B )
| Y
hk, Sqp
In practice, all integration points and pieces of ¢, are mapped
back to the original unit cell:

._



Hartree-Fock exchange — the problem

EWF = __ ZDZZD]kJ % (r)¢k(r)¢1 (I‘ )@, (1) D3rd3

i,j.k,l |

Y
electron repulsion integrals

Lots of integrals, naive implementation > N* scaling
(storage impractical for N > 500 basis functions)

* need fast evaluation
* need efficient use of sparsity (screening)



Hybrid functionals in FHI-aims

Computational Scaling of Periodic GaAs,

Zincblende GaAs
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Levchenko, Ren, Wieferink, Rinke, Johanni, Blum, Scheffler,
Comp. Phys. Commun. 192, 60-69 (2015).



Hybrid functionals in FHI-aims
Computational Scaling of Periodic GaAs,
HSEO6 Hybrid Functional,
with Increasing System Size

S

e-e |28 atoms
=u )56 atoms
1e—+512 atoms
A4 1024 atoms

Zincblende GaAs I . | . | . | . ! -
16 64 256 1024 4096
Number of CPUs
Levchenko, Ren, Wieferink, Rinke, Johanni, Blum, Scheffler,
Comp. Phys. Commun. 192, 60-69 (2015).
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Electronic band structure

O £(k)
00000 -Ti/a 0 T1/a ]
k

Band structure represents dependence of &5k on k

For a periodic (infinite) crystal, there is an infinite number
of states for each band index n, differing by the value of k



Electronic band structure in three dimensions

Brillouin zone of the fcc lattice Al band structure (DFT-PBE)

By convention, £, are measured (angular-resolved
photoemission spectroscopy, ARPES) and calculated
along lines in k-space connecting points of high symmetry



Finite k-point mesh

Charge densities and other quantities are
represented by Brillouin zone integrals:

n(r) = Z IQB k

L S5 4

Z

Wiuk> €nk — smooth functions of k >
can use a finite mesh, and then
interpolate and/or use perturbation ky
theory to calculate integrals

occ Nipt

)= 3 D w by, @)

j m=l k
H.J. Monkhorst and J.D. Pack, Phys. Rev.B 13, 5188 (1976); Phys. Rev. B 16, 1748 (1977)




Band gap and band width (dispersion)
- hydrogen molecule chain
08 A':% a g a 8 a % (DFT-PBE)
a=10.0 A a=50A
x —
= 3

Overlap between interacting orbitals determines band gap and band width



Band structure — test example

Orbital energies are smooth functions of k

Example: chain of Pt-L, complexes (K,[Pt(CN),])
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Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)



Insulators, semiconductors, and metals

E>>kgT

E,=0

k

k

Insulators (MgO, NaCl, Semiconductors (Si, Metals (Cu, Al, Fe,...)
ZnO,...) Ge,...)

In a metal, some (at least one) energy bands are only partially occupied

The Fermi energy € separates the highest occupied states from lowest
unoccupied



Fermi surface

Plotting the relation .
8n (k) T gF
in reciprocal space for different n yields different parts of the Fermi surface
n2k2
For free electrons, Fermi surface is a sphere —— = Exp
2m,
K Cu

Periodic table of Fermi surfaces: http://www.phys.ufl.edu/fermisurface/

The grid used in k-space must be sufficiently fine to accurately sample the
Fermi surface



Density Of States (DOS)
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Atom-Projected Density Of States (APDOS)

Decomposition of DOS into contributions from different atomic
functions @; :

2
gi(®)=2 ], [[o:Owu@Odr 5(e~e,(k)d%k
0 N ;
MV R Mg(3d)
> a0l ~ > g(3d)
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Recovery of the chemical interpretation in terms of orbitals

Qualitative analysis tool; ambiguities must be resolved by truncating
the r-integral or by Lowdin orthogonalization of ¢i



Potential of an array of point charges

0.04 -

0.03 - N
V(l') Zz‘l‘ l’ . ZIZQi:O

0.02 1 =

0 1x10° 2x10° 3x10° 4x10° 5x10° 6x10°

Total potential at r=(0.05,0.05,0.05) A, eV

Number of point charges
Convergence of the potential with number of charges is extremely slow



Ewald summation

il 1
4 (=) /)
rimy=>> ’ Tmexpl=(r—r)’ /7
R =l ‘l‘—l‘i—R‘ T
® + = ®
\ / screening gaussian charge
distribution
V¥V (r) = —47p(r)
L (Poisson's equation)
eﬁc@r —T, —R‘/n) n°G’ j
V(1) = . l V.(r)= l +iG-(r-r,
®=2, — ] (r) = Zq ng p[ iG-(r-r)
Y
Decays fast with ‘R‘ Decays fast with ‘G‘

Diverges at G = (), but divergence

is cancelled for Zqi =0

There is no universal potential energy reference (like vacuum level) for
3D periodic systems — important when comparing different systems



Modeling surfaces, interfaces, and point defects —
the supercell approach



The supercell approach

Can we benefit from periodic modeling of non-periodic systems?

Yes, for interfaces (surfaces) and wires (also with adsorbates), and
defects (especially for concentration or coverage dependences)

Supercell approach to surfaces

* Approach accounts for the lateral periodicity

e Sufficiently broad vacuum region to decouple the
slabs

e Sufficient slab thickness to mimic semi-infinite
crystal

 Semiconductors: saturate dangling bonds on the
back surface
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< \_{!_m
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P

* Non-equivalent surfaces: use dipole correction

be
lb-‘“ >
|

 Alternative: cluster models (for defects and
adsorbates)

W an
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supercell



energy (eV)

Surface band structure

Example: fcc crystal, (111) surface

surface Brillouin zone
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Shockley surface states

For near-free electrons: ¥ (r) ~ exp(ik -r)

matching condition

~ explxz] ~expli(k| +ix)z]

ff/ﬁi\mOK\OK\m/
VAVAVA A

/\/\/

potential

0 b4
Decaying states can be treated as Bloch states with complex k
(W. Kohn, Phys. Rev., 115, 809 (1959))

-

Complex band structures can give useful information about
conductance through interfaces and molecular junctions



Tamm surface states

o

H

In the tight-binding
(localized orbital)
picture, surface
states may appear
due to ‘dangling
orbitals’ split off
from the band edge



Surface reconstruction and band structure

Dimerization at (001)-surface of group IV-elements

T [001] top view

side view (@
,/\,ﬁ_\ _

[110]

[110]"1

bulk-terminated atomic structure N i i
side view




Surface reconstruction and band structure

Buckling of dimers at Si (100) surface

sp?

v

p-backbonds

1

Vw1 b sike

;
sp2-backbonds

m-bond re-hybridization and charge
transfer (from down to up)

see, e.g., J. Dabrowski and M. Scheffler,
Appl. Surf. Sci. 56-58, 15 (1992)



Surface reconstruction and band structure

Energy (eV)

. S1(001)-(2x1)

1L \LUJ)?;L; symmetric dimer model (SDM)
0 /u%*--_.___ /
L I 4 SOM H
° asymmetric dimer model (ADM)
0 _ annn MM\/
, W ol Experimental results from

angular-resolved photo-
emission spectroscopy

contour plot of electron density
difference with respect to free
Si atoms (dashed = decrease)

P. Krager & J. Pollmann,

_ Phys. Rev. Lett. 74, 1155
total density contour plot (1995)




Concluding remarks

1) Periodic models can be efficiently used to study
concentration/coverage dependence, including infinitely
dilute limit (low-dimensional systems, defects, etc.)

2) A lot of useful and experimentally testable information
on material’s properties can be obtained from the
analysis of its electronic structure (band structure, DOS,
APDOS, etc.)

3) A lot of development (in both computational methods
and code efficiency) is still necessary to go beyond
standard DFT for periodic systems, and to approach
accuracy that can be achieved nowadays for molecules



Recommended literature

Neil W. Ashcroft and N. David Mermin, “Solid state physics”

Axel GroR, “Theoretical surface science: A microscopic perspective’

Roald Hoffmann (1981 Nobel Prize in Chemistry (shared with
Kenichi Fukui)):

1) “How Chemistry and Physics Meet in the Solid State”, Angew.
Chem. Int. Ed. Engl. 26, 846-878 (1987)

2) “A chemical and theoretical way to look at bonding on
surfaces”, Reviews of modern physics, 60, 601-628 (1988)



Surface modeling: important issues

1) Finite slab thickness (surface-surface interaction)
2) Finite vacuum layer thickness (image-image interactions)

3) Long-range interactions (charge, dipole moment)

~
L —
¢ > periodic boundary ¢ >
- + - + conditions - + - +
- + — + - - + - +
- + - + iy - + - +
S o+ artificial electric field o+ —
4) Surface polarity
[+ ® ) ®

+q-q +q-q+q-q+q -q+q -q +q -q



From molecules to solids

Electronic bands as limit of bonding and anti-bonding combinations of
atomic orbitals:

bands band gap

R. Hoffmann, Solids and Surfaces - A chemist’s view of bonding in
extended structures, VCH Publishers, 1998



Shockley surface states
For nearly-free electrons:

g(k)) ~expli(k| +ix)z]
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