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Reminder: electronic-structure problem
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Generalized eigenvalue problem:



Extended (periodic) systems

There are 1020 electrons per 1 mm3 of bulk Cu
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Position of every atom in the crystal (Bravais lattice):
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Example: two-dimensional Bravais lattice
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primitive unit cells
12 23 aa 

The shape of the primitive unit cell is not unique



From molecules to solids

Electronic bands as limit of bonding and anti-bonding combinations of

atomic orbitals:

electronic 

band 

band

gap 

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)



Bloch’s theorem
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In an infinite periodic solid, the solutions of the 

one-particle Schrödinger equations must 

behave like
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(translational symmetry)

Consequently: 
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Index k is a vector in reciprocal space
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The meaning of k

chain of hydrogen atoms
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Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

k shows the phase with which the orbitals are combined:
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k is a symmetry label and a node counter, and also 

represents electron momentum



Bloch’s theorem: consequences
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a Bloch state 

at k+G with 

index n

a Bloch state at k with 

a different index n’
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In a periodic system, the solutions of the Schrödinger equations are 

characterized by an integer number n (called band index) and a vector k:

For any reciprocal lattice vector 
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a lattice-periodic 
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Can choose to consider only k within single primitive 

unit cell in reciprocal space
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Brillouin zones

A conventional choice for the reciprocal lattice unit cell

For a square lattice

For a hexagonal lattice

Wigner-Seitz cell

Wigner-Seitz cell

In three dimensions:

Face-centered 

cubic (fcc) lattice
Body-centered 

cubic (bcc) lattice



Time-reversal symmetry

For Hermitian     ,        can be chosen to be realĥ kn
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From Bloch’s theorem: 
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Electronic states at k and –k are at least doubly degenerate

(in the absence of magnetic field)



Basis sets
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Commonly used basis sets:

plane waves                 (delocalized, analytic integrals)

gaussians (localized, analytic integrals)

Slater-type                             (localized, nuclear cusp)

Numeric atomic orbitals 
𝑢 𝑟

𝑟
𝑌𝑙𝑚(𝜃, 𝜙) (localized, flexible)

grid-based                (localized)
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Core electrons are often treated separately 

(pseudopotentials, plane-wave + localized basis)



Numeric atomic orbitals



Numeric atomic orbitals



Localized basis sets and periodic systems

𝜓𝑖𝒌 𝒓 + 𝑹 = 𝑒𝑖𝒌𝑹𝜓𝑖𝒌(𝒓)𝜓𝑖𝒌 𝒓 =  
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New basis functions satisfying Bloch’s theorem:

𝜒𝑝𝒌 𝒓 + 𝑹 = 𝑒𝑖𝒌𝑹𝜒𝑝𝒌(𝒓)



Localized basis sets and periodic systems
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Multiply by 𝝓𝒒 and integrate over all space:
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In practice, all integration points and pieces of 𝝓𝒑 are mapped 

back to the original unit cell:

𝑹 = 0



Hartree-Fock exchange – the problem
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electron repulsion integrals

Lots of integrals, naïve implementation  N4 scaling 

(storage impractical for N > 500 basis functions) 

• need fast evaluation

• need efficient use of sparsity (screening)



Hybrid functionals in FHI-aims



Hybrid functionals in FHI-aims



Electronic band structure
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For a periodic (infinite) crystal, there is an infinite number 

of states for each band index n, differing by the value of k

Band structure represents dependence of          on k
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Electronic band structure in three dimensions
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Brillouin zone of the fcc lattice

By convention,          are measured (angular-resolved 

photoemission spectroscopy, ARPES) and calculated 

along lines in k-space connecting points of high symmetry
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Al band structure (DFT-PBE)



Finite k-point mesh

kk nn  , – smooth functions of k 

can use a finite mesh, and then 

interpolate and/or use perturbation 

theory to calculate integrals

Charge densities and other quantities are 

represented by Brillouin zone integrals:
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H.J. Monkhorst and J.D. Pack, Phys. Rev.B 13, 5188 (1976); Phys. Rev. B 16, 1748 (1977)



Band gap and band width (dispersion)

a a a …0.8 Å – hydrogen molecule chain

(DFT-PBE)

a = 10.0 Å
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Overlap between interacting orbitals determines band gap and band width



Band structure – test example

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

Orbital energies are smooth functions of k

Example: chain of Pt-L4 complexes (K2[Pt(CN)4])

a

z

xy

xz

z2

k 

k = π/ay

x
z

π/a0

z2

xy

xz,yz

x2-y2

ε
(k

)

z

y
z

x

yz



Insulators, semiconductors, and metals

Eg>>kBT

Insulators (MgO, NaCl,

ZnO,…)

Eg~kBT

Semiconductors (Si, 

Ge,…) 

Eg=0

Metals (Cu, Al, Fe,…)

k
k

εF

In a metal, some (at least one) energy bands are only partially occupied

The Fermi energy εF separates the highest occupied states from lowest 

unoccupied



Plotting the relation

The grid used in k-space must be sufficiently fine to accurately sample the 

Fermi surface

Fermi surface

in reciprocal space for different n yields different parts of the Fermi surface
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Periodic table of Fermi surfaces: http://www.phys.ufl.edu/fermisurface/



Density Of States (DOS)
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Atom-Projected Density Of States (APDOS)

Decomposition of DOS into contributions from different atomic 

functions         :i
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Recovery of the chemical interpretation in terms of orbitals

Qualitative analysis tool; ambiguities must be resolved by truncating

the r-integral or by Löwdin orthogonalization of i

O(2s)

O(2p)

Mg(3s)

Mg(3p)
Mg(3d)

O(3d)



Potential of an array of point charges
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Ewald summation

+ ≡

screening gaussian charge 

distribution
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There is no universal potential energy reference (like vacuum level) for 

3D periodic systems – important when comparing different systems



Modeling surfaces, interfaces, and point defects –

the supercell approach



The supercell approach

Can we benefit from periodic modeling of non-periodic systems?

Yes, for interfaces (surfaces) and wires (also with adsorbates), and 

defects (especially for concentration or coverage dependences)

Supercell approach to surfaces 

(slab model)

supercell

• Approach accounts for the lateral periodicity

• Sufficiently broad vacuum region to decouple the 

slabs

• Sufficient slab thickness to mimic semi-infinite

crystal

• Semiconductors: saturate dangling bonds on the

back surface

• Non-equivalent surfaces: use dipole correction

• Alternative: cluster models (for defects and 

adsorbates)



Surface band structure

Example: fcc crystal, (111) surface
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Surface band structure of Cu(111)
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Shockley surface state
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Shockley surface states

For near-free electrons:

]exp[~ z ])(exp[~ ziki 
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matching condition

potential

Decaying states can be treated as Bloch states with complex k 

(W. Kohn, Phys. Rev., 115, 809 (1959))

Complex band structures can give useful information about 

conductance through interfaces and molecular junctions



Tamm surface states

In the tight-binding 

(localized orbital) 

picture, surface 

states may appear 

due to ‘dangling 

orbitals’ split off 

from the band edge



Surface reconstruction and band structure

Dimerization at (001)-surface of group IV-elements

[001]

side view

bulk-terminated atomic structure

top view

[110]

[110]

side view



Surface reconstruction and band structure

Buckling of dimers at Si (100) surface

π-bond re-hybridization and charge 

transfer (from down to up)
see, e.g., J. Dabrowski and M. Scheffler,

Appl. Surf. Sci. 56-58, 15 (1992)



Surface reconstruction and band structure

symmetric dimer model (SDM)

asymmetric dimer model (ADM)

Experimental results from 

angular-resolved photo-

emission spectroscopy

total density contour plot

contour plot of electron density 

difference with respect to free 

Si atoms (dashed = decrease) 

P. Krüger & J. Pollmann, 

Phys. Rev. Lett. 74, 1155 

(1995)



Concluding remarks

1) Periodic models can be efficiently used to study 

concentration/coverage dependence, including infinitely 

dilute limit (low-dimensional systems, defects, etc.)

2) A lot of useful and experimentally testable information 

on material’s properties can be obtained from the 

analysis of its electronic structure (band structure, DOS, 

APDOS, etc.)

3) A lot of development (in both computational methods 

and code efficiency) is still necessary to go beyond 

standard DFT for periodic systems, and to approach 

accuracy that can be achieved nowadays for molecules
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Surface modeling: important issues

1) Finite slab thickness (surface-surface interaction)

2) Finite vacuum layer thickness (image-image interactions)

3) Long-range interactions (charge, dipole moment)

4) Surface polarity
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From molecules to solids

R. Hoffmann, Solids and Surfaces - A chemist’s view of bonding in 

extended structures, VCH Publishers, 1998

Electronic bands as limit of bonding and anti-bonding combinations of

atomic orbitals:

bands band gap



Shockley surface states

For nearly-free electrons:

)( k

k0

a



GV2

gap

i

]exp[~ z ])(exp[~ ziki 

z0


