
Time-dependent density
functional theory
From the basic equations to applications

Miguel Marques

Martin-Luther-University Halle-Wittenberg, Germany

Barcelona – June 2019



Outline

1 Why TDDFT?

2 Basic theorems
Runge-Gross theorem
Kohn-Sham equations

3 Time-propagation
The propagator
Crank-Nicholson
Polynomial expansions

4 Linear-response theory
Response functions
Other methods

5 Some results
Absorption spectra
Hyperpolarizabilities
van der Waals coefficients

M. Marques // TDDFT // Barcelona 2019



1 Why TDDFT?
2 Basic theorems

Runge-Gross theorem
Kohn-Sham equations

3 Time-propagation
The propagator
Crank-Nicholson
Polynomial expansions

4 Linear-response theory
Response functions
Other methods

5 Some results
Absorption spectra
Hyperpolarizabilities
van der Waals coefficients

M. Marques // TDDFT // Barcelona 2019



Standard density-functional theory

Most efficient and versatile computational tool for ab
initio calculations.

Kohn-Sham (KS) equations:[
−∇

2

2
+ vext (r) + vH (r) + vxc (r)

]
ϕi (r) = εiϕi (r)

Walter Kohn

Ü DFT can yield excellent ground-state properties, such as structural
parameters, formation energies, phonons, etc.

Ü But DFT is a ground-state theory and can not, in principle, yield
excited-state properties, electron dynamics, or in general to study
time-dependent problems.

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
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Time-scales
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TDDFT can explain why lobsters are blue!

Why are lobsters BLUE?
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TDDFT can explain why lobsters are blue!

Why are lobsters BLUE?

Homarus gammarus
(European lobster)
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Astaxanthin (AXT)

“The red comes from the molecule astaxanthin, a cousin of beta
carotene, which gives carrots their orange color and is a source of vitamin
A. Astaxanthin, which looks red because it absorbs blue light, also colors
shrimp shells and salmon flesh. The blue pigment in lobster shells also
comes from crustacyanin, which is astaxanthin clumped together with a
protein.”
(New York Times)

M. Marques // TDDFT // Barcelona 2019



Molecule CIS TDDFT ZINDO/S Exp

AXT 394 579 468 488
AXTH+ 582 780 816 840

AXT-His+ 623
AXT-His 473

AXT in α-crustacyanin: 632 nm

B. Durbeej and L. A. Eriksson, Phys. Chem. Chem. Phys. 8, 4053
(2006).
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Time-dependent Schrödinger equation

The evolution of the wavefunction is governed by

Ĥ(t)Ψ(t) =
[
T̂ + V̂ee + V̂ext

]
Ψ(t) = i

dΨ(t)

dt
, for a given Ψ(0)

where

T̂ = −1

2

N∑
i=1

∇2
i , V̂ee =

1

2

N∑
i 6=j

1

|ri − rj |

V̂ext =

N∑
i=1

vext(ri, t)

vext(r, t) contains an explicit time-dependence (e.g., a laser field) or an
implicit time-dependence (e.g., the nuclei are moving).
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Runge-Gross theorem

The (time-dependent) electronic density is

n(r, t) = N

∫
d3r2 . . .

∫
d3rN |Ψ(r, r2, . . . , rN , t)|2 ,

The Runge-Gross theorem proves a one-to-one
correspondence between the density and the external
potential

n(r, t)←→ vext(r, t)

The theorem states that the densities n(r, t) and
n′(r, t) evolving from a common initial state Ψ(t = 0)
under the influence of two potentials vext(r, t) and
v′ext(r, t) (both Taylor expandable about the initial
time 0) eventually differ if the potentials differ by
more than a purely time-dependent function:

∆vext(r, t) = vext(r, t)− v′ext(r, t) 6= c(t) .

Hardy Gross

Erich Runge
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Runge-Gross theorem: 1st step

The first part of the proof states that if the two potentials differ, then
the current densities differ.

j(r, t) = N

∫
d3r2 . . .

∫
d3rN ={Ψ(r, r2, . . . , rN , t)∇Ψ∗(r, r2, . . . , rN , t)} ,

We also need the continuity equation:

∂n(r, t)

∂t
= −∇ · j(r, t)

Because the corresponding Hamiltonians differ only in their one-body
potentials, the equation of motion for the difference of the two current
densities is, at t = 0:

∂

∂t
{j(r, t)− j′(r, t)}t=0 = −i〈Ψ0|

[
ĵ(r, t), Ĥ(0)− Ĥ ′(0)

]
|Ψ0〉

= −i〈Ψ0|
[
ĵ(r), vext(r, 0)− v′ext(r, 0)

]
|Ψ0〉

= −n0(r)∇{vext(r, 0)− v′ext(r, 0)} ,
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Runge-Gross theorem: 1st step

If, at the initial time, the two potentials differ, the first derivative of the
currents must differ. Then the currents will change infinitesimally soon
thereafter. One can go further, by repeatedly using the equation of
motion, and considering t = 0, to find

∂k+1

∂tk+1
{j(r, t)− j′(r, t)}t=0 = −n0(r)∇ ∂k

∂tk
{v(r, t)− v′(r, t)}t=0 .

If the potentials are Taylor expandable about t = 0, then there must be
some finite k for which the right hand side of does not vanish, so that

j(r, t) 6= j′(r, t) .

For two Taylor-expandable potentials that differ by more than just a
trivial constant, the corresponding currents must be different.
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Runge-Gross theorem: 2nd step

Taking the gradient of both sides of of the previous equation, and using
continuity, we find

∂k+2

∂tk+2
{n(r, t)− n′(r, t)}t=0 = ∇·

[
n0(r)∇ ∂k

∂tk
{vext(r, t)− v′ext(r, t)}t=0

]
Now, if not for the divergence on the right-hand-side, we would be done,
i.e., if

f(r) =
∂k{vext(r, t)− v′ext(r, t)}

∂tk

∣∣∣∣
(t=0)

is nonconstant for some k, then the density difference must be nonzero.
It turns out that the divergence can also be handled, thereby proving the
Runge-Gross theorem.
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Time-dependent Kohn-Sham equations

We define a fictious system of noninteracting electrons that satisfy
time-dependent Kohn-Sham equations:

i
∂ϕj(r, t)

∂t
=

[
−∇

2

2
+ vKS[n](r, t)

]
ϕj(r, t) ,

whose density,

n(r, t) =
N∑
j=1

|ϕj(r, t)|2 ,

is defined to be precisely that of the real system. By virtue of the
one-to-one correspondence proven in the previous section, the potential
vKS(r, t) yielding this density is unique.
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Kohn-Sham potential

We then define the exchange-correlation potential via:

vKS(r, t) = vext(r, t) + vH(r, t) + vxc(r, t) ,

where the Hartree potential has the usual form,

vH(r, t) =

∫
d3r′

n(r′, t)

|r − r′|
,

The exchange-correlation potential is a functional of the entire history of
the density, n(r, t), the initial interacting wavefunction Ψ(0), and the
initial Kohn-Sham wavefunction, Φ(0). This functional is a very complex
one, much more so than the ground-state case. Knowledge of it implies
solution of all time-dependent Coulomb interacting problems.
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Adiabatic approximation

The adiabatic approximation is one in which we ignore all dependence on
the past, and allow only a dependence on the instantaneous density:

vadia
xc [n](r, t) = vapprox

xc [n(t)](r) ,

i.e., it approximates the functional as being local in time. To make the
adiabatic approximation exact for the only systems for which it can be
exact, we require

vadia
xc [n](r, t) = vGS

xc [nGS](r)|nGS(r′)=n(r′,t) ,

where vGS
xc [nGS](r) is the exact ground-state exchange-correlation

potential of the density nGS(r). In practice, one uses for vGS
xc an LDA,

GGA, metaGGA or hybrid functional.
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Formulation of the problem

Ü The time-dependent Kohn-Sham equations are a set of coupled
one-particle Schrödinger-like equations.

Ü The Hamiltonian is intrinsically time-dependent, which is obvious
since it depends parametrically on the time-dependent density.

Ü This time dependence is not known a priori, since it is deduced from
the solution density itself, vKS = vKS[n].

The problem may then be formulated as follows: given ϕ(τ) and Ĥ(τ)
for τ ≤ t, calculate ϕ(t+ ∆t) for some ∆t.
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The propagator

The Schrödinger equation may be rewritten in terms of its linear
propagator Û(t, t0), which obeys the equation

i
d

dt
Û(t, t0) = Ĥ(t)Û(t, t0) .

The solution of the time-dependent Schrödinger equation, for a given
initial state ϕ(t0), is then written as ϕ(t) = Û(t, t0)ϕ(t0). This
differential equation may be rewritten as an integral equation

Û(t, t0) = 1̂− i

∫ t

t0

dτ Ĥ(τ)Û(τ, t0) .

This equation has the formal solution

Û(t, t0) = 1̂ +

∞∑
n=1

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2· · ·
∫ tn−1

t0

dtnĤ(t1) . . . Ĥ(tn) .
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Properties of the propagator - I

Ü For a Hermitian Hamiltonian, the evolution operator is unitary, i.e.

Û†(t+ ∆t, t) = Û−1(t+ ∆t, t) .

This mathematical property is linked to the conservation of
probability of the wavefunction.

Ü Time-reversal symmetry:

Û(t+ ∆t, t) = Û−1(t, t+ ∆t) .

Note that this property does not hold if a magnetic field is present;

Ü For any three instants t1, t2, t3, then

Û(t1, t2) = Û(t1, t3)Û(t3, t2)
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Û†(t+ ∆t, t) = Û−1(t+ ∆t, t) .
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Û(t+ ∆t, t) = Û−1(t, t+ ∆t) .
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Properties of the propagator - II

This last property permits us to break the simulation into pieces. In
practice, it is usually not convenient to obtain ϕ(t) directly from ϕ0 for a
long interval [0, t]. Instead, one breaks [0, t] into smaller time intervals:

Û(t, 0) =

N−1∏
i=0

Û(ti + ∆ti, ti) ,

We then deal with the problem of performing the short-time propagation

ϕ(t+ ∆t) = T̂ exp

{
−i

∫ t+∆t

t

dτ Ĥ(τ)

}
ϕ(t) .

There are many different methods for calculating this propagator. We
will give only two examples, Crank-Nicholson and polynomial expansions.
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Crank-Nicholson

We start by approximating the value of the operator Ĥ(t) by its central
value in the interval (t, t+ ∆t), i.e. Ĥ(t+ ∆t/2). We then write

ϕ(t+ ∆t) = exp
{
−iĤ(t+ ∆t/2)∆t

}
ϕ(t)

which is equivalent to

exp
{

iĤ(t+ ∆t/2)∆t/2
}
ϕ(t+ ∆t) = exp

{
−iĤ(t+ ∆t/2)∆t/2

}
ϕ(t)

If we now expand the exponentials to first order

1 +
i

2
∆tĤ(t+ ∆t/2)ϕ(t+ ∆t) = 1− i

2
∆tĤ(t+ ∆t/2)ϕ(t)

This is a linear equation that can be solved by a multitude of linear
algebra methods. The Crank-Nicholson propagator is

ÛCN(t+ ∆t, t) =
1− i

2∆tĤ(t+ ∆t/2)

1 + i
2∆tĤ(t+ ∆t/2)

.
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Polynomial expansions

Again we start by approximating the propagator by its central value

ÛEM(t+ ∆t, t) ≡ exp{−i∆tĤ(t+ ∆t/2)} .

The (simple) exponential can then be expanded in, e.g., a Taylor series

exp(Â) =

∞∑
n=0

1

n!
Ân ,

or a Chebychev series

exp(Â) =

k∑
n=0

cn Tn(Â) ,
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Response functions

In spectroscopic experiments, an external field F (r, t) is applied to a
sample. The sample, which is a fully interacting many-electron system
from the theoretical point of view, responds to the external field. Then
the response can be measured for some physical observable P:

∆P = ∆PF [F ].

If the external field is weak, the response can be expanded as a power
series with respect to the field strength. The first-order response, also
called the linear response of the observable,

δP(1)(r, t) =

∫
dt′
∫

d3r′ χ
(1)
P←F (r, r′, t− t′)δF (1)(r′, t′)

The linear response function is nonlocal in space and in time, but the
above time convolution simplifies to a product in frequency space:

δP(1)(r;ω) = χ
(1)
P←F (r, r′, ω)δF (1)(r′, ω).
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Linear density response

the most important response function, from the TDDFT point of view, is
the linear density response function

χ(r, r′, t− t′) = χ(1)
n←vext

(r, r′, t− t′)

which gives the linear response of the density δn(1)(r, t) to an external
scalar potential δvext(r

′, t′).
If the density response function χ(r, r′, t− t′) is obtained explicitly, it
can then be used to calculate the first-order response of all properties
derivable from the density with respect to any scalar field
(e.g.,polarizability, magnetic susceptibility).
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Kohn-Sham response

The Kohn-Sham response is

δn(r, t) =

∫
dt′
∫

d3r′ χKS(r, r′, t− t′)δvKS(r′, t′).

but the variation of the KS potential includes several contributions

δvKS(r′, t′) = δvext(r
′, t′) + δvH[n](r′, t′) + δvxc[n](r′, t′),

The Hartree term is very easy to derive

δvH[n](r′, t′) =

∫
dt′′
∫

d3r′′
δ(t′ − t′′)
|r′ − r′′|

δn(r′′, t′′).
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The xc kernel

The exchange-correlation term is a bit harder. We will use the chain rule
for functional derivatives

δF

δf(r)
=

∫
d3r′

δF

δg(r′)

δg(r′)

δf(r)

and write

δvxc[n](r′, t′) =

∫
dt′′
∫

d3r′′ fxc[nGS](r′, r′′, t′ − t′′)δn(r′′, t′′).

where

fxc[nGS](r′, r′′, t′ − t′′) =
δvxc[n](r′, t′)

δn(r′′, t′′)

∣∣∣∣
n=nGS
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The response equation - I

The variation of the density must be equal in the interacting and
Kohn-Sham systems. We obtain therefore∫

dt′
∫

d3r′ χ(r, r′, t− t′)δvext(r
′, t′) =∫

dt′
∫

d3r′ χKS(r, r′, t− t′)δvext(r
′, t′) +

∫
dt′
∫

d3r′ χKS(r, r′, t− t′)

×
∫

dt′′
∫

d3r′′
[
δ(t′ − t′′)
|r′ − r′′|

+ fxc[nGS](r′, r′′, t′ − t′′)
]

×
∫

dt′′′
∫

d3r′′′ χ(r′′, r′′′, t′′ − t′′′)δvext(r
′′′, t′′′).

As this equation is valid for every δvext(r
′, t′), we obtain

χ(r, r′, ω) = χKS(r, r′, ω) +

∫
d3r ′′

∫
d3r ′′′χKS(r, r′′, ω)

×
[

1

|r′′ − r′′′|
+ fxc[nGS](r′′, r′′′, ω)

]
χ(r′′′, r′, ω).
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The response equation - II

The Kohn-Sham density response function χKS(r, r′, ω) is
straightforward to obtain from first-order perturbation theory:

χKS(r, r′, ω) = lim
η→0+

∑
a,i

(ni − na)

[
ϕ∗i (r)ϕa(r)ϕi(r

′)ϕ∗a(r′)

ω − (εa − εi) + iη
−

ϕi(r)ϕ∗a(r)ϕa(r′)ϕ∗i (r
′)

ω − (εi − εa) + iη

]
,

where ϕi(r) and ϕa(r) are occupied and unoccupied KS orbitals,
respectively.
This equation can be formally written as

χ = (1− χKSfHxc)
−1
χKS,

where all terms on the right-hand-side are known from a ground-state
Kohn-Sham calculation.
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Higher-order response - I

Sometimes we need to consider the reponse to higher orders in the
perturbing field. This can be done in the same way as for the linear term.
For example, in second order

δn(2)(r, t) =

1

2

∫
dt′
∫

dt′′
∫

d3r′
∫

d3r′′ χ(2)(r, t, r′, t′, r′′, t′′)δv
(1)
ext (r′, t′)δv

(1)
ext (r′′, t′′)

+

∫
dt′
∫

d3r′ χ(1)(r, t, r′, t′)δv
(2)
ext (r′, t′).

And the Kohn-Sham reponse (too large to fit in this slide!)
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Higher-order response - II

δn(2)(r, t) =

1

2

∫
dt′
∫

dt′′
∫

d3r′
∫

d3r′′ χ
(2)
KS (r, t, r

′, t′, r′′, t′′)δv
(1)
ext (r

′, t′)δv
(1)
ext (r

′′, t′′)

+

∫
dt′
∫

d3r′ χ
(1)
KS (r, t, r

′, t′)δv
(2)
ext (r

′, t′)

+
1

2

∫
dt′
∫

dt′′
∫

dt′′′
∫

d3r′
∫

d3r′′
∫

d3r′′′ χ
(1)
KS (r, t, r

′, t′)

× kxc(r
′, t′, r′′, t′′, r′′′, t′′′)δn(1)(r′′, t′′)δn(1)(r′′′, t′′′)

+

∫
dt ′
∫

dt ′′
∫

d3r ′
∫

d3r ′′χ
(1)
KS (r, t, r

′, t′)

×
(
δ(t′ − t′′)
|r′ − r′′| + fxc(r

′, t′, r′′, t′′)

)
δn(2)(r′′, t′′),

where

kxc(r
′, t′, r′′, t′′, r′′′, t′′′) =

δ2vxc(r
′, t′)

δn(r′′, t′′)δn(r′′′, t′′′)

∣∣∣
n=nGS

.
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Alternative methods for response

One can explicitly calculate the response-functions. However, this is
seldom the most efficient method to calculate response. There are many
alternatives

Ü Response in real time

Ü Sternheimer equation

Ü Casida method

Ü ...
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Time-evolution method

In this method, we apply a small perturbing external potential, δvext(r, t),
and solve the time-dependent Kohn-Sham equations. We can choose the
form of the perturbation, but a particularly convenient form is:

δvext(r, t) = −er ·Kδ(t) = −er ·K 1

2π

∫ ∞
−∞

dω exp(iωt),

With this form we can propagate from t = 0− to t = 0+ analytically

ϕk(r, t = 0+) = exp

{
− i

~

∫ 0+

0−
dt
[
H

(0)
KS (t)− er ·Kδ(t)

]}
ϕk(r, t = 0−)

= exp (ier ·K/~)ϕk(r, t = 0−),

and then we propagate the free oscillations in time.
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Dynamic polarizability

The time-dependent dipole moment

µ(t) = −e
∫

d3r rn(r, t)

can be used to extract the dynamic polarizability tensor α(ω)

αγδ(ω) =
1

Kδ

∫ ∞
0

dt
[
µγ(t)− µγ(0−)

]
e−iωt +O(Kδ).

The imaginary part of the diagonal component of the dynamic
polarizability I[αδδ(ω)] is proportional to the absorption spectrum. Note
that in practice we have to add an artificial lifetime to the equation by
introducing a decay e−ηt.
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Sternheimer method

In the Sternheimer method we expand the wave-function as a power
series with respect to the perturbation strength λ.

ϕk(r, t) = ϕ
(0)
k (r, t) + λϕ

(1)
k (r, t) + λ2ϕ

(2)
k (r, t) + ...

after a few pages of algebra we obtain the frequency-dependent
Sternheimer equation[
Ĥ

(0)
KS − ε

(0)
k ± ω

]
ϕ

(1)
k,±ω(r) = −

(
v

(1)
Hxc,±ω + v

(1)
ext,±ω − ε

(1)
k,±ω

)
ϕ

(0)
k (r)

Note that the Sternheimer method looks like a set of linear equations,
but in reality it is a nonlinear set of equations as the right-hand side
depends on the solution.
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Casida’s method

Casida’s equations can be written as

∆E2 + 2∆E
1
2N

1
2KN

1
2 ∆E

1
2 = ω2I,

where

∆Ebk,b′k′ =δk,k′δb′,b′(εb − εk)

Nbk,b′k′ =δk,k′δb,b′nk′ ,

and K the Hartree-exchange-correlation kernel
matrix.
This is by far the most used method in
Quantum-Chemistry!

Mark Casida
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Discriminating the C20 isomers

Ü Real-space, real-time TDLDA yields
reliable photo-absorption spectra of
carbon clusters

Ü Spectra of the different C20 are
significantly different

Ü Optical spectroscopy proposed as an
experimental tool to identify the
structure of the cluster

J. Chem Phys 116, 1930 (2002)
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Aequorea victoria

Aequorea victoria is an abundant jellyfish in Puget
Sound, Washington State, from which the luminescent
protein aequorin and the fluorescent molecule GFP
have been extracted, purified, and eventually cloned.
These two products have proved useful and popular in
various kinds of biomedical research in the 1990s and
2000s and their value is likely to increase in coming
years.

http://faculty.washington.edu/cemills/

Aequorea.html

M. Marques // TDDFT // Barcelona 2019
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Data Sheet

Ü 238 AA protein forming a β-barrel or β-can

Ü Chromophore located inside the β-barrel
(shielded)

Ü Info to create the chromophore contained entirely
in the gene

Ü High stability: wide pH, T, salt

Ü Long half life: ≈20 years

Ü Resistant to most proteases

Ü Active after peptide fusions: reporter protein

Ü Availability of chromophores variants

M. Marques // TDDFT // Barcelona 2019



Chromophore
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Chromophore
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Chromophore
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Optical Absorption
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Ü Excellent agreement with experimental
spectra

Ü Clear assignment of neutral and
anionic peaks

Ü We extract an in vivo neutral/anionic
ratio of 4 to 1

GFP: Phys. Rev. Lett. 90, 258101 (2003)
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What can we do in 2015?

The light-harvesting complex II

The simplified LHC–II chromophore network contains 6075 atoms
(corresponding to 31200 electrons). Each monomer contain contains 14
chlorophyll molecules (the key functional units in the light–harvesting
process) and four secondary carotenoid chromophores.

M. Marques // TDDFT // Barcelona 2019



What can we do in 2015?

Performing an analysis based on the time-dependent density, we can,
e.g., find which chlorophyll unit contributes to which peak.

Jornet-Somoza et al, submitted (2015)
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Non-linear response: SHG

Second harmonic generation of paranitroaniline:
β(−2ω, ω, ω)
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Non-linear response: optical rectification

Optical rectification of H2O: β(0, ω,−ω)
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Van der Waals coefficients

Non-retarded regime – Casimir-Polder formula (∆E = −C6/R
6):

CAB6 =
3

π

∫ ∞
0

du α(A)(iu) α(B)(iu) ,

Retarded regime (∆E = −K/R7):

KAB =
23c

8π2
α(A)(0) α(B)(0)

The polarizability is calculated from

αij(iu) =

∫
dr n

(1)
j (r, iu)ri
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Alternative – Time Propagation

Apply explicitly the perturbation:

δvext(r, t) = −xjκδ(t− t0)

The dynamic polarizability reads, at imaginary frequencies:

αij(iu) = − 1

κ

∫
dt

∫
dr xi δn(r, t)e−ut

M. Marques // TDDFT // Barcelona 2019



Alternative – Time Propagation

Apply explicitly the perturbation:

δvext(r, t) = −xjκδ(t− t0)

The dynamic polarizability reads, at imaginary frequencies:

αij(iu) = − 1

κ

∫
dt

∫
dr xi δn(r, t)e−ut

It turns out:

Ü Both Sternheimer and time-propagation have the same scaling

Ü Only a few frequencies are needed in the Sternheimer approach, but
...

Ü 2 or 3 fs are sufficient for the time-propagation

Ü In the end, the pre-factor is very similar

M. Marques // TDDFT // Barcelona 2019



C6 - Polycyclic Aromatic Hydrocarbons
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