
DENSITY-FUNCTIONAL PRACTICE:
PLANE AND SIMPLE



Two ways of looking at it

Minimization (non-linear) of the functional

Solution (SCF) of the Euler-Lagrange eqs.



How do we solve these sets of one-particle 
differential equations that come from Hartree, 

Hartree-Fock, or density-functional theory? 

Solution: expansion in a basis

  
ψ = cn ϕn

n=1,k
∑ ϕn{ }  orthogonal



Differential equation ⇒ linear algebra

  Ĥ ψ = E ψ
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ϕm Ĥ ψ = E ϕm ψ
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Matrix Formulation
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Matrix Formulation



What choice for a basis ?

• For molecules: often atomic orbitals, or 
localized functions as Gaussians

• For solids, periodic functions such as sines 
and cosines (plane waves)



What are plane waves, and why?

−
ℏ$

2m
∇$Ψ r⃗ = E Ψ r⃗

Ψ r⃗ =	A	exp	 𝑖 G 4 r⃗



The set of eigenfunctions of a Hermitian 
operator is complete



The set of eigenfunctions of a Hermitian 
operator is complete



Relation with Bravais lattices
• Infinite array of points with an arrangement and orientation that 

appears exactly the same regardless of the point from which the 
array is viewed.

• 14 Bravais lattices exist in 3 dimensions (1848)


R = la1 +m

a2 + n
a3     l,m and n integers

a1, 
a2  and 

a3  primitive lattice vectors
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Reciprocal lattice (I)

• Let’s start with a Bravais lattice, defined in 
terms of its primitive lattice vectors…


R = la1 +m

a2 + n
a3

l,m,n integer numbers

R = l,m,n( )1a

!

2a
!3a

!



• …and then let’s take a plane wave

Ψ r⃗ =	A	exp	 𝑖 G 4 r⃗

Reciprocal lattice (II)



• What are the wavevectors for which our 
plane wave has the same amplitude at all 
lattice points ?


Gi ⋅
a j = 2πδ ij

cellunit  primitive
  thedefine  and  , 321 aaa !!!


G1  , 


G2  and 


G3  define the 

reciprocal space Brillouin Zone

exp[i(

G ⋅ r )] = exp[i(


G ⋅ (r +


R))]

exp[i(

G ⋅

R)] =1

exp[i(

G ⋅ (la1 +m

a2 + n
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Reciprocal lattice (III)




Gi ⋅
a j = 2πδ ij    n integer is satisfied by


G = h


b1 + i


b2 + j


b3   with  h,i, j  integers,

provided b1 = 2π

a2×
a3

a1⋅
a2×
a3( )


b2 = 2π

a3×
a1

a1⋅
a2×
a3( )


b3 = 2π

a1×
a2

a1⋅
a2×
a3( )


G = h,i, j( )  are the reciprocal-lattice vectors

Reciprocal lattice (IV)



Examples of reciprocal lattices

Direct lattice Reciprocal lattice

Simple cubic Simple cubic

FCC BCC

BCC FCC

Orthorhombic Orthorhombic


b1 = 2π

a2×
a3

a1⋅
a2×
a3( )



Bloch Theorem

• n, k are the quantum numbers (band index n and 
crystal  momentum k)

• u is periodic (same periodicity as Hamiltonian)



Bloch wavefunction
Enk

k

0 eV

-10 eV

ψnk (x)

Ingredient: 
Atomic 

wavefunction

Bands and Bloch Theorem



From Bloch Theorem…

( )() )( expn kk nur ikr ry = ×! !
! !! !



…to expansion in a basis

( )() )( expn kk nur ikr ry = ×! !
! !! !

periodic u is expanded in planewaves, labeled 
according to the reciprocal lattice vectors
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…to expansion in a basis
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For isolated/non periodic systems we use a supercell

Defect

Periodic Images of 
Defect



Plane wave expansion
un k (
r ) = cn k


G exp(i
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G
∑ r )



Plane wave expansion
un k (
r ) = cn k


G exp(i


G ⋅


G
∑ r )

Cutoff radius



Plane wave expansion
un k (
r ) = cn k


G exp(i


G ⋅


G
∑ r )

Cutoff radius

Cutoff energy 
= square of 
radius 

G − 1
2
∇2 G = 1

2
G2



What happens if the volume changes?

un k (
r ) = cn k


G exp(i


G ⋅


G
∑ r )



(Exaggerated view)

Courtesy of X. Gonze, 2017



Derivatives are easy!
(Poisson equation)

𝛁𝟐𝐕 �⃗� = −𝟒 𝝅 𝐧 �⃗�

In real space:



Derivatives are easy!
(Poisson equation)

𝛁𝟐𝐕 �⃗� = −𝟒 𝝅 𝐧 �⃗�

In real space:



Derivatives are easy!
(Poisson equation)

n r⃗ =	∑>𝑛> exp 𝑖 G 4 r⃗
V r⃗ =	∑>𝑉> exp 𝑖 G 4 r⃗

In real space:

Let’s try to get the       reciprocal-space 
coefficients from the  

𝑉>
𝑛>

𝛁𝟐𝐕 �⃗� = −𝟒 𝝅 𝐧 �⃗�



Derivatives are easy!
(Poisson equation)

n r⃗ =	∑>𝑛> exp 𝑖 G 4 r⃗

⇳
𝑛> =

1
𝑉Dn r⃗ exp −𝑖 G 4 r⃗



V r⃗ =	∑>𝑉> exp 𝑖 G 4 r⃗

Derivatives are easy!
(Poisson equation)

No Pulay terms:

𝛁 𝐕 �⃗� =E
>
𝑖 G 𝑉> exp 𝑖 G 4 r⃗



Derivatives are easy!
(Poisson equation)
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>
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No Pulay terms:

V r⃗ =	∑>𝑉> exp 𝑖 G 4 r⃗



Derivatives are easy!
(Poisson equation)

∑> G
$
𝑉> exp 𝑖 G 4 r⃗ =	4	𝛑∑>𝑛> exp 𝑖 G 4 r⃗



Derivatives are easy!
(Poisson equation)

∑> G
$
𝑉> exp 𝑖 G 4 r⃗ =	4	𝛑∑>𝑛> exp 𝑖 G 4 r⃗

𝑽𝐆 = 4 𝝅
𝒏𝐆
𝐆

𝟐



Derivatives are easy!
(Poisson equation)

∑> G
$
𝑉> exp 𝑖 G 4 r⃗ =	4	𝛑∑>𝑛> exp 𝑖 G 4 r⃗

𝑽𝐆 = 4 𝝅
𝒏𝐆
𝐆

𝟐

𝐕 �⃗� =	∑𝐆𝑽𝐆 exp 𝒊 𝐆 4 �⃗�
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First-principles simulations in realistic 
electrochemical environments



Free electron gas vs. silicon



Cohen and Bergstresser



Cohen and Bergstresser
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Cohen and Bergstresser



Pseudopotentials (I)

• Electrons in the inner shells do not 
contribute to valence bonding – so they are 
frozen in the state they have in an isolated 
atom

• Releasing the frozen core does not add any 
linear term to the energy (von Barth and 
Gelatt, 1980) 



Pseudopotentials (II)

From Eckhard Pehlke lecture notes – Fritz-Haber Institut
http://www.fhi-berlin.mpg.de/th/Meetings/FHImd2001/pehlke1.pdf

http://www.fhi-berlin.mpg.de/th/Meetings/FHImd2001/pehlke1.pdf


Pseudopotentials (III)



Norm-conserving pseudopotentials

• Real and pseudo valence eigenvalues agree for a 
chosen atomic configuration

• Real and pseudo wavefunctions agree beyond a core 
radius

• The integral of real and pseudo charge from 0 to a 
distance greater than core radius agree

• The logarithmic derivatives of the real and pseudo 
wavefunctions, and their first energy derivatives, 
agree for distances greater than the core radius



Norm-conserving pseudopotentials



Non-local, norm conserving

Different angular 
momenta scatter 
differently from the core 
(states that have shell 
below them with same 
angular momentum are 
repelled more)

Non-local PP



Logarithmic derivatives

( )ln ,l
d u E r
dr



Yin and Cohen, 
PRL 1980, PRB 1982



Note on ultrasoft pseudopotentials



Note on projector augmented wave (PAW)

Courtesy of X. Gonze, 2017



From the atom to the solid



Cottenier Delta test

Science 351, aad3000 (2016) 



https://www.materialscloud.org/sssp

https://www.materialscloud.org/sssp


The plane waves basis set

• Systematic improvement of 
completeness/resolution

• Huge number of basis elements – only possible 
because of pseudopotentials

• Allows for easy evaluation of gradients and 
Laplacian

• Kinetic energy in reciprocal space, potential in 
real space

• Basis set does not depend on atomic positions: 
there are no Pulay terms in the forces



To learn more:

• Feliciano Giustino (OUP) or Richard Martin (CUP) 
electronic-structure books. Readings on Moodle.

• 2005 MIT Class on Atomistic Modeling of Materials
https://ocw.mit.edu/3-320S05 

• 2009 ICMR Summer School on Materials Modelling and 
2017 ICTP HPC and high-throughput materials modeling
http://materialscloud.org/learn



QUESTIONS?


