

Multiscale Theory of *Operando* Energy Conversion Systems

Karsten Reuter

Chemistry Department and Catalysis Research Center Technische Universität München

Common Challenges

© R. Schlögl, 20 nm Cu in 10:1 H_2 + O_2 at 200 mbar and 523 K

K. Reuter, Catal. Lett. 146, 541 (2016)

Working Interfaces: Generated by the Functionality They Aim to Drive

- Operando studies
- Microscopic processes and macroscopic environment

 i) Oxide Formation in Oxidation Catalysis: Hierarchical multiscale modeling from electrons to the reactor

ii) On the Way to Adaptive Multiscale Modeling: Machine learning as gateway to structural complexity

Operando Studies of Model Catalysts

A. Stierle and A.M. Molenbroek (Eds.), MRS Bull. 32 (2007)

M. Andersen and K. Reuter, Nature Catal. 2, 659 (2019)

Electronic Regime: Energetics of Elementary Processes

First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status and frontiers, K. Reuter, in "Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System", (Ed.) O. Deutschmann, Wiley-VCH, Weinheim (2011)

kmos: A Lattice kMC Framework

Computational Fluid Dynamics: Accounting for the Flow Field

$$k_{ad} = S(T) \frac{pA_{uc}}{\sqrt{2\pi mk_{B}T}}$$

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 & \text{continuity} \\ \frac{\partial}{\partial t} (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) &= -\nabla \rho + \nabla \cdot \left[\mu (\nabla \mathbf{v} + \nabla \mathbf{v}^{\mathsf{T}}) - \frac{2}{3} \mu (\nabla \mathbf{v}) \mathbf{I} \right] + \rho \mathbf{g} & \text{momentum} \\ \frac{\partial}{\partial t} (\rho \omega_k) + \nabla \cdot (\rho \omega_k \mathbf{v}) &= -\nabla \cdot (\rho \omega_k \mathbf{V}_k) + \dot{\Omega}_k^{\text{hom}} & k = 1, \dots, NG & \text{mass} \\ \rho \hat{C}_\rho \frac{\partial T}{\partial t} + \rho \hat{C}_\rho \mathbf{v} \nabla T &= \nabla \cdot (\lambda \nabla T) - \rho \sum_{k=1}^{NG} \hat{C}_{\rho,k} \omega_k \mathbf{V}_k - \sum_{k=1}^{NG} \hat{H}_k^{\text{hom}} \dot{\Omega}_k^{\text{hom}} & \text{energy} \end{aligned}$$

Computational Fluid Dynamics with chemical source terms from 1p-kMC

> S. Matera and K. Reuter, Phys. Rev. B 82, 085446 (2010)

with M. Maestri and A. Cuoci (Politecnico Milan)

S. Matera, M. Maestri, A. Cuoci, and K. Reuter, ACS Catal. 4, 4081 (2014)

E. Lundgren, J. Gustafson *et al.* (Lund University)

known excitation (here: CO_2 vibration)

 \rightarrow 2D concentration profile above catalyst

Y. Zetterberg et al., Rev. Sci. Instrum. 83, 053104 (2012)

Product Boundary Layer as a Non-Invasive Probe

CO :
$$O_2 = 1 : 4$$
, $p_{tot} = 0.18$ atm, $T = 600$ K, 72 ml_n/min, 50% Ar

S. Matera, M. Maestri, A. Cuoci, and K. Reuter, ACS Catal. 4, 4081 (2014)

with E. Lundgren, J. Gustafson et al.

 $p_{\rm tot} = 0.18$ atm 72 ml_n/min, 50% Ar

S. Matera, S. Blomberg *et al.*, ACS Catal. 5, 4514 (2015)

 i) Oxide Formation in Oxidation Catalysis: Hierarchical multiscale modeling from electrons to the reactor

ii) On the Way to Adaptive Multiscale Modeling: Machine learning as gateway to structural complexity

- Generic active site independent of operation conditions dominant over other sites (one site model)
- Atomistic active site model
 - every atom counts
 - generally insufficient experimental characterization
 - might change drastically operando

The Active Site in OER at Co₃O₄

Active site changes with applied potential

C.P. Plaisance *et al.*, J. Am. Chem. Soc. 137, 14660 (2015); C.P. Plaisance, K. Reuter, and R.A. van Santen, Faraday Disc. 188, 199 (2016)

Operando Particle Shape Changes in OER at IrO₂

Stabilization of {111} facets at operating potentials

D. Opalka, C. Scheurer and K. Reuter, ACS Catal. 9, 4944 (2019)

Computing Approaches to Adsorption Energies

- Present set of computational tools well developed to tackle "static" catalytic problems (→ computational screening)
- Addressing near-ambient *in situ* studies requires multiscale modeling from electrons to the reactor
- Present microkinetic approaches fall short in scrutinizing potentially crucial dynamical transformations of the active surface.
 A self-fulfilling prophecy?!
- Machine learning approaches likely the game changer to tackle the real complexity of working catalysts

A. Bruix, J.T. Margraf, M. Andersen and K. Reuter, Nature Catal. 2, 659 (2019)

THANK YOU!

Mie Andersen Albert Bruix Johannes Margraf Harald Oberhofer Daniel Opalka Matteo Maestri (→Polimi) Sebastian Matera (→FU Berlin) Craig Plaisance (→LSU) J. Gustafson, E. Lundgren (U Lund) A.J. Medford, J. K. Nørskov (DTU) S.V. Levchenko, M. Scheffler (FHI Berlin)

Bundesministerium für Bildung und Forschung

