Many-body and GW

Patrick Rinke

Aalto University, Helsinki School of Science Department of Applied Physics

What we will learn today

Basic principles of electron spectroscopy

The Green's function and the self-energy

The *GW* approximation to the self-energy

Pros and cons of density-functional theory for electron spectroscopies

Experiment/Spectroscopy

Experiment/Spectroscopy

Spectroscopies

Photoemission

GW

GW

Absorption

Photo-electron energies

Photo-electron energies

Photoemission

• electron removal

$$\psi_s(\mathbf{r}) = \langle N - 1, s | \hat{\psi}(\mathbf{r}) | N \rangle$$

• removal energy

$$\epsilon_s = E(N) - E(N - 1, s)$$

Photo-electron energies

Inverse photoemission

electron addition

$$\psi_s(\mathbf{r}) = \langle N | \hat{\psi}(\mathbf{r}) | N + 1, s \rangle$$

• addition energy

$$\epsilon_s = E(N+1, s) - E(N)$$

Single-particle Green's function

 \bullet Lehmann representation of G

$$G(\mathbf{r}, \mathbf{r}'; \epsilon) = \lim_{\eta \to 0^+} \sum_{s} \frac{\psi_s(\mathbf{r})\psi_s^*(\mathbf{r}')}{\epsilon - (\epsilon_s + i\eta \operatorname{sgn}(E_f - \epsilon_s))}$$

excitation energies are poles

of the Green's function

• spectroscopically relevant quantity: spectral function

$$A(\epsilon) = -\frac{1}{\pi} \int d\mathbf{r} \lim_{\mathbf{r}' \to \mathbf{r}} \operatorname{Im} G(\mathbf{r}, \mathbf{r}'; \epsilon)$$

Single-particle Green's function

 \bullet Lehmann representation of G

Angle-resolved photoemisson spectroscopy

source: Masaki Kobayashi, PhD dissertation

Angle-resolved photoemisson spectroscopy

source: Masaki Kobayashi, PhD dissertation

Single-particle Green's function

• Lehmann representation of G

Single-particle Green's function quasiparticle • single particle-like spectral function: weight $A_{\mathbf{k}}(\epsilon) = ImG_{\mathbf{k}}(\epsilon) \approx \frac{Z_{\mathbf{k}}}{\epsilon - (\epsilon_{\mathbf{k}} + i\Gamma_{\mathbf{k}})}$ $A(\epsilon)$ iasiparticle peak $\epsilon_{\mathbf{k}}$ inverse of lifetime $\Gamma_{\mathbf{k}}$ 6

Another look at quasiparticles

Another look at quasiparticles

S = iGW S = iGW W: screened Coulomb G: propagator

self-energy:

• energy that the quasiparticle feels due to its own presence

$$\Sigma^{GW}(\mathbf{r},\mathbf{r}',\omega) = -\frac{i}{2\pi} \int d\omega e^{i\omega\eta} G(\mathbf{r},\mathbf{r}',\omega+\omega') W(\mathbf{r},\mathbf{r}',\omega')$$

GW approximation - screened electrons

Dyson equation:

 $G^{-1} = G_0^{-1} - \Sigma$ / non-interacting Green's function

notation: $1 = (\mathbf{r}_1, \sigma_1, t_1)$

$$\begin{split} P(1,2) &= -i \int G(2,3)G(4,2^+)\Gamma(3,4,1)d(3,4) \\ W(1,2) &= v(1,2) + \int v(1,3)P(3,4)W(4,2)d(3,4) \\ \Sigma(1,2) &= i \int G(1,4)W(1^+,3)\Gamma(4,2,3)d(3,4) \\ \Gamma(1,2,3) &= \delta(1,2)\delta(1,3) + \int \frac{\delta\Sigma(1,2)}{\delta G(4,5)}G(4,6)G(7,5)\Gamma(6,7,3)d(4,5,6,7) \end{split}$$

notation: $1 = (\mathbf{r}_1, \sigma_1, t_1)$

$$P(1,2) = -i \int G(2,3)G(4,2^{+})\Gamma(3,4,1)d(3,4)$$

$$W(1,2) = v(1,2) + \int v(1,3)P(3,4)W(4,2)d(3,4)$$

$$\Sigma(1,2) = i \int G(1,4)W(1^{+},3)\Gamma(4,2,3)d(3,4)$$

$$\Gamma(1,2,3) = \delta(1,2)\delta(1,3) + \int \frac{\delta\Sigma(1,2)}{\delta G(4,5)}G(4,6)G(7,5)\Gamma(6,7,3)d(4,5,6,7)$$

Exact; therefore not tractable!

notation: $1 = (\mathbf{r}_1, \sigma_1, t_1)$

$$\begin{split} P(1,2) &= -i \int G(2,3)G(4,2^+)\Gamma(3,4,1)d(3,4) \\ W(1,2) &= v(1,2) + \int v(1,3)P(3,4)W(4,2)d(3,4) \\ \Sigma(1,2) &= i \int G(1,4)W(1^+,3)\Gamma(4,2,3)d(3,4) \\ \Gamma(1,2,3) &= \delta(1,2)\delta(1,3) + \int \frac{\delta\Sigma(1,2)}{\delta G(4,5)}G(4,6)G(7,5)\Gamma(6,7,3)d(4,5,6,7) \end{split}$$

Do not despair!

We will make an approximation!

notation: $1 = (\mathbf{r}_1, \sigma_1, t_1)$ $P(1,2) = -i \int G(2,3)G(4,2^+)\Gamma(3,4,1)d(3,4)$ $W(1,2) = v(1,2) + \int v(1,3)P(3,4)W(4,2)d(3,4)$ $\Sigma(1,2) = i \left(G(1,4)W(1^+,3)I(4,2,3)d(3,4) \right)$ $\Gamma(1,2,3) = \delta(1,2)\delta(1,3) + \int \frac{\delta\Sigma(1,2)}{\delta G(4,5)} G(4,6)\Gamma(7,5) \Gamma(6,7,3)d(4,5,6,7)$ **Do not despair! Hedin's GW approximation!**

Step 1:

• Do a DFT calculation:

$$\epsilon_s^{
m KS}$$
 and $\phi_s^{
m KS}({f r})$

Step I:

• Do a DFT calculation:

$$\epsilon_s^{
m KS}$$
 and $\phi_s^{
m KS}({f r})$

• Set up Kohn-Sham Green's function:

$$G_0(\mathbf{r}, \mathbf{r}'; \epsilon) = \lim_{\eta \to 0^+} \sum_s \frac{\phi_s^{\mathrm{KS}}(\mathbf{r})\phi_s^{\mathrm{KS}*}(\mathbf{r}')}{\epsilon - (\epsilon_s^{\mathrm{KS}} + i\eta \operatorname{sgn}(E_f - \epsilon_s^{\mathrm{KS}}))}$$

Step I:

• Do a DFT calculation:

$$\epsilon^{
m KS}_{s}$$
 and $\phi^{
m KS}_{s}({f r})$

Step 2:

Step 3:

• Set up Kohn-Sham Green's function:

$$G_0(\mathbf{r}, \mathbf{r}'; \epsilon) = \lim_{\eta \to 0^+} \sum_s \frac{\phi_s^{\mathrm{KS}}(\mathbf{r})\phi_s^{\mathrm{KS}*}(\mathbf{r}')}{\epsilon - (\epsilon_s^{\mathrm{KS}} + i\eta \operatorname{sgn}(E_f - \epsilon_s^{\mathrm{KS}}))}$$

• Construct polarizability:

$$P(\mathbf{r}, \mathbf{r}'; \epsilon) = -\frac{i}{2\pi} \int d\epsilon' G_0(\mathbf{r}, \mathbf{r}'; \epsilon' - \epsilon) G_0(\mathbf{r}', \mathbf{r}; \epsilon')$$

Step 4:

• Dielectric function:

$$\varepsilon(\mathbf{r},\mathbf{r}',\epsilon) = \delta(\mathbf{r}-\mathbf{r}') - \int d\mathbf{r}'' v(\mathbf{r}-\mathbf{r}'') P(\mathbf{r}'',\mathbf{r}';\epsilon)$$

Step 4:

• Dielectric function:

$$\varepsilon(\mathbf{r},\mathbf{r}',\epsilon) = \delta(\mathbf{r}-\mathbf{r}') - \int d\mathbf{r}'' v(\mathbf{r}-\mathbf{r}'') P(\mathbf{r}'',\mathbf{r}';\epsilon)$$

Step 5:

Screened Coulomb interaction:

$$W_0(\mathbf{r},\mathbf{r}',\epsilon) = \int d\mathbf{r}'' \varepsilon^{-1}(\mathbf{r},\mathbf{r}'';\epsilon) v(\mathbf{r}''-\mathbf{r}')$$

Step 4:

• Dielectric function:

$$\varepsilon(\mathbf{r},\mathbf{r}',\epsilon) = \delta(\mathbf{r}-\mathbf{r}') - \int d\mathbf{r}'' v(\mathbf{r}-\mathbf{r}'') P(\mathbf{r}'',\mathbf{r}';\epsilon)$$

Step 6:

• Screened Coulomb interaction:

$$W_0(\mathbf{r},\mathbf{r}',\epsilon) = \int d\mathbf{r}'' \varepsilon^{-1}(\mathbf{r},\mathbf{r}'';\epsilon) v(\mathbf{r}''-\mathbf{r}')$$

$$\Sigma^{GW}(\mathbf{r},\mathbf{r}',\omega) = -\frac{i}{2\pi} \int d\omega e^{i\omega\eta} G_0(\mathbf{r},\mathbf{r}',\omega+\omega') W_0(\mathbf{r},\mathbf{r}',\omega')$$

• Solve quasiparticle equation:

$$\hat{h}_0(\mathbf{r})\psi_s(\mathbf{r}) + \int d\mathbf{r}' \Sigma(\mathbf{r}, \mathbf{r}'; \epsilon_s^{qp})\psi_s(\mathbf{r}') = \epsilon_s^{qp}\psi_s(\mathbf{r})$$

Step 7b:

Step 7:

• Perturbation theory: $\psi_s(\mathbf{r}) = \phi_s^{\mathrm{KS}}(\mathbf{r})$

$$\epsilon_s^{qp} = \epsilon_s^{\text{KS}} + \langle s | \Sigma(\epsilon_s^{qp}) | s \rangle - \langle s | v_{xc} | s \rangle$$

• Solve quasiparticle equation:

$$\hat{h}_0(\mathbf{r})\psi_s(\mathbf{r}) + \int d\mathbf{r}' \Sigma(\mathbf{r}, \mathbf{r}'; \epsilon_s^{qp})\psi_s(\mathbf{r}') = \epsilon_s^{qp}\psi_s(\mathbf{r})$$

Step 7b:

Step 7:

• Perturbation theory: $\psi_s(\mathbf{r}) = \phi_s^{\mathrm{KS}}(\mathbf{r})$

$$\epsilon_s^{qp} = \epsilon_s^{\text{KS}} + \langle s | \Sigma(\epsilon_s^{qp}) | s \rangle - \langle s | v_{xc} | s \rangle$$

GW formal scaling ~ system size⁴

Let's get (a little bit) more real

Aalto University School of Science

On the importance of screening

Aalto University School of Science

Angle resolved photoemission - ZnO

Aalto University School of Science Q. Yan, P. Rinke, *et al.*, Semicond. Sci. Technol. 26, 014037 (2011)

Band gaps of solids

Aalto University School of Science

P. Rinke et al. New J. Phys. 7, 126 (2005), phys. stat. sol. (b) 245, 929 (2008)

Aalto University School of Science

Inorganics: Challenges

LEDs - solid state lighting

- to increase efficiency
 -> brightness
- to produce colour variability and stability

Laser diodes

 to produce a bright green laser diode

sources: Pixelligent

Aalto University School of Science

Figure adapted from Butcher and Tansley Superlattices Microstruct. 38, 1 (2005)

carrier concentration (cm^{-3})

Aalto University School of Science

Figure adapted from Butcher and Tansley Superlattices Microstruct. 38, 1 (2005)

Aalto University School of Science

Figure adapted from Butcher and Tansley Superlattices Microstruct. 38, 1 (2005)

InN - GW band structure and Moss-Burstein

InN - GW band structure and Moss-Burstein

P. Rinke, et al., Appl. Phys. Lett. 89,161919 (2006)

Organic or plastic electronics

sources (left to right): Eco Friend, Nature Publishing Group

Organic or plastic electronics

Inorganic/organic interfaces are already present... ... and affect or determine device properties. Can we understand and control them?

sources (left to right): Eco Friend, Nature Publishing Group

Atomistic organic/inorganic interface

Atomistic organic/inorganic interface

Level alignment at interface

image potentials

Renormalization at insulator surfaces

CO HOMO-LUMO gap

gap/eV	DFT (LDA)	G ₀ W ₀ @ LDA	Exp.*
free CO	6,9	15,1	15,8
CO@NaCI	7,4	13,1	

* Constants of Diatomic Molecules (1979), Phys. Rev. Lett. 22, 1034 (1969)

C. Freysoldt, P. Rinke, M. Scheffler, Phys. Rev. Lett. 103, 056803 (2009)

Make CO "ride the image potential"

Aalto University School of Science Ge image potential

• NaCl on Ge:

 prototypical semiconductor/ insulator interface

• Will the CO gap depend on NaCl thickness?

Supported ultrathin films are novel nano-systems in their own rights: C. Freysoldt, P. Rinke, M. Scheffler, Phys. Rev. Lett. 99, 086101 (2007)

C. Freysoldt, P. Rinke, M. Scheffler, Phys. Rev. Lett. 103, 056803 (2009)

CO on NaCl on Ge - layer dependent gap

• molecular levels can be tuned by polarization engineering

C. Freysoldt, P. Rinke, M. Scheffler, Phys. Rev. Lett. 103, 056803 (2009)

Why bother with GW?

What's wrong with DFT?

Density-functional theory and excitations

exact DFT:

 ionization potential given by Kohn-Sham eigenvalue of highest occupied state

 $I_{\rm KS} = -\epsilon_N(N)$

otherwise:

• Janak's theorm (PRA 18, 7165 (1978)) $\frac{\partial E}{\partial n_s} = \epsilon_s$

rearranging and making mid-point approx.

$$E(N+1,s) - E(N) = \int_0^1 dn \,\epsilon_s(n) \approx \epsilon_s(0.5)$$

Ionisation Potential, Affinity and (Band) Gaps

• Could use total energy method to compute (also known as Δ SCF)

$$\epsilon_s = E(N \pm 1, s) - E(N)$$

lonization potential: *minimal energy to remove an electron*

$$I = E(N-1) - E(N)$$

Electron affinity: minimal energy to add an electron

$$A = E(N) - E(N+1)$$

(Band) gap:
$$E_{gap} = I - A$$

Ionisation Potential, Affinity and (Band) Gaps

 Aalto University
 Reference: NIST -- Atomic reference data

 School of Science
 Reference: NIST -- Atomic reference data

Ionisation Potential, Affinity and (Band) Gaps

 Δ SCF better than eigenvalues for IPs!

but:

 $\Delta I \text{ in } \%$

- only justified for differences of ground states
 - ionisation potential, electron affinity
 - excited states that are ground states of particular symmetry
- difficult to find excited state density
 excited state density is not unique
- separate calculation for every excitation needed
 not practical for large systems or solids

Aalto UniversityReference: NIST -- Atomic reference dataSchool of ScienceReference: NIST -- Atomic reference data
ΔSCF versus eigenvalues for finite systems

oligoacetylenes

Pinheiro Jr, Caldas, Rinke, Blum, Scheffler Phys. Rev. B, 92, 195134 (2015)

ΔSCF versus eigenvalues for finite systems

oligoacetylenes

Pinheiro Jr, Caldas, Rinke, Blum, Scheffler Phys. Rev. B, 92, 195134 (2015)

Aalto University

School of Science

length (Å)

ΔSCF versus eigenvalues for finite systems

oligoacetylenes

length (A)

Band gaps of semiconductors and insulators

• DFT: highest Kohn-Sham state exact:

$$E_{gap} = \epsilon_{N+1}^{\text{KS}}(N+1) - \epsilon_{N}^{\text{KS}}(N)$$

= $\epsilon_{N+1}^{\text{KS}}(N+1) - \epsilon_{N+1}^{\text{KS}}(N) + \epsilon_{N+1}^{\text{KS}}(N) - \epsilon_{N}^{\text{KS}}(N)$
 Δ_{xc}

Band gaps of semiconductors and insulators

• DFT: highest Kohn-Sham state exact:

$$\begin{split} E_{gap} &= \epsilon_{N+1}^{\text{KS}}(N+1) - \epsilon_{N}^{\text{KS}}(N) \\ &= \underbrace{\epsilon_{N+1}^{\text{KS}}(N+1) - \epsilon_{N+1}^{\text{KS}}(N)}_{\Delta_{xc}} + \underbrace{\epsilon_{N+1}^{\text{KS}}(N) - \epsilon_{N}^{\text{KS}}(N)}_{E_{gap}^{\text{KS}}} \\ \text{for solids: } N \gg 1 \quad \Rightarrow \quad \Delta n(\mathbf{r}) \to 0 \text{ for } N \to N+1 \end{split}$$

 v_{xc} : discontinuity upon changing the particle number:

$$\Delta_{xc} = \left(\left. \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})} \right|_{N+1} - \left. \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})} \right|_{N} \right) + \mathcal{O}\left(\frac{1}{N} \right)$$

Band gaps of semiconductors and insulators

• DFT: highest Kohn-Sham state exact:

$$E_{gap} = \epsilon_{N+1}^{\text{KS}}(N+1) - \epsilon_{N}^{\text{KS}}(N)$$

$$= \epsilon_{N+1}^{\text{KS}}(N+1) - \epsilon_{N+1}^{\text{KS}}(N) + \epsilon_{N+1}^{\text{KS}}(N) - \epsilon_{N}^{\text{KS}}(N)$$
• for so capture this derivative discontinuity
$$v_{xc}:$$

$$\Delta_{xc} = \left(\frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}\Big|_{N+1} - \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}\Big|_{N}\right) + \mathcal{O}\left(\frac{1}{N}\right)$$

Band gaps of solids

Aalto University School of Science

P. Rinke et al. New J. Phys. 7, 126 (2005), phys. stat. sol. (b) 245, 929 (2008)

What we learned today

Aalto University School of Science

Impact Factor 3.782 | CiteScore 3.51 More on impact >

Theoretical and Computational Chemistry

REVIEW ARTICLE

Front. Chem., 09 July 2019 | https://doi.org/10.3389/fchem.2019.00377

The *GW* Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy

🔄 Dorothea Golze*, 🚊 Marc Dvorak and 🌆 Patrick Rinke

Department of Applied Physics, Aalto University, School of Science, Espoo, Finland

I need your input!

Take out your mobile phone (or laptop) and go to:

https://presemo.aalto.fi/barcelona2019gw

-**C** \bigcirc \bigcirc \bigcirc (-) \bigcirc (-)(-)-C **C** $\bigcirc \bigcirc$ (-)(-)(-)(-) \bigcirc (-)-) \bigcirc C \bigcirc \bigcirc (-)(-) \bigcirc \bigcirc (-)-

Organic or plastic electronics

sources (left to right): Eco Friend, Nature Publishing Group

Charge separation at donor-acceptor pairs

Aalto University School of Science

V. Atalla, M. Yoon, F. Caruso, P. Rinke, and M. Scheffler, Phys. Rev. B 88, 165122 (2013)

V. Atalla, M. Yoon, F. Caruso, P. Rinke, and M. Scheffler, Phys. Rev. B 88, 165122 (2013)

V. Atalla, M. Yoon, F. Caruso, P. Rinke, and M. Scheffler, Phys. Rev. B 88, 165122 (2013)

Another problem: starting-point dependence

Another problem: starting-point dependence

Another problem: starting-point dependence

Self-consistent GW (scGW)

Aalto University
School of Scienceimplemented in FHI-aims:
F. Caruso, P. Rinke et al. Phys. Rev. B 86, 081102(R) (2012)
Phys. Rev. B 88, 075105 (2013)

Unique solution in scGW - N₂

 Aalto University
 F. Caruso, P. Rinke et al. Phys. Rev. B 86, 081102(R) (2012)

 Phys. Rev. B 88, 075105 (2013)

Ionization potentials in scGW

Aalto University School of Science F. Caruso, P. Rinke et al. Phys. Rev. B 86, 081102(R) (2012) set taken from Rostgaard, Jacobsen, and Thygesen, PRB 81, 085103, (2010)

The loan pair in pyridine

The loan pair in pyridine

Aalto University N. Marom, P. Rinke, *et al.* Phys. Rev. B 86, 245127 (2012)

What the Green's function gives us

Spectral function: $A(\epsilon) = -\frac{1}{\pi} \int d\mathbf{r} \lim_{\mathbf{r}' \to \mathbf{r}} \operatorname{Im} G(\mathbf{r}, \mathbf{r}'; \epsilon)$ **Density:** $\rho(\mathbf{r}) = -i \sum_{\sigma} G_{\sigma\sigma}(\mathbf{r}, \mathbf{r}, \tau = 0^+)$ **Total energy:** $E_{\rm GM} = -i \sum_{\sigma} \int d\mathbf{r} \, dt \lim_{\substack{\mathbf{r}' \to \mathbf{r} \\ \mathbf{r}' \to \mathbf{r}^+}} \left[i \frac{\partial}{\partial t} - \frac{\nabla_{\mathbf{r}}^2}{2} + v_{\rm ext}(\mathbf{r}) \right] G^{\sigma}(\mathbf{r}t, \mathbf{r}'t')$

Return to the TTF/TCNQ dimer

Aalto University
School of ScienceF. Caruso, P. Rinke, et al. Phys. Rev. B 90, 085141 (2014)

What we learned today

Aalto University School of Science

-**C** \bigcirc \bigcirc \bigcirc (-) \bigcirc (-)(-)-C **C** $\bigcirc \bigcirc$ (-)(-)(-)(-) \bigcirc (-)-) \bigcirc C \bigcirc \bigcirc (-)(-) \bigcirc \bigcirc (-)-

