

on *Ab Initio* Molecular Simulations: Towards a First-Principles Understanding of Materials Properties and Functions Berlin, July 12 - 21, 2011

Welcome to Berlin and welcome to the Fritz Haber Institute of the Max Planck Society



on *Ab Initio* Molecular Simulations: Towards a First-Principles Understanding of Materials Properties and Functions Berlin, July 12 - 21, 2011

Let's start!

Computational Materials Sciences from First Principles:
Status, Achievements, Challenges

Modeling Materials and Bio-Molecular Properties and Functions: The Many-Body Schrödinger Equation

$$\begin{split} (\hat{T}^e + \hat{T}^{ion} + \hat{V}^{e-e} + \hat{V}^{e-ion} + \hat{V}^{ion-ion})\Psi &= E\Psi \\ \text{With:} \quad \Psi(\mathbf{r_1}, \cdots \mathbf{r_N}; \mathbf{R_1}, \cdots \mathbf{R_M}) \\ \hat{T}^e &= \sum_{k=1}^N \frac{\mathbf{p}_k^2}{2m} \qquad \hat{T}^{ion} = \sum_{I=1}^M \frac{\mathbf{p}_I^2}{2M_I} \\ \hat{V}^{e-e} &= \frac{1}{2} \frac{1}{4\pi\epsilon_0} \sum_{k \neq k'}^{N,N} \frac{e^2}{|\mathbf{r_k} - \mathbf{r_{k'}}|} \\ \hat{V}^{ion-ion} &= \frac{1}{2} \frac{1}{4\pi\epsilon_0} \sum_{I \neq I'}^{M,M} \frac{Z_I Z_{I'}}{|\mathbf{R_I} - \mathbf{R_{I'}}|} \\ \hat{V}^{e-ion}(\mathbf{r_k}, \mathbf{R_I}) &= \sum_{k=1}^N \sum_{I=1}^M \mathbf{v_I^{ion}}(|\mathbf{R_I} - \mathbf{r_k}|) \end{split}$$

Modeling Materials and Bio-Molecular Properties and Functions: The Many-Body Schrödinger Equation

$$(\hat{T}^e + \hat{T}^{ion} + \hat{V}^{e-e} + \hat{V}^{e-ion} + \hat{V}^{ion-ion})\Psi = E\Psi$$
 With:
$$\Psi(\mathbf{r_1}, \cdots \mathbf{r_N}; \mathbf{R_1}, \cdots \mathbf{R_M})$$

$$\hat{T}^e = \sum_{k=1}^N \frac{\mathbf{p}_k^2}{2M_I}$$

$$\hat{T}^{ion} = \sum_{I=1}^M \frac{\mathbf{p}_I^2}{2M_I}$$
 We know the operations and the interactions. We can write them down
$$\hat{V}^{ion-ion} = \frac{1}{2} \frac{1}{4\pi\epsilon_0} \sum_{I \neq I'} \frac{\mathbf{p}_I^2}{|\mathbf{R_I} - \mathbf{R_{I'}}|}$$
 write them down
$$\hat{V}^{e-ion}(\mathbf{r_k}, \mathbf{R_I}) = \sum_{k=1}^N \sum_{I=1}^M \mathbf{v}_I^{ion}(|\mathbf{R_I}|)$$

Born-Oppenheimer Approximation

$$\Psi(\textbf{r}_{1},\cdots\textbf{r}_{N};\textbf{R}_{1},\cdots\textbf{R}_{M}) = \sum_{\nu} \Lambda_{\nu}(\{\textbf{R}_{I}\}) \Phi_{\nu} \ _{\{\textbf{R}_{I}\}} (\{\textbf{r}_{k}\})$$

Where Φ_{ν} are solutions of the "electronic Hamiltonian":

$$H_{\{\mathbf{R}_{\mathbf{I}}\}}^{e} \Phi_{\nu, \{\mathbf{R}_{\mathbf{I}}\}}(\{\mathbf{r}_{\mathbf{k}}\}) = E_{\nu, \{\mathbf{R}_{\mathbf{I}}\}}^{e} \Phi_{\nu, \{\mathbf{R}_{\mathbf{I}}\}}(\{\mathbf{r}_{\mathbf{k}}\})$$

$$H^{e} = T^{e} + V^{e-e} + V^{e-ion}$$

frequently (commonly) applied approximations:

- neglect non-adiabatic coupling (terms of order m/M_I)
- keep only Λ_0

the dynamics of electrons and nuclei decouple

Some Limits of the Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions and electrons. For example:

- polaron-induced superconductivity
- dynamical Jahn-Teller effect at defects in crystals
- some phenomena of diffusion in solids
- non-adiabaticity in molecule-surface scattering and chemical reactions
- relaxation and some transport issues of charge carriers (e⁻ or h)
- etc.

Some Limits of the Born-Oppenheimer Approximation

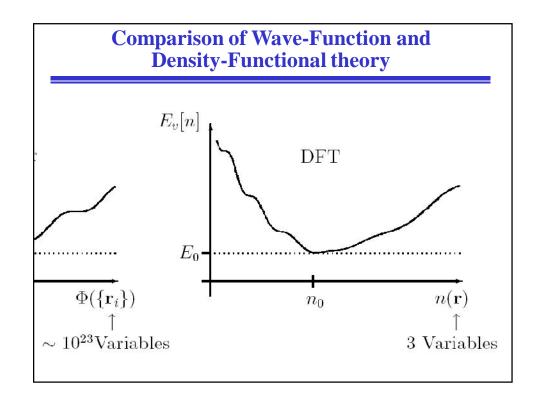
It does not account for correlated dynamics of ions and electrons. For example:

ystals

ing

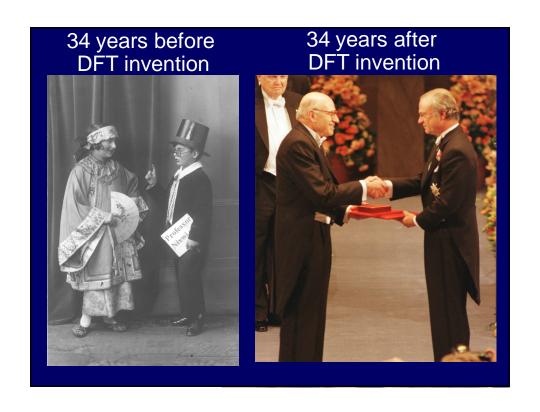
- These limits can be severe.
- Nevertheless, we will use the BO
- approximation in the following.
- How can we solve:
- $H_{\{\mathbf{R_I}\}}^e \Phi_{\nu, \{\mathbf{R_I}\}}(\mathbf{r_k}) = E_{\nu, \{\mathbf{R_I}\}}^e \Phi_{\nu, \{\mathbf{R_I}\}}(\mathbf{r_k})$ $H^e = T^e + V^{e-e} + V^{e-ion}$ ge
- etc.

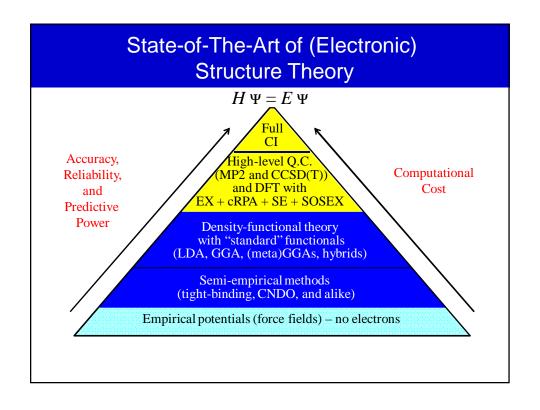


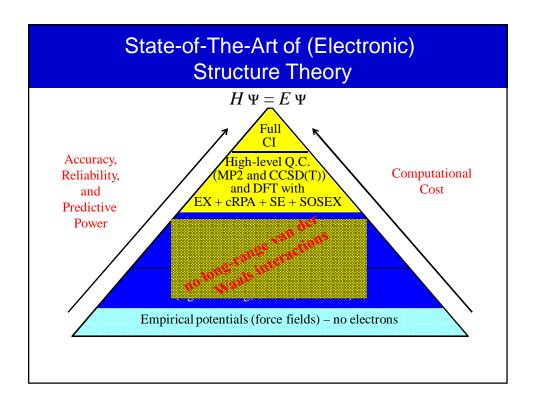


Summary of Hohenberg-Kohn Density-Functional Theory (DFT) -- 1964

- -- The many-body Hamiltonian determines everything. (standard quantum mechanics)
- -- There is a one-to-one correspondence between the ground-state wave function and the many-body Hamiltonian [or the nuclear (or ionic) potential, $v(\mathbf{r})$]. (standard quantum mechanics)
- -- There is a one-to-one correspondence between the ground-state electron-density and the groundstate wave function. (Hohenberg and Kohn)







Kohn and Sham (1965):

$$E_v[n] = T_s[n] + \int v(\mathbf{r})n(\mathbf{r})d^3\mathbf{r} + E^{\text{Hartree}}[n] + E^{\text{xc}}[n]$$

with $E^{\text{Hartrec}}[n] = \frac{1}{2} \frac{e^2}{4\pi\varepsilon_0} \iint \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r} d^3\mathbf{r}'$

And $T_s[n]$ the functional of the kinetic energy of **non-interacting** electrons. $E^{xc}[n]$ contains all the unknowns.

At fixed electron number N the variational principle gives

$$\delta \left\{ E_v[n] - \mu \left(\int n(\mathbf{r}) d^3 \mathbf{r} - N \right) \right\} = 0$$

$$\frac{\delta E_v^{[n]}}{\delta_v} = \mu = \frac{\delta T_s[n]}{\delta n(\mathbf{r})} + v^{\text{eff}}(\mathbf{r})$$
Kohn-Sham equation

Kohn and Sham (1965):

$$v^{\text{eff}}(\mathbf{r}) = v(\mathbf{r}) + \frac{e^2}{4\pi\varepsilon_0} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}' + \frac{\delta E^{\text{xc}}[n]}{\delta n(\mathbf{r})}$$

Because $T_s[n]$ is the functional of non-interacting particles we effectively "restrict" the allowed densities to those

that can be written as This implies:

 $n(\mathbf{r}) = \sum_{i=1}^{N} |\varphi_i(\mathbf{r})|^2$ Kohn-Sham equation

$$\left\{-\frac{\hbar^2}{2m}\nabla^2+v^{\rm eff}(\mathbf{r})\right\}\boldsymbol{\varphi}_{i}\cdot(\mathbf{r})=\boldsymbol{\epsilon}_i^-\boldsymbol{\varphi}_i^-(\mathbf{r})$$

 $v^{eff}(\mathbf{r})$ depends on the density that we are seeking.

$$T_{s}[n] = \sum_{k=1}^{N} \langle \varphi_{k} | -\frac{\hbar^{2}}{2m} \nabla^{2} | \varphi_{k} \rangle ,$$

$$= \sum_{k=1}^{N} \epsilon_{k} - \int v^{\text{eff}}[n^{\text{in}}](\mathbf{r}) n(\mathbf{r}) d^{3}\mathbf{r}$$

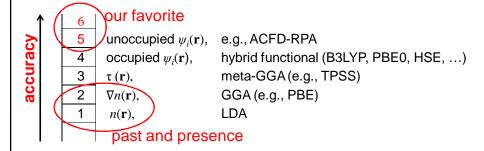
The Kohn-Sham Ansatz

- Kohn-Sham (1965) Replace (approximate) the original many-body problem by an independent electron problem that can be solved!
- Only the ground state density and the ground state energy are required to be the same as in the original many-body problem.

$$E_v[n] = T_s[n] + \int v(\mathbf{r})n(\mathbf{r})d^3\mathbf{r} + E^{\text{Hartree}}[n] + E^{\text{xc}}[n]$$

• Maybe the exact $E^{xc}[n]$ functional cannot be written as a closed mathematical expression. Maybe we need to take a detour similar to that taken for $T_s[n]$? The challenge: Find useful, approximate xc functionals.

Perdew's Dream: Jacob's Ladder in DFT



 $\tau(\mathbf{r})$: Kohn-Sham kinetic energy density

ACFD: adiabatic connection fluctuation dissipation

theorem (Bohm, Pines (1953); Gell-Mann, Brueckner (1957); Langreth, Perdew (1977);

Gunnarsson, Lundqvist (1975, 1976)

RPA: random phase approximation

Challenges for the Near Future

Quantum-Mechanics Based Technology

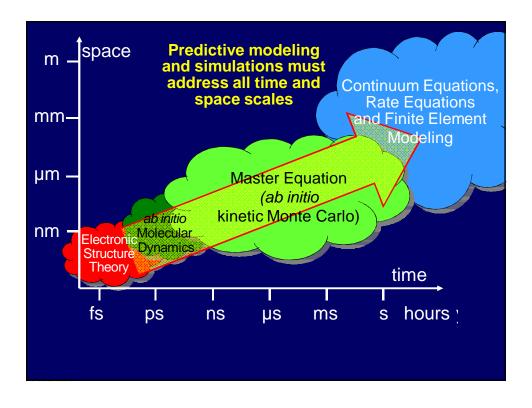
Create new materials and systems by design, e.g. better catalysts, quantum dots, quantum wires, inorganic/organic hybrids, etc.

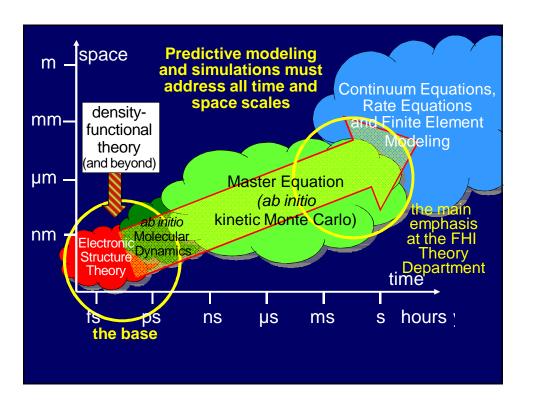
For nanotechnology to become affordable, nanostructures will have to build themselves; normal manufacturing methods will be useless

self-organization and assembly.

Make progress in understanding biological systems starting from the fundamental equations of quantum mechanics.

Bridging the time and length scales; some examples:

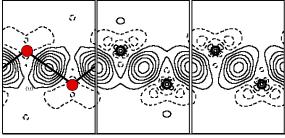




The first (convincing) DFT calculations: Stability of crystals and crystal phase transitions -7.84 M. T. Yin and silicon M. L. Cohen PRB 26 (1982) <PRL (1980)> see also: V.L. Moruzzi, J.F. Janak, and A. R. Williams diamond Calculated Electronic -7.92 0.6 0.7 0.8 0.9 1.0 1.1 **Properties of Metals** Volume Pergamon Press (1978)

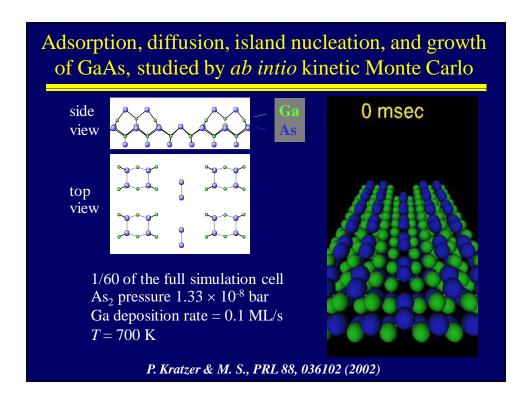
Electron Density of Si

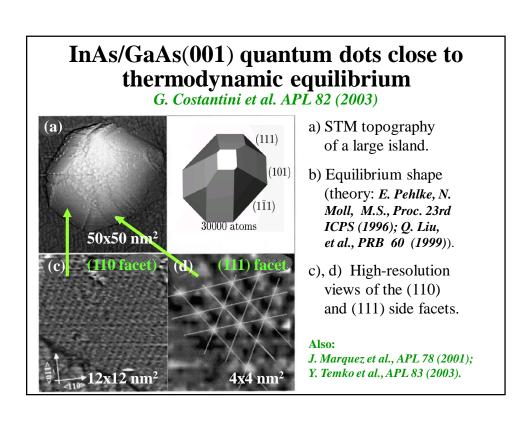
Electron density difference from sum of atoms

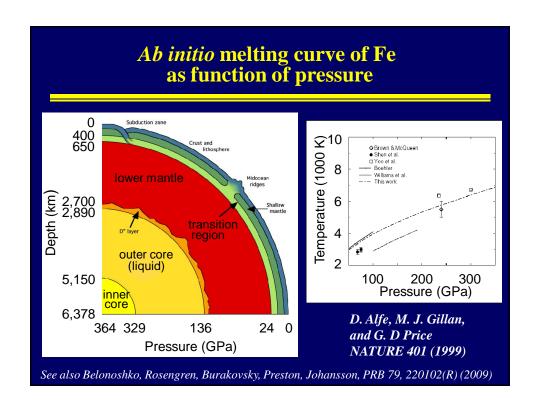


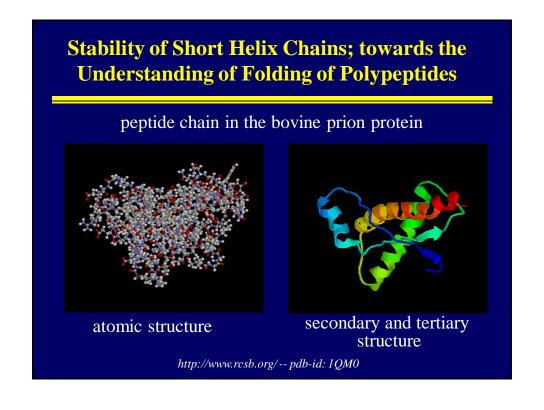
experiment DFT-LDA DFT-GGA

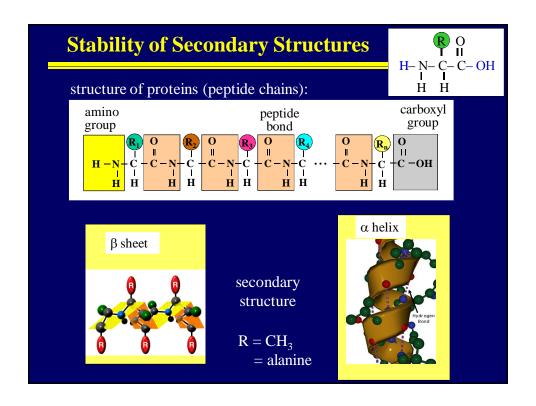
J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997)

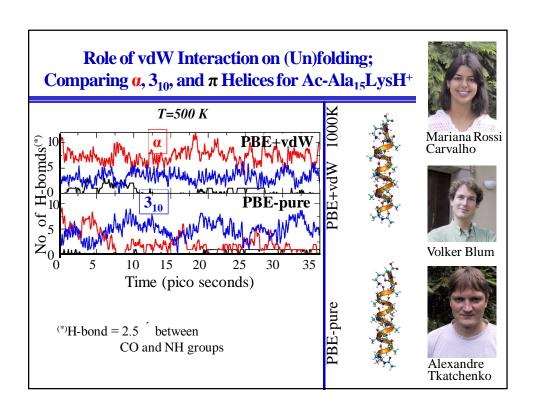


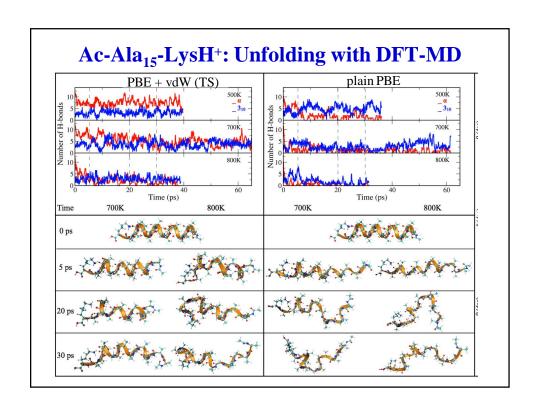












What About the Kohn-Sham Eigenvalues?

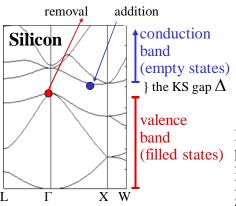
The only quantities that are supposed to be correct in the Kohn-Sham approach are density, energy, forces, ...

What about the individual $\varphi_i(\mathbf{r})$ and ϵ_i ?

The Kohn-Sham $\varphi_i(\mathbf{r})$ and ε_i give an approximate description of quasi-particles. Often they are a (good) starting point for many-body electronic structure theory.

Kohn-Sham Electron Bands

Kohn-Sham band gap: $\Delta = \epsilon_{LB} - \epsilon_{VB}$ of the *N*-particle system The measured (optical) band gap is something else:



$$egin{array}{lll} E_{
m gap} &=& I-A &, \ A &=& E^N-E^{N+1} \ I &=& E^{N-1}-E^N \ \end{array} \ E_{
m gap} =&& E^{N-1}+E^{N+1}-2E^N \ &=& \Delta+\Delta\epsilon^{
m xc} \ \end{array}$$

band Modern calculations of $E_{\rm gap}$ employ the GW approach, starting from KS results.

Excitons, are given by the Bethe-

Excitons, are given by the Bethe-Salpeter equation.

... and/or by time-dependent DFT more comes *later this week*

What About the Kohn-Sham Eigenvalues?

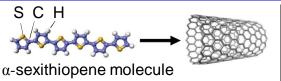
The ionization energy is: $I_k = E_k^{N-1} - E^N$ (Well defined for the highest occupied state. Otherwise, this only holds approximately.) $= -\int_0^1 \frac{\partial E_v[n]}{\partial f_k} df_k$ $= -\int_0^1 \epsilon_k(f_k) df_k$

Here we assume that the positions of the atoms don't change upon ionization, or that they change with some delay (Franck-Condon principle). Using the mean-value theorem of integral algebra gives: $I_k = c_k(0.5)$

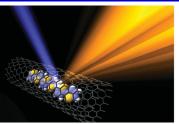
This is called the Slater-Janak "transition state". It can be viewed as the DFT analog of Koopmans' theorem.

Advanced Materials: Organic-Inorganic Hybrids

M. A. Loi, et al., Adv. Mater. 22, 1635 (2010).



the next generation of photonic and optoelectronic devices?



Combined theoretical/experimental study:

- -- Which peapods are stable? (DFT)
- -- What's the geometry. (DFT)
- Light emission, light absorption (DFT plus Bethe-Salpeter Equation and experiment)

