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Right now, we are here

The practical sessions take place here

FHI-Theory

FHI-Theory

this evening
this evening

on Ab Initio Molecular Simulations:
Towards a First-Principles Understanding of 

Materials Properties and Functions
Berlin, July 12 - 21, 2011

Let’s start!

Computational Materials Sciences 
from First Principles: 

Status, Achievements, Challenges
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Modeling Materials and Bio-Molecular Properties
and Functions: The Many-Body Schrödinger Equation

With: 1,

Modeling Materials and Bio-Molecular Properties
and Functions: The Many-Body Schrödinger Equation

With: 1,

??? We know the ope-
rators and the inter-

actions. We can 
write them down. 

No open question 
here!
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Born-Oppenheimer Approximation

Where Φν are solutions of the “electronic Hamiltonian”:

frequently (commonly) applied approximations:
• neglect non-adiabatic coupling (terms of order m/MI )
• keep only Λ0

the dynamics of electrons and nuclei decouple

({rk})

({rk})({rk}) =

Some Limits of the 
Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions and 
electrons. For example:

• polaron-induced superconductivity
• dynamical Jahn-Teller effect at defects in crystals
• some phenomena of diffusion in solids
• non-adiabaticity in molecule-surface scattering                  

and chemical reactions
• relaxation and some transport issues of charge 

carriers (e˗ or h)
• etc.
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Some Limits of the 
Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions and 
electrons. For example:

• polaron-induced superconductivity
• dynamical Jahn-Teller effect at defects in crystals
• some phenomena of diffusion in solids
• non-adiabaticity in molecule-surface scattering                  

and chemical reactions
• relaxation and some transport issues of charge 

carriers (e˗ or h)
• etc.

These limits can be severe.
Nevertheless, we will use the BO 
approximation in the following.

How can we solve:

Comparison of Wave-Function and 
Density-Functional theory
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Comparison of Wave-Function and 
Density-Functional theory

Summary of Hohenberg-Kohn 
Density-Functional Theory (DFT) -- 1964

-- The many-body Hamiltonian determines everything.
(standard quantum mechanics) 

-- There is a one-to-one correspondence between the 
ground-state wave function and the many-body 
Hamiltonian [or the nuclear (or ionic) potential, υ(r)].
(standard quantum mechanics)     

-- There is a one-to-one correspondence between 
the ground-state electron-density and the ground-
state wave function. (Hohenberg and Kohn)
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34 years after
DFT invention

34 years before
DFT invention

State-of-The-Art of (Electronic)
Structure Theory

Empirical potentials (force fields) – no electrons

Semi-empirical methods 
(tight-binding, CNDO, and alike)

Density-functional theory
with “standard” functionals 

(LDA, GGA, (meta)GGAs, hybrids)

Full
CI

High-level Q.C. 
(MP2 and CCSD(T))

and DFT with
EX + cRPA + SE + SOSEX

H ᴪ = E ᴪ

Accuracy,
Reliability,

and
Predictive 

Power

Computational
Cost
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Kohn and Sham (1965):

And Ts[n] the functional of the kinetic energy of non-
interacting electrons. Exc[n] contains all the unknowns.

At fixed electron number N the variational principle gives

or 

with

=
Kohn-Sham

equation
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Kohn and Sham (1965):

veff(r) depends on the density that we are seeking.

i

i i

k k

k

Because Ts[n] is the functional of non-interacting particles
we effectively “restrict” the allowed densities to those 
that can be written as
This implies: Kohn-Sham

equation
i

The Kohn-Sham Ansatz

• Kohn-Sham (1965) – Replace (approximate) the 
original many-body problem by an independent 
electron problem that can be solved!

• Only the ground state density and the ground state 
energy are required to be the same as in the 
original many-body problem.

• Maybe the exact Exc[n] functional cannot be written 
as a closed mathematical expression. Maybe we need 
to take a detour similar to that taken for Ts[n]? The 
challenge: Find useful, approximate xc functionals. 
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τ(r) : Kohn-Sham kinetic energy density
ACFD : adiabatic connection fluctuation dissipation

theorem (Bohm, Pines (1953); Gell-Mann, 
Brueckner (1957); Langreth, Perdew (1977); 
Gunnarsson, Lundqvist (1975, 1976)

RPA : random phase approximation 

5 unoccupied ψi(r), e.g., ACFD-RPA 
4      occupied ψi(r),      hybrid functional (B3LYP, PBE0, HSE, …)
3      τ (r), meta-GGA (e.g., TPSS) 
2      ∇n(r), GGA (e.g., PBE) 
1       n(r), LDA

ac
cu

ra
cy

 

Perdew’s Dream: Jacob’s Ladder in DFT
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past and presence

our favorite

Challenges for the Near Future
Quantum-Mechanics Based Technology

Create new materials and systems by design, e.g. better 
catalysts, quantum dots, quantum wires, 
inorganic/organic hybrids, etc.
For nanotechnology to become affordable, nano-
structures will have to build themselves; normal 
manufacturing methods will be useless                    

self-organization and assembly.
Make progress in understanding biological systems
starting from the fundamental equations of quantum 
mechanics.
Bridging the time and length scales; some examples:
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space

time

Electronic
Structure
Theory

m

mm

µm

nm

the main 

Master Equation
(ab initio

kinetic Monte Carlo)

Continuum Equations,
Rate Equations

and Finite Element
Modeling

fs ps ns       µs      ms        s   hours years

ab initio
Molecular
Dynamics

Predictive modeling 
and simulations must 
address all time and 

space scales
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The first (convincing) DFT calculations:
Stability of crystals and crystal phase transitions
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Volume

diamond

-tin
see also:
V.L. Moruzzi, J.F. Janak,
and A. R. Williams
Calculated Electronic 
Properties of Metals
Pergamon Press (1978)

M. T. Yin and 
M. L. Cohen
PRB 26 (1982)
<PRL (1980)>

Electron Density of Si

experiment    DFT-LDA   DFT-GGA

Electron density difference from sum of atoms

J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997)
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Adsorption, diffusion, island nucleation, and growth 
of GaAs, studied by ab intio kinetic Monte Carlo

P. Kratzer & M. S., PRL 88, 036102 (2002)

top
view

side
view

Ga
As

1/60 of the full simulation cell
As2 pressure 1.33  10-8 bar 
Ga deposition rate = 0.1 ML/s
T = 700 K

InAs/GaAs(001) quantum dots close to 
thermodynamic equilibrium

G. Costantini et al. APL 82 (2003)

a) STM topography
of a large island.

b) Equilibrium shape 
(theory: E. Pehlke, N.
Moll,  M.S., Proc. 23rd
ICPS (1996); Q. Liu,
et al., PRB  60  (1999)).

c), d)  High-resolution
views of the (110)
and (111) side facets.

Also: 
J. Marquez et al., APL 78 (2001);
Y. Temko et al., APL 83 (2003).12x12 nm2 4x4 nm2

(a) (b)

(c)

50x50 nm2

(d)(110 facet) (111) facet
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Ab initio melting curve of Fe 
as function of pressure

D. Alfe, M. J. Gillan, 
and G. D Price
NATURE 401 (1999)
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See also Belonoshko, Rosengren, Burakovsky, Preston, Johansson, PRB 79, 220102(R) (2009)

Stability of Short Helix Chains; towards the 
Understanding of Folding of Polypeptides

peptide chain in the bovine prion protein

atomic structure secondary and tertiary
structure

http://www.rcsb.org/ -- pdb-id: 1QM0

http://www.rcsb.org/
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Stability of Secondary Structures

Carboxyl-
gruppea-Helix

secondary
structure

b-Faltblatt sheet
 helix

structure of proteins (peptide chains):
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Alexandre
Tkatchenko

Volker Blum

Role of vdW Interaction on (Un)folding; 
Comparing α, 310, and πHelices for Ac-Ala15LysH+
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Carvalho
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Ac-Ala15-LysH+: Unfolding with DFT-MD
plain PBEPBE + vdW (TS)

Some remarks about excited states
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What About the Kohn-Sham Eigenvalues?

The only quantities that are supposed to be correct in the 
Kohn-Sham approach are density, energy, forces, …

What about the individual φi(r) and єi ?

The Kohn-Sham φi(r) and єi give an approximate 
description of quasi-particles. Often they are a (good) 
starting point for many-body electronic structure theory.

Kohn-Sham Electron Bands

Silicon conduction
band
(empty states)

valence
band
(filled states)

L            X   W

Kohn-Sham band gap:
The measured (optical) band gap is something else:

Egap

=
Modern calculations of Egap em-
ploy the GW approach, starting 
from KS results. 
Excitons, are given by the Bethe-
Salpeter equation. 
… and/or by time-dependent DFT 
more comes later this week

removal        addition

 = єLB - єVB of the N-particle system

} the KS gap 
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The ionization energy is:

Here we assume that the positions of the atoms don’t 
change upon ionization, or that they change with some 
delay (Franck-Condon principle). Using the mean-value 
theorem of integral algebra gives:

This is called the Slater-Janak “transition state”. It can 
be viewed as the DFT analog of Koopmans’ theorem.

What About the Kohn-Sham Eigenvalues?

(Well defined for the highest
occupied state. Otherwise, this
only holds approximately.)

α-sexithiopene molecule

S  C  H

Combined theoretical/experimental
study:
-- Which peapods are stable? (DFT)
-- What’s the geometry. (DFT)
-- Light emission, light absorption

(DFT plus Bethe-Salpeter Equation
and experiment)

the next generation of photonic
and optoelectronic devices?

DFT-PBE
BSE

Advanced Materials: Organic-Inorganic Hybrids
M. A. Loi, et al., Adv. Mater. 22, 1635 (2010).

Im
ε



19

Exp.: Creemers et al, 
PNAS (1999)

Th.: Marques, Lopez, Varsano, 
Castro, Rubio, PRL (2003)
Absorption spectra: TDDFT
Structureal changes: QM/MM

Biophysics: Fluorescent Proteins

(Some) open questions:
• extend QM/MM to excited-state and 

larger times (milliseconds)
• what is the mechanism for 

irreversible protein deactivation
• Explain and control the spectral 

broadening due to bond fluctuations

238 residues
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Summary:
Computational Materials Sciences from First Principles: 

Status, Achievements, Challenges
Interacting electrons determine the properties and 

function of real materials and bio molecules.

Important arenas for future theoretical work:
-- Correlated systems, e.g. f-electron chemistry,
-- non adiabatic effects, dissipation,
-- transport (electrons, ions, heat),
-- thermodynamic phase transitions, e.g. melting,
-- surfaces, nanostructures – in realistic environments,
-- modeling the kinetics, e.g. of catalysis or crystal growth 

(self-assembly and self-organization),
-- molecules and clusters in solvents, electrochemistry, 
-- biological problems, e.g. dynamics of nuclei for

electronically excited states.


