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Let’s start!
Computational Materials Sciences

from First Principles:
Status, Achievements, Challenges




Modeling Materials and Bio-Molecular Properties
and Functions: The Many-Body Schrodinger Equation
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Modeling Materials and Bio-Molecular Properties
and Functions: The Many-Body Schrodinger Equation
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Born-Oppenheimer Approximation
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Where @, are solutions of the “electronic Hamiltonian™:
H?nl}q)u,{Rl ({nd) = Efr,{nl}q)l,g{Rl}({rk})
B = 1oyt Byt
frequently (commonly) applied approximations:

* neglect non-adiabatic coupling (terms of order m/M, )
» keep only A,

— the dynamics of electrons and nuclei decouple

Some Limits of the
Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions and
electrons. For example:

 polaron-induced superconductivity
» dynamical Jahn-Teller effect at defects in crystals
» some phenomena of diffusion in solids

 non-adiabaticity in molecule-surface scattering
and chemical reactions

* relaxation and some transport issues of charge
carriers (e~ or h)

* efc.




Some Limits of the
Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions and
electrons. For example:

. These limits can be severe.
. Nevertheless, we will use the BO
approximation in the following.

How can we solve:

e ‘ e A
H{ Ry} Py iryy (1) = Eu,{nl } Dy gy} (M)
HE =T+ Ve¢ 4 Vt’—fmf

» efc.

Comparison of Wave-Function and
Density-Functional theory
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Comparison of Wave-Function and
Density-Functional theory
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Summary of Hohenberg-Kohn
Density-Functional Theory (DFT) -- 1964

-- The many-body Hamiltonian |determines everything.
(standard quantum anics)

-- There is a one-to-onse.correspondence between the
ground-state wave func and the many-body
Hamiltonian [or the nuclear (OrNgQnic) potential, o(r)].
(standard quantum mechanics)

-- There is a one-to-one correspondence bet
the ground-state electron-densityTand the ground-
state wave function. (Hohenberg and Kohn)




34 years before 34 years after
DFT invention » DFT invention

State-of-The-Art of (Electronic)
Structure Theory
Hy=Ew

Accuracy, igh-level Q.C. _
Reliability, MP2 and CCSD(T)) Computational

and and DFT with Cost
Predictive EX + cRPA + SE + SOSEX

Power Density-functional theory

with “standard” functionals
(LDA, GGA, (meta)GGAS, hybrids)

Semi-empirical methods
(tight-binding, CNDO, and alike)

Empirical potentials (force fields) — no electrons




State-of-The-Art of (Electronic)

Structure Theory

Accuracy,

Reliability, Computational
and and DFT with Cost

Predictive EX + cRPA + SE + SOSEX

Power

Empirical potentials (force fields) — no electrons

Kohn and Sham (1965):
Ey[n] =T4n] + / v(r)n(r)dr + BT[] 4 B%[n)
; ~Hartrec[ 7 __ ii ] ""r"'[r)”":rr) 3. 73
with r [n = S5, // ] d*rd’r

And T,[n] the functional of the kinetic energy of non-
interacting electrons. EX°[n] contains all the unknowns.

At fixed electron number N the variational principle gives

) {E;.[-n.] [ ( / n(e)d’r N )} =0

SEVY | T Kohn-Sham
o, I L equation

or




Kohn and Sham (1965):
; e? n(r’) 5, O0E*[n
") = v(r) + dmweg ) v (_ 13’| - a5-r2.(£)]

Because T[n] is the functional of non-interacting particles
we effectively “restrict” the aIIowed densities to those
that can be written as Z o

This implies: Kohn-Sham

B2 | equation
{— \7“—|—L.F'ﬁ(1}} p. (T) = € ¢ (r)

o°

2m

veff(r) depends on the density that we are seeking.

IS DAY [ 92| ¢
=3 e — [ [n™](r) -n(r)d.gr

The Kohn-Sham Ansatz

« Kohn-Sham (1965) — Replace (approximate) the
original many-body problem by an independent
electron problem that can be solved!

* Only the ground state density and the ground state
energy are required to be the same as in the
original many-body problem.

E,n] = Tn] + / v(r)n(r)d*r + BT n) 4 F¥¢n)

» Maybe the exact E*°[n] functional cannot be written
as a closed mathematical expression. Maybe we need
to take a detour similar to that taken for T,[n]? The
challenge: Find useful, approximate xc functionals.
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accuracy

Perdew’'s Dream: Jacob’s Ladder in DFT

\ 6 |Your favorite
. 5 /unoccupied y;i(r), e.g., ACFD-RPA
4 | occupied y;(r), hybrid functional (B3LYP, PBEO, HSE, ...
3 | 1(n), meta-GGA (e.g., TPSS)
2 | vn(n), GGA (e.g., PBE)
< 1 n(r), LDA
past and presence
7(r): Kohn-Sham kinetic energy density
ACFD: adiabatic connection fluctuation dissipation
theorem (Bohm, Pines (1953); Gell-Mann,
Brueckner (1957); Langreth, Perdew (1977);
Gunnarsson, Lundgvist (1975, 1976)
RPA: random phase approximation

Challenges for the Near Future
Quantum-Mechanics Based Technology

Create new materials and systems by design, e.g. better
catalysts, quantum dots, quantum wires,
inorganic/organic hybrids, etc.

For nanotechnology to become affordable, nano-
structures will have to build themselves; normal
manufacturing methods will be useless

—> self-organization and assembly.

Make progress in understanding biological systems
starting from the fundamental equations of quantum
mechanics.

Bridging the time and length scales; some examples:
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space Predictive modeling
and simulations must
address all time and _{Continuum Equations,
space scales Rate Equations
Finite Element

ter Equation
(ab initio
kinetic Mo
Electronic:

Predictive modeling
and simulations must
address all time and Continuum Equa’[ions’

density- space scales Rate Equations

functional

ter Equation
(ab initio
kinetic Mo \/ emphasis
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The first (convincing) DFT calculations:
Stability of crystals and crystal phase transitions
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M. T. Yin and
M. L. Cohen
PRB 26 (1982)
<PRL (1980)>

see also:

V.L. Moruzzi, J.F. Janak,

and A. R. Williams
Calculated Electronic
Properties of Metals
Pergamon Press (1978)

Electron Density of Si

Electron density difference from sum of atoms

experiment

DFT-LDA DFT-GGA

J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997)
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Adsorption, diffusion, island nucleation, and growth
of GaAs, studied by ab intio kinetic Monte Carlo

1/60 of the full simulation cell
As, pressure 1.33 x 10 bar

Ga deposition rate = 0.1 ML/s
T=700 K

P. Kratzer & M. S., PRL 88, 036102 (2002)

InAs/GaAs(001) quantum dots close to

thermodynamic equilibrium
G. Costantini et al. APL 82 (2003)

a) STM topography
of a large island.

b) Equilibrium shape
(theory: E. Pehlke, N.
Moll, M.S., Proc. 23rd
ICPS (1996); Q. Liu,
etal., PRB 60 (1999)).

c), d) High-resolution
views of the (110)
and (111) side facets.

Also:
J. Marquezet al., APL 78 (2001);
Y. Temkoet al., APL 83 (2003).
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Ab initio melting curve of Fe
as function of pressure
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NATURE 401 (1999)

See also Belonoshko, Rosengren, Burakovsky, Preston, Johansson, PRB 79, 220102(R) (2009)

Stability of Short Helix Chains; towards the
Understanding of Folding of Polypeptides

peptide chain in the bovine prion protein

atomic structure

secondary and tertiary

structure

http://www.rcsb.org/ -- pdb-id: 1QMO
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Stability of Secondary Structures 7
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Role of vdW Interaction on (Un)folding;
Comparing a, 3,4, and & Helices for Ac-Ala,LysH*
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Ac-Ala,-LysH*: Unfolding with DFT-MD

\ plain PBE

PBE + vdW (TS)
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Some remarks about excited states




What About the Kohn-Sham Eigenvalues?

The only quantities that are supposed to be correct in the
Kohn-Sham approach are density, energy, forces, ...

What about the individual ¢;(r) and €; ?

The Kohn-Sham ¢;(r) and ¢; give an approximate
description of quasi-particles. Often they are a (good)
starting point for many-body electronic structure theory.

Kohn-Sham Electron Bands

Kohn-Sham band gap: A = ¢ g - €,z Of the N-particle system

The measured (optical) band gap is something else:

removal  addition Bayp = I—A
Silicdn 4conduction A = EV - gV
band I = E¥'_EV
Z (empty states) |
“}theKSgapA  E,— E N=1 L EN+ _opN
~Z| | valence = A+ AT
band Modern calculations of Eg,, em-
1 | (filled states) Pploy the GW approach, starting
from KS results.
1 Excitons, are given by the Bethe-
L r X W

Salpeter equation.
... and/or by time-dependent DFT
more comes later this week
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What About the Kohn-Sham Eigenvalues?

The ionization energy is: Jp = B¥YL_FF

_ _ ["9EMm] .
(Well defined for the highest - /0 Ofe i
occupied state. Otherwise, this -1
only holds approximately.) = —/O ex(fr) dfi

Here we assume that the positions of the atoms don’t
change upon ionization, or that they change with some

delay (Franck-Condon principle). Using the mean-value
theorem of integral algebra gives: I = —¢(0.5)

This is called the Slater-Janak “transition state”. It can
be viewed as the DFT analog of Koopmans’ theorem.

Advanced Materials: Organic-Inorganic Hybrids
M. A. Loi, et al., Adv. Mater. 22, 1635 (2010).

a-sexithiopene molecule

the next generation of photonic
and optoelectronic devices?

Combined theoretical/experimental

study:

-- Which peapods are stable? (DFT)

-- What's the geometry. (DFT)

-- Light emission, light absorption
(DFT plus I ethe-—alpeter - quation
and experiment)
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Biophysics: Fluorescent Proteins

_ 238 residues

Exp.: Creemers et al,
PNAS (1999)

Th.: Marques, Lopez, Varsano,
Castro, Rubio, PRL (2003)
Absorption spectra: TDDFT
Structureal changes: QM/MM

+++ Anionic

= - Neutral

— Exp/(L.6K).
’ N

/ N

3 4
Energy (eV)

(Some) open questions:

« extend QM/MM to excited-state and
larger times (milliseconds)

» what is the mechanism for
- irreversible protein deactivation
2 2, » Explain and control the spectral
IE.’ broadening due to bond fluctuations
SER205 GLU222

A

Summary:

Interacting electrons determine the properties and
function of real materials and bio molecules.

Important arenas for future theoretical work:
-- Correlated systems, e.g. f-electron chemistry,
non adiabatic effects, dissipation,
transport (electrons, ions, heat),

thermodynamic phase transitions, e.g. melting,
surfaces, nanostructures — in realistic environments,
modeling the kinetics, e.g. of catalysis or crystal growth
(self-assembly and self-organization),

molecules and clusters in solvents, electrochemistry,
biological problems, e.g. dynamics of nuclei for
electronically excited states.
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