FHI, Berlin, 13th July 2011

Hands-on Tutorial Workshop 2011 on Ab Initio Molecular Simulations: Toward a First-Principles Understanding of Materials Properties and Functions

Exchange-Correlation functionals for the ground state: from LDA up to the Optimized Effective Potential method

Dr. Fabio Della Sala

National Nanotechnology Laboratories, Lecce, Italy

www.theory-nnl.it

Kohn-Sham (KS) Density Functional Theory

Kohn-Sham Total Energy

$$E^{v_{\text{ext}}}[\rho] = T_{\text{ni}}[\rho] + \int \rho(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) d\mathbf{r} + E_J[\rho] + E_{\text{xc}}[\rho]$$

Coulomb Energy:
$$E_J[\rho] = \frac{1}{2} \int \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{\|\mathbf{r} - \mathbf{r}'\|} d\mathbf{r} d\mathbf{r}'$$

Exchange-
Correlation
Energy:
$$E_{xc}[\rho] = (\underbrace{V_{ee}[\rho] - E_{J}[\rho]}_{U_{xc}}) + (\underbrace{T[\rho] - T_{ni}[\rho]}_{T_{c}})$$
$$\stackrel{T_{c}}{=} \underbrace{E_{xc}[\rho] = ?}_{F^{HK}[\rho] = V_{ee}[\rho] + T[\rho] = \min_{\Psi^{MB} \to \rho} \langle \Psi^{MB} | \hat{T} + \hat{V}_{ee} | \Psi^{MB} \rangle$$

Kinetic Energy: $T_{ni}[\rho] = ??$

$$T_{ni}[\rho] \longrightarrow \sum_{a}^{occ.} n_s \left\langle \phi_a \right| - \frac{1}{2} \nabla^2 \left| \phi_a \right\rangle = \int d\mathbf{r} \tau(\mathbf{r})$$

KS kinetic energy is an $\tau(\mathbf{r}) = \frac{n_s}{2} \sum_{a}^{occ} |\nabla \phi_a(\mathbf{r})|^2$
orbital-dependent functional

Outline

Section I

Exact definitions / Functional Form

□ Uniform Electron Gas (LDA)

□ Gradient Expansion (PBE-like functionals)

Section II

Orbital Dependent Functional

Exact Exchange

Section III

□Hybrid Functionals / Generalized KS Summary

Purpose: Introduction to XC functional performance and development

Not covered: VDW, Magnetism, RPA (see other talks)

Exchange Functional

$E_{xc}[\rho] = E_{x}[\rho] + E_{c}[\rho]$ Exact Exchange $E_{x}^{EXX}[\rho] = \left\langle \Phi^{KS}[\rho] \middle| V_{ee} \middle| \Phi^{KS}[\rho] \right\rangle - E_{J}[\rho] = \left[-\sum_{a}^{occ} \sum_{b}^{occ} \frac{n_{s}}{2} \int \int \frac{\phi_{a}^{KS}(\mathbf{r})\phi_{a}^{KS}(\mathbf{r}')}{\|\mathbf{r} - \mathbf{r}'\|} d\mathbf{r} d\mathbf{r}' \right] + as in Hartree-Fock but with <u>KS orbitals</u> <math display="block">= -\frac{n_{s}}{2} \int \int \frac{|\gamma^{KS}(\mathbf{r},\mathbf{r}')|^{2}}{\|\mathbf{r} - \mathbf{r}'\|} d\mathbf{r} d\mathbf{r}' \quad \text{Ie- Density Matrix Functional} (implicit density functional <math>\gamma^{KS} = \gamma^{KS}[\rho])$

$$E_{x}[\rho] = \int \rho(\mathbf{r}) \mathcal{E}_{x}(\mathbf{r}) d\mathbf{r} = \frac{1}{2} \int \int \frac{\rho(\mathbf{r}) h_{x}(\mathbf{r}, \mathbf{r}')}{\|\mathbf{r} - \mathbf{r}\|} d\mathbf{r} d\mathbf{r}'$$

Exchange-energy density:

$$\mathcal{E}_{x}(\mathbf{r}) = \frac{1}{2} \int \frac{h_{x}(\mathbf{r}, \mathbf{r}')}{\|\mathbf{r} - \mathbf{r}'\|} d^{3}\mathbf{r}'$$

$$h_{x}^{EXX}(\mathbf{r}, \mathbf{r}') = -n_{s} \frac{\left|\gamma^{KS}(\mathbf{r}, \mathbf{r}')\right|^{2}}{\rho(\mathbf{r})} \leq 0$$

Correlation Functional

$$E_{c}^{DFT}[\rho] = \min_{\Psi^{MB} \to \rho} \left\langle \Psi^{MB} \middle| \hat{T} + \hat{V}_{ee} \middle| \Psi^{MB} \right\rangle - \left\langle \Phi^{KS}[\rho] \middle| \hat{T} + \hat{V}_{ee} \middle| \Phi^{KS}[\rho] \right\rangle \leq 0$$

$$MB \text{ wavefunction} KS \text{ single Slater-Det.}$$

$$As \text{ in Many-Body theory (where there are different densities)}$$

$$E_{c}^{MB} = \left\langle \Psi^{MB} \middle| \hat{T} + \hat{V}_{ext} + \hat{V}_{ee} \middle| \Psi^{MB} \right\rangle - \left\langle \Phi^{HF} \middle| \hat{T} + \hat{V}_{ext} + \hat{V}_{ee} \middle| \Phi^{HF} \right\rangle$$

$$U_{c} : \text{Potential contribution}$$

$$E_{c}[\rho] = \frac{1}{2} \iint \frac{\Gamma(\mathbf{r}, \mathbf{r}') - \Gamma^{KS}(\mathbf{r}, \mathbf{r}')}{\Vert \mathbf{r} - \mathbf{r}'' \Vert} d\mathbf{r} d\mathbf{r}'$$

$$\int_{0}^{0} \frac{1}{\sqrt{2}} \int_{0}^{0} \frac{1}{\sqrt{2}} \int_{0$$

Jacob's Ladder (Perdew)

.

15. All orbitals/eigenvalues
(RPA,GLPT, double hybrid)
$$E_{xc}[\rho] = \int d^{3}\mathbf{r}\rho(\mathbf{r})\varepsilon_{xc}(..., \{\phi_{i}, \varepsilon_{i}\}^{ALL})$$

4. Hyper-GGA, EXX, $E_{xc}[\rho] = \int d^{3}\mathbf{r}\rho(\mathbf{r})\varepsilon_{xc}(..., \varepsilon_{x}^{EXX}(\mathbf{r}))$
3. Meta-GGA (TPSS) $E_{xc}[\rho] = \int d\mathbf{r}\rho(\mathbf{r})\varepsilon_{xc}(..., \tau(\mathbf{r}))$
2. Gener. Gradient Approx. (GGA) $E_{xc}[\rho] = \int d\mathbf{r}\rho(\mathbf{r})\varepsilon_{xc}(..., \nabla\rho(\mathbf{r}))$
1. Local Density Approx. (LDA) $E_{xc}[\rho] = \int d\mathbf{r}\rho(\mathbf{r})\varepsilon_{xc}(\rho(\mathbf{r}))$
0. Hartree $E_{xc}[\rho] = 0$

curacy

Uniform Electron Gas (UEG, HEG, Jellium)

LDA Exchange

$h_x^{LDA}(\mathbf{r}_1,\mathbf{r}_2) = -n_s \frac{\left \gamma^{KS}(\mathbf{r},\mathbf{r}')\right ^2}{\rho(\mathbf{r})} = -\frac{\rho(\mathbf{r})}{n_s}$	$(Q(k_F r_{12}))^2$		0.75		\	
$\varepsilon_x^{LDA}([\rho];\mathbf{r}) = \frac{1}{2} \int \frac{h_x(\mathbf{r},\mathbf{r}')}{\ \mathbf{r}-\mathbf{r}'\ } d\mathbf{r}' = -\frac{1}{2} \frac{\rho(\mathbf{r})}{n_s} \int \frac{1}{2} \frac{\rho(\mathbf{r})}{n_s} \int \frac{1}{2} \frac{\rho(\mathbf{r})}{n_s} d\mathbf{r}'$	$\frac{Q(k_F r_{12})\Big ^2}{r_{12}} d\mathbf{r}$	·'=	0.25- - - 0.0- - 0.1-) :	2.5 5.0 7	 .5 10.0
$1 - (-) \begin{bmatrix} 0 - \end{bmatrix} - 2 (-2)^{1/3}$			E_x^{exact}		E_x^{LSD}	
$= -\frac{1}{2} \frac{\rho(\mathbf{r})}{\rho(\mathbf{r})} \left \frac{9\pi}{2} \right = -\frac{3}{2} \left \frac{3}{2} \right = \rho(\mathbf{r})^{1/2}$	3	н	0.3125	>	0 2680	
2 $n_s \mid k_F(\mathbf{r})^2 \mid 2 \langle 4n_s \pi \rangle$		He	1.0258	>	0.8840	
		Li	1.7807	>	1.5379	
$A_x = 0.7380$		Be	2.6658	>	2.3124	
Dirac Evolution 1020		N	6.6044	>	5.9008	
Dirac-Exchange 1930		Ne	12.1050	> 1	1.0335	
$T L D A \Gamma$ $A \int (\sqrt{4/3})$		Na	14.0131	> 1	2.7859	
$E_{\mu}^{\text{LDM}} \rho = -A_{\mu} \rho(\mathbf{r}) ^{-\delta} d\mathbf{r}$		Mg	15.9884	> 1	4.6117	
		P	22.6341	> 2	20.7931	
		Ar	30.1747	> 2	27.8632	
		Kr Xa	93.8330	> 2	38.6245	
$\mathcal{E}_{x}^{}([\rho];\mathbf{r}) \to \mathcal{E}_{x}^{}(\rho(\mathbf{r}))$		Xe mara (i	179.0635 in (7)	> 1/	0.5660	
simple function		mare (11 %)		9.0	

(not a functional) of the density

Quite good performance (underestimation) for atoms where the density is not uniform !

Exchange Hole

$$\mathcal{E}_{x}([\boldsymbol{\rho}];\mathbf{r}) = \frac{1}{2} \int \frac{h_{x}(\mathbf{r},\mathbf{r}')}{\|\mathbf{r}-\mathbf{r}'\|} d^{3}\mathbf{r}' = \frac{1}{2} \int \frac{h_{x}(\mathbf{r},\mathbf{r}+\mathbf{u})}{u} d^{3}\mathbf{u} = \frac{1}{2} \int du \, u \, 4\pi \, \overline{h}_{x}(\mathbf{r},u)$$

Ex depends only on spherically-averaged exchange hole :

$$\overline{h}_{x}(\mathbf{r},u) = \frac{\int d^{2}\hat{\mathbf{u}} h_{x}(\mathbf{r},\mathbf{r}+u\hat{\mathbf{u}})}{4\pi}$$

Exact Conditions for the exchange hole:

$$h_{x}(\mathbf{r},\mathbf{r}'=\mathbf{r}) = -n_{s} \frac{\left|\gamma^{KS}(\mathbf{r},\mathbf{r})\right|^{2}}{\rho(\mathbf{r})} = -\frac{\rho(\mathbf{r})}{n_{s}}$$
Satisfied by LDA!
$$\int h_{x}(\mathbf{r},\mathbf{r}')d^{3}\mathbf{r}' = -\frac{n_{s}}{\rho(\mathbf{r})}\int \left|\gamma^{KS}(\mathbf{r},\mathbf{r}')\right|^{2}d^{3}\mathbf{r}' \xrightarrow{\text{idempotency}} \frac{n_{s}}{\rho(\mathbf{r})} \frac{\rho(\mathbf{r})}{n_{s}} = -1$$

UEG correlation

Rung 2: Gradient Expansion

$$E_{x}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{x}^{LDA}[\rho] (1 + \mu_{x}s^{2} + ...) d\mathbf{r}$$

$$s = \frac{\|\nabla\rho\|}{2(3\pi^{2})^{1/3}\rho^{4/3}} = \frac{\|\nabla\rho\|}{2k_{F}(\rho)\rho} \quad \text{Reduced gradient} \\ (adimensional)$$
Exact second order (GE2)
Antoniewicz, Kleiman 1985
$$\mu_{x} = \frac{10}{81} \quad \ln \text{ solids} \\ 0.8 \le s_{\max} \le 2.2$$

$$u = \frac{10}{12} \quad \ln \frac{1}{2} \quad \ln \frac{$$

Gradient Expansion (GE2, GE4..) works badly

Pag. 12

Generalized Gradient Expansion

$$E_x^{GGA}[\rho] = \int \rho(\mathbf{r}) \mathcal{E}_x^{LDA}(\rho(\mathbf{r})) F_x(s) d^3\mathbf{r}$$

	Exchange Enhancement Factor				
PW86	Perdew Wang 1986	8148 cit.			
B86	Becke 1986	917 cit.			
B88	Becke 1988	19414 cit.			
PW91	Perdew Wang 1991	2817 cit.			
PBE	Perdew, Burke, Ernzerhof 1996	20630 cit.			
revPBE	Zhang Yang 1998	521 cit.			
RPBE	Hammer, Hansen Norskov 1999	1678 cit.			
AM05	Armiento Mattsson 2005	105 cit.			
WC	Wu Cohen 2006	244 cit.			
PBEsol	Perdew el at 2008	208 cit.			
SOGGA	Zhao Truhlar 2008	42 cit.			
RGE PBEint	Ruzsinszky Csonka Scuseria 2009 Fabiano Constantin Della Sala 2010	(Citations from google-schoolar			
ΔPRF	Constantin Fabiano I aricchia Della	Sala 2011			

Few are not empirical

Many are optimized for certain properties

Fx Limits

GGA performance

Philipp Haas, Fabien Tran, and Peter Blaha PHYSICAL REVIEW B 79, 085104 (2009)

PBE: quest for parameters

PBE correlation

$$E_{c}[\rho,\zeta] = \int \rho(\mathbf{r}) \left(\varepsilon_{c}^{LDA}[\rho,\zeta] + H_{0}(\rho,\zeta,t) \right) d\mathbf{r}$$

$$H_{0}(r_{s},\zeta,t) = \gamma \phi^{3}(\zeta) \ln \left[1 + \frac{\beta_{\text{MB}}}{\gamma} t^{2} \left(\frac{1 + At^{2}}{1 + At^{2} + A^{2}t^{4}} \right) \right]$$

.

$$\mu_{x}^{PBE} = \beta_{MB}(\pi^{2}/3) \approx 0.21961$$
To satisfy the LDA response
$$\mu_{x} = \frac{10}{81} \approx 0.1234 \text{ (PBEsol)}$$

$$\mu_{x} = 0.26 \text{ Semiclassical neutral atom:} \\ \alpha_{X} = 0.26 \text{ Semiclassical neutral atom:} \\ \alpha_{X}$$

APBE: Constantin, Fabiano, Laricchia, Della Sala, Phys. Rev. Lett. 106, 186406 (2011)

(Perdew) GGA cannot be exact for solid and molecules: PBE (APBE) best on the average We need to go beyond GGA : meta-GGA, OEP, hybrids ... Pag. 17

Orbital Dependent Functional Exact Exchange

Exchange potential for Hydrogen atom

1-e Self-interaction

Kohn-Sham Eigenvalues

-1/r corrected Functional

Leeuwen, Baerends 1994 (LB94) 714 cit.

$$v_{xc}(\mathbf{r}) = v_{xc}^{LDA}(\mathbf{r}) - \beta \rho^{1/3} \frac{x^2}{1+3\beta x \operatorname{arcsinh}(x)} \xrightarrow{r \to \infty} -\frac{1}{r} \qquad \beta = 0.05; \ x = \frac{|\nabla \rho|}{\rho^{4/3}}$$

$$E_{xc}(\mathbf{r})$$
 1e-self interaction free $v_{xc}(\mathbf{r}) \xrightarrow{r \to \infty} -\frac{1}{r}$

Pag. 22

Energy Functional of the Rung 4-5 are *orbital dependent functional* (implicit density functional of the form)

 $E_{xc}\left[\left\{\phi\right\}\right]\right)$

Exact Exchange $E_{x}[\{\phi\}] = -\frac{n_{s}}{2} \sum_{a,b}^{\text{occ.}} \iint \frac{\phi_{a}(\mathbf{r})\phi_{b}(\mathbf{r})\phi_{a}(\mathbf{r}')\phi_{b}(\mathbf{r}')}{\|\mathbf{r} - \mathbf{r}'\|} d\mathbf{r} d\mathbf{r}'$ EXX: self-interaction-free, exactly !

How to obtain KS equations with a **local** xc-potential ?

$$v_{xc}(\mathbf{r}) = \frac{\delta E_{xc}[\{\phi\}]}{\delta \rho(\mathbf{r})}$$

Chain-Rule: Density Response

$$\frac{\delta E_{xc}\left[\left\{\phi\right\}\right]}{\delta v_{s}\left(\mathbf{r}\right)} = \int \frac{\delta E_{xc}}{\delta \rho\left(\mathbf{r}'\right)} \frac{\delta \rho\left(\mathbf{r}'\right)}{\delta v_{s}\left(\mathbf{r}\right)} d\mathbf{r}'$$

$$-\frac{1}{2}\nabla^{2}\phi_{i}(\mathbf{r}) + v_{s}(\mathbf{r})\phi_{i}(\mathbf{r}) = \mathcal{E}_{i}\phi_{i}(\mathbf{r})$$
Green's
functions
$$\frac{\delta\phi_{i}(\mathbf{r}')}{\delta v_{s}(\mathbf{r})} = \sum_{j\neq i}^{all}\phi_{i}(\mathbf{r})\frac{\phi_{j}(\mathbf{r}')\phi_{i}(\mathbf{r}')}{\mathcal{E}_{i} - \mathcal{E}_{j}}$$
Density response
$$\chi_{s}(\mathbf{r}, \mathbf{r}') = \frac{\delta\rho(\mathbf{r})}{\delta v_{s}(\mathbf{r})} = 2n_{s}\sum_{a}^{occ.}\phi(\mathbf{r})\frac{\delta\phi(\mathbf{r})}{\delta v_{s}(\mathbf{r})} = 2n_{s}\sum_{a}^{occ.}\sum_{s}^{virt.}\frac{\phi_{a}(\mathbf{r})\phi_{s}(\mathbf{r})\phi_{s}(\mathbf{r})\phi_{s}(\mathbf{r}')}{\mathcal{E}_{a} - \mathcal{E}_{s}}$$

Integral equation for the exchange-correlation potential

$$\int \chi_s(\mathbf{r},\mathbf{r}')v_{xc}(\mathbf{r}')d\mathbf{r}' = d_{xc}(\mathbf{r})$$

Pag. 24

Chain Rule: RHS term

$$d_{xc}(\mathbf{r}) = \frac{\delta E_{xc}}{\delta v_s(\mathbf{r})} = \int \sum_i \frac{\delta E_{xc}[\{\phi\}]}{\delta \phi_i(\mathbf{r}')} \frac{\delta \phi_i(\mathbf{r}')}{\delta v_s(\mathbf{r})} d\mathbf{r}' =$$
$$= \sum_i \sum_{j \neq a}^{all} \frac{\phi_i(\mathbf{r})\phi_j(\mathbf{r})}{\varepsilon_i - \varepsilon_j} \left\langle \frac{\delta E_{xc}[\{\phi\}]}{\delta \phi_i(\mathbf{r}')} \middle| \phi_j(\mathbf{r}) \right\rangle$$

Note that
$$\int d_{xc}(\mathbf{r})d\mathbf{r} = \int \chi_s(\mathbf{r},\mathbf{r'})v_{xc}(\mathbf{r'})d\mathbf{r'}d\mathbf{r} = 0$$

 $d_{xc}(\mathbf{r})$ is an induced density

Integral equation for the EXX potential

$$\int \chi_{s}(\mathbf{r},\mathbf{r}')v_{x}^{EXX}(\mathbf{r}')d\mathbf{r}' = \frac{\delta E_{EXX}}{\delta v_{s}(\mathbf{r})} = 2n_{s}\sum_{a}^{occ}\sum_{s}^{virt}\frac{\phi_{a}(\mathbf{r})\phi_{s}(\mathbf{r})}{\varepsilon_{a}-\varepsilon_{s}}\left\langle\phi_{a}\left|\hat{v}_{x}^{NL}\right|\phi_{s}\right\rangle$$

Non-local Exchange
$$v_x^{NL}(\mathbf{r},\mathbf{r}') = -\sum_a^{\text{occ.}} \frac{\phi_a(\mathbf{r})\phi_a(\mathbf{r}')}{\|\mathbf{r}-\mathbf{r}'\|}$$

Pag. 25

Exact-Exchange (EXX)

$$\int \chi_{s}(\mathbf{r},\mathbf{r}')v_{x}^{EXX}(\mathbf{r}')d\mathbf{r}' = \frac{\delta E_{EXX}}{\delta v_{s}(\mathbf{r})} = 2n_{s}\sum_{a}^{occ}\sum_{s}^{virt} \langle \phi_{a} | \hat{v}_{x}^{NL} | \phi_{s} \rangle \frac{\phi_{a}(\mathbf{r})\phi_{s}(\mathbf{r})}{\mathcal{E}_{a} - \mathcal{E}_{s}}$$

850 cit.

=> 0k!

- •1976 (Talman) EXX for atoms (GRID)
- •1997 (Gorling) EXX for solids (PW) <u>272 cit.</u> => ok!
- 1999 (Gorling; Ivanov) EXX in GTO <u>243;217 cit.</u> => bad potential !
 2002 (Yang) OEP iterative minimiz. in GTO <u>179 cit.</u> => more stable
 2003 (Kummel) EXX on GRID <u>127cit.</u> => iterative
 2007 (Yang) GTO: good potential with penalty function <u>43 cit.</u>
- •2007 (Hesselman) GTO: "balanced" basis set

EXX is local-basis set is numerically tricky

⇒ more stable/efficient methods required for large systems

LHF	EXX
0.06	$0.05^a \ 0.05^b, 0.05^c$
0.09	$0.06^a, 0.06^b$
0.21	$0.14^a \ 0.14^b, 0.16^b$
	0.09 0.21

Effective EXX

Slater Potential goes asymptotically The (HOMO) term is removed so that as -1/r (self-interaction free) v_{x} vanishes asymptotically

Localized Hartree-Fock (LHF) method Della Sala, Gorling 2001 207 cit.

$$v_{x}^{LHF}(\mathbf{r}) = v_{sla}(\mathbf{r}) + n_{s} \sum_{\substack{ij \neq \\ (N,N)}}^{\text{occ.}} \frac{\phi_{i}(\mathbf{r})\phi_{j}(\mathbf{r})}{\rho(\mathbf{r})} \left\langle \phi_{i} \left| v_{x}^{LHF} - \hat{v}_{NL} \right| \phi_{j} \right\rangle$$

$$\underbrace{v_{x}(\mathbf{r}) = -\frac{n_{s}}{\rho(\mathbf{r})} \int d\mathbf{r}' \rho(\mathbf{r}',\mathbf{r})\rho(\mathbf{r},\mathbf{r}')}_{|\mathbf{r}-\mathbf{r}'|} + \frac{n_{s}}{\rho(\mathbf{r})} \int d\mathbf{r}' \rho(\mathbf{r}',\mathbf{r})\rho(\mathbf{r},\mathbf{r}')\rho(\mathbf{r},\mathbf{r}')}_{|\mathbf{r}-\mathbf{r}'|}$$

$$+ \frac{n_{s}}{\rho(\mathbf{r})} \int \int d\mathbf{r}' d\mathbf{r}'' \frac{\rho(\mathbf{r}'',\mathbf{r})\rho(\mathbf{r},\mathbf{r}')\rho(\mathbf{r},$$

LHF potential functional of the density matrix

 $+ \frac{n_s}{\rho(\mathbf{r})} \int d\mathbf{r}' \rho(\mathbf{r}',\mathbf{r})\rho(\mathbf{r},\mathbf{r}')v_x(\mathbf{r}')$

 $+\frac{n_s}{\rho(\mathbf{r})}\int \int d\mathbf{r}' d\mathbf{r}'' \frac{\rho(\mathbf{r}'',\mathbf{r})\rho(\mathbf{r},\mathbf{r}')\rho(\mathbf{r}',\mathbf{r}'')}{|\mathbf{r}'-\mathbf{r}''|}.$

ELF: Staroverov, Scuseria, Davidson 2006

CEDA: Gritsenko, Baerends 2001

LHF potential

Pag. 28

Section III

Hybrid Functionals

Generalized Kohn-Sham

KS-DFT and beyond

Global Hybrid

$$\begin{array}{l} \mathsf{KS} \qquad \hat{w}_{xc}^{NL}(\mathbf{r},\mathbf{r}') = 0 \qquad \qquad r_{xc}(\mathbf{r}) = v_{xc}^{GGA}(\mathbf{r}) \\ \\ \mathsf{Hybrid} \\ 1\text{-param} \qquad \hat{w}_{xc}^{NL}(\mathbf{r},\mathbf{r}') = -a_x \frac{\gamma(\mathbf{r},\mathbf{r}')}{\|\mathbf{r}-\mathbf{r}'\|} \quad r_{xc}(\mathbf{r}) = (1-a_x)v_x^{GGA}(\mathbf{r}) + v_c^{GGA}(\mathbf{r}) \\ \\ (\mathsf{PBE0},\alpha = 1/4) \\ \\ \\ \mathsf{Hybrid} \\ 3\text{-param} \qquad \hat{w}_{xc}^{NL}(\mathbf{r},\mathbf{r}') = -a_x \frac{\gamma(\mathbf{r},\mathbf{r}')}{\|\mathbf{r}-\mathbf{r}'\|} \quad r_{xc}(\mathbf{r}) = (1-a_x)v_x^{IDA}(\mathbf{r}) + b_x v_x^{GGA}(\mathbf{r}) \\ \\ \mathsf{Hybrid} \\ 3\text{-param} \qquad \hat{w}_{xc}^{NL}(\mathbf{r},\mathbf{r}') = -a_x \frac{\gamma(\mathbf{r},\mathbf{r}')}{\|\mathbf{r}-\mathbf{r}'\|} \quad s_{xc}(\mathbf{r}) = (1-a_x)v_x^{IDA}(\mathbf{r}) + b_x v_c^{GGA}(\mathbf{r}) \\ \\ (\mathsf{B3LYP}, \alpha = 0.2) \quad \mathsf{B3LYP} : \mathsf{Becke} \ 1983 \quad \mathsf{33811cit.} \ (\mathsf{most cited}) \\ \\ \mathsf{M05-2X a} = 0.56 \qquad \mathsf{Zhao Thrular} \ 2006 \ 670 \ \mathsf{cit.} \\ \\ \\ \mathsf{HFKS} \qquad \hat{w}_{xc}^{NL}(\mathbf{r},\mathbf{r}') = -\sum_a^{occ} \frac{\phi_a(\mathbf{r})\phi_a(\mathbf{r}')}{\|\mathbf{r}-\mathbf{r}'\|} \qquad r_{xc}(\mathbf{r}) = v_c^{GGA}(\mathbf{r}) \\ \end{array}$$

Hybrid performance

Bond lengths	B3LYP	TPSS	PBE	BLYP
MSE ^c	-0.0024	0.0070	0.0094	0.0125
MUE ^c	0.0055	0.0071	0.0094	0.0125

Hybrid methods improve bond-lengths of molecules

B3LYP fails for solids: PBE0 much better

Range-separated Hybrid

Screened hybrid

$$\hat{w}_{xc}^{NL}(\mathbf{r},\mathbf{r}') = -a \frac{erfc(\boldsymbol{\omega} \|\mathbf{r}-\mathbf{r}'\|)}{\|\mathbf{r}-\mathbf{r}'\|} \gamma(\mathbf{r},\mathbf{r})$$

$$\hat{w}_{xc}^{NL}(\mathbf{r},\mathbf{r}') = -a \frac{\exp(-\boldsymbol{\omega} \|\mathbf{r}-\mathbf{r}'\|)}{\|\mathbf{r}-\mathbf{r}'\|} \gamma(\mathbf{r},\mathbf{r})$$

Short-range=>a*HF Long-range=>GGA

Heyd, Scuseria, Enzerhof (HSE) 2003 548 cit.

TABLE III. Bulk moduli for 21 solids (GPa).

Solid	LDA	PBE	TPSS	HSE
ME ^c	11.8	-9.2	-4.1	1.4
MAE ^d	12.6	10.1	9.9	4.4

TABLE II. Lattice constants for 21 solids (Å).

Solid	LDA	PBE	TPSS	HSE
ME ^c	-0.067	0.046	0.034	0.009
MAE ^d	0.067	0.049	0.035	0.028

TABLE IV. Band gaps for eight semiconductors (eV).

 $a=1/4 \qquad \omega=0.15 a_0^{-1}$

0.5

0.2

γ* (a₀-1)

0.0

15

 $E_{xc}^{HSE} = aE_x^{HF,SR}(\omega) + (1-a)E_x^{\omega PBE,SR}(\omega)$

 $+E_x^{\omega \text{PBE,LR}}(\omega)+E_c^{\text{PBE}},$

0

NaCl

5

2.5

8

Solid	LDA	PBE	TPSS	HSE
ME^d	-1.30	-1.32	-1.27	-0.11
MAE ^e	1.30	1.32	1.27	0.23

As PBE0, but more efficient

15

10

3.5

Long-range corrected Hybrid

FIG. 1. Longitudinal polarizabilities of polyacetylene (in a.u.): The

Summary & Conclusions

OEP or Hybrid ?

Both OEP and hybrid methods include EXX in the total energy However the eigenvalue spectrum is different

Hybrid (GKS) larger gap than OEPx

KS vs GKS energy gap Many-Body $E_{gap}^{MB} = (E[N+1] - E[N]) - (E[N] - E[N-1]) = I - A$ Energy-Gap **Energy-Gap** -IAffinity>0 (ion is more stable) Ionization>0 For an Exact $E_{gap}^{deriv} = \frac{\partial E}{\partial N}\Big|_{N=S} - \frac{\partial E}{\partial N}\Big|_{N=S}$ 10 **Functional** ΔE/eV LDA/GGA 6.2 6.4 6.6 6.8 $E_{gap}^{deriv} = \Delta \varepsilon^{KS} \ll E_{gap}^{MB}$ 2 Initial Slope Janak 1978 OEP(HF) MĊYŚ OEP(MCY3) -2 IDÁ OEP Casida 1999 6.5 5 5.5 6 7 Number of Electrons $-I = \frac{\partial E}{\partial N_{-}} = \mathcal{E}_{H}^{KS} + \underbrace{\langle \phi_{H} \left| \Sigma_{xc}^{NL} - v_{xc} \right| \phi_{H} \rangle}_{O} = \mathcal{E}_{H}^{KS}$ LDA EXX MCY3 MCY3 HF Exp **GKS OEP** $-A = \frac{\partial E}{\partial N_{+}} = \mathcal{E}_{L}^{KS} + \left\langle \phi_{L} \left| \Sigma_{xc}^{NL} - v_{xc} \right| \phi_{L} \right\rangle = \mathcal{E}_{L}^{KS} + \Delta_{xc}$ 9.5 18.1 15.2 15.9 14.6 I=15.7 -homo $E_{gap}^{deriv} = \Delta \mathcal{E}^{KS} + \Delta_{xc}$ 6.1 -2.3 10.3 1.4 10.6 A=1.3 -lumo -2.3 1.4 -lumo- Δxc GKS $E_{gap}^{deriv} = \Delta \varepsilon^{GKS}$ Gap 3.4 20.4 5.6 13.7 4.014.4

OEP: good gap for neutral excitation; GKS good MB gap

Pag. 38

Functionals (non-local, non-linear)

References

OEP/EXX

Della Sala, Chem. Modell. 7 (2010) 115

Kummel, Kronik, Rev. Mod. Phys. 80 (2008) 3

DFT Development

Scuseria, Staroverov in *Theory and Applications of Computational Chemistry*, (2005) pag. 669

Perdew, Kurth *A Primer in Density Functional Theory,* Springer, Vol. 620, (2003) pag. 1

Baerends, Gritsenko, J. Phys. Chem. A 101 (1997) 5383

List of functionals (libxc)

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc:manual

