Gradients 0000000 Relaxation

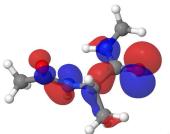
Vibrations 0000000

The nuts and bolts of electronic structure theory Part II: Self-consistency, gradients, relaxation, and vibrations

Jürgen Wieferink

Fritz-Haber-Institut der Max-Planck-Gesellschaft

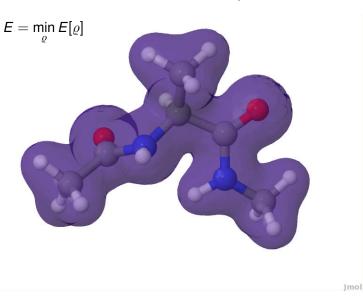
13 July 2011



Gradients 0000000 Relaxation

Vibrations

Self-consistency



 aradients

Relaxation

Vibrations 0000000

The self-consistency cycle

$$n = \sum_{i} |\psi_i|^2$$

$$H\psi_i=\varepsilon_i\psi_i$$

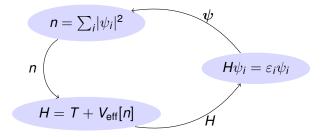
$$H = T + V_{\rm eff}[n]$$

aradients

Relaxation

Vibrations 0000000

The self-consistency cycle

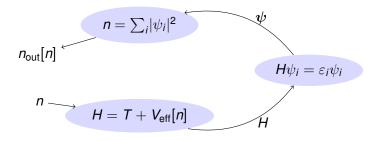


iradients

Relaxation

Vibrations 0000000

The self-consistency cycle



Gradients 0000000 Relaxation

Vibrations

Naive iteration

We want to find the self-consistent solution to

$$n \stackrel{!}{=} n_{\text{out}}[n],$$

or, equivalently, the zero of the residual

$$0 \stackrel{!}{=} \Delta n = \Delta n[n] := n_{\text{out}}[n] - n.$$

The naive solution is to iterate

$$n^{(k+1)} := n_{\text{out}}^{(k)} = n^{(k)} + \Delta n^{(k)}$$

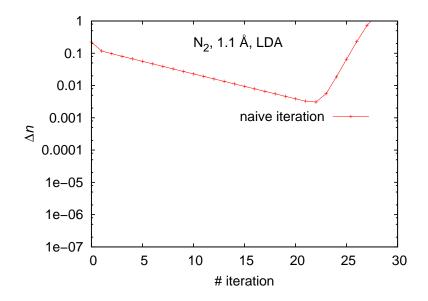
Self-consistency

aradients

Relaxation

Vibrations 0000000

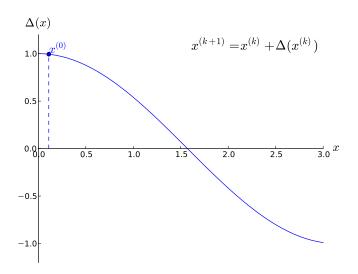
Naive iteration in practice



aradients

Relaxation

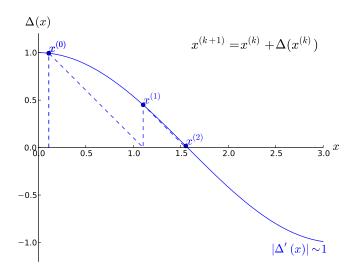
Vibrations 0000000



aradients

Relaxation

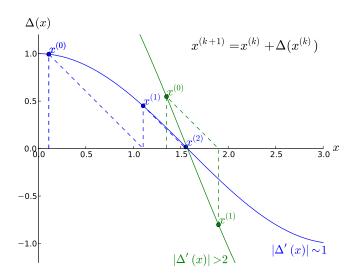
Vibrations 0000000



aradients

Relaxation

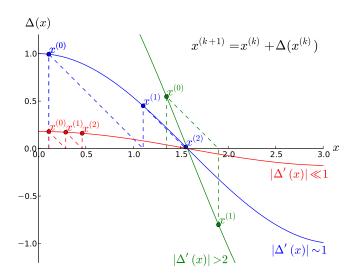
Vibrations 0000000



aradients

Relaxation

Vibrations 0000000



Gradients 0000000 Relaxation

Vibrations

Linear mixing

- The iterations $x^{(k+1)} = x^{(k)} + \Delta(x^{(k)})$ converge ...
 - slow for $|\Delta'| \ll 1$
 - fast for $|\Delta'| \sim 1$
 - not at all for $|\Delta'| > 2$.

Self-consistency

Gradients 0000000 Relaxation

Vibrations

Linear mixing

- The iterations $x^{(k+1)} = x^{(k)} + \Delta(x^{(k)})$ converge ...
 - slow for $|\Delta'| \ll 1$
 - fast for $|\Delta'| \sim 1$
 - not at all for |Δ'| > 2.
- Can always ensure convergence by scaling

$$\Delta(x) \rightarrow \alpha \, \Delta(x)$$
 with $\alpha < 1$

or

$$n^{(k+1)} = n^{(k)} + \alpha \Delta n^{(k)} = (1 - \alpha)n^{(k)} + \alpha n_{out}^{(k)}.$$

Self-consistency

Gradients 0000000 Relaxation

Vibrations

Linear mixing

- The iterations $x^{(k+1)} = x^{(k)} + \Delta(x^{(k)})$ converge ...
 - slow for $|\Delta'| \ll 1$
 - fast for $|\Delta'| \sim 1$
 - not at all for |Δ'| > 2.
- Can always ensure convergence by scaling

$$\Delta(x) \rightarrow \alpha \, \Delta(x)$$
 with $\alpha < 1$

or

$$n^{(k+1)} = n^{(k)} + \alpha \,\Delta n^{(k)} = (1 - \alpha) n^{(k)} + \alpha n_{\text{out}}^{(k)}.$$

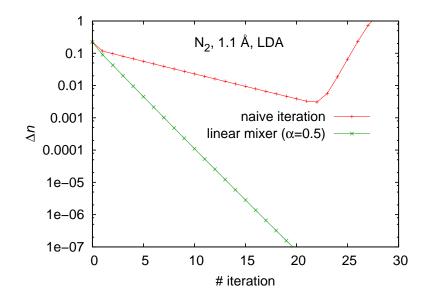
• But: Problem is multidimensional. Different "directions" of Δn would need different α .

àradients

Relaxation

Vibrations 0000000

Linear mixer in practice



Gradients 0000000 Relaxation

Vibrations 0000000

Pulay mixer

• After *M* iterations, we already know about

$$\Delta n^{(i)} = \Delta n[n^{(i)}]$$
 for $i = 1, \dots, M$

• Linearly approximate residue:

$$\Delta n \left[\sum_{i} c_{i} n^{(i)}\right] \approx \sum_{i} c_{i} \Delta n^{(i)} =: \Delta n(\mathbf{c})$$

- Minimize $\langle \Delta n(\mathbf{c}) | \Delta n(\mathbf{c}) \rangle$ with respect to \mathbf{c} and $\sum_i c_i = 1$
- "Direct inversion in iterative subspace" (DIIS)
- Other mixers exist and differ in details [2]

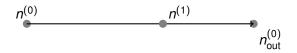
P. Pulay, Chem. Phys. Lett. **73**, 393 (1980).
 V. Eyert, J. Comp. Phys. **124**, 271 (1996).

aradients

Relaxation

Vibrations

Pulay mixer in two dimensions



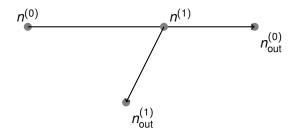
[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

aradients

Relaxation

Vibrations 0000000

Pulay mixer in two dimensions



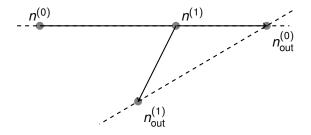
[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

aradients

Relaxation

Vibrations 0000000

Pulay mixer in two dimensions



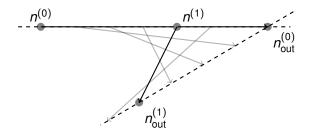
[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

aradients

Relaxation

Vibrations 0000000

Pulay mixer in two dimensions



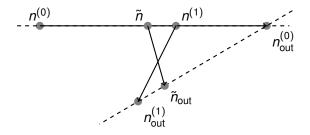
[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

aradients

Relaxation

Vibrations 0000000

Pulay mixer in two dimensions



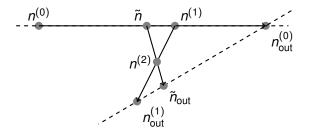
[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

aradients

Relaxation

Vibrations 0000000

Pulay mixer in two dimensions



[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

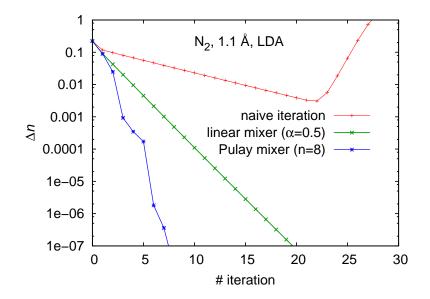
Self-consistency

aradients

Relaxation

Vibrations 0000000

Pulay mixer in practice



aradients

Relaxation

Vibrations 0000000

Idea of electronic smearing

• Calculate charge density from

$$n(\mathbf{r}) = \sum_{i} \Theta(\mu - \varepsilon_i) |\psi_i(\mathbf{r})|^2$$

with chemical potential μ adjusted to give $N_{\rm e}$.

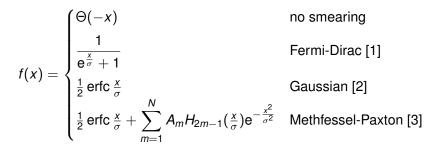
- Tiny changes in V_{eff}[n]
 - \rightarrow tiny changes in ε_i
 - \rightarrow possibly huge changes in *n*(*r*).
- Get smooth dependence by smearing $\Theta(\mu \varepsilon_i)$.

Relaxation

Vibrations 0000000

Approaches to electronic smearing

Replace $\Theta(\varepsilon_{\mathsf{F}} - \varepsilon_i)$ by f(x) with $x = (\varepsilon_i - \mu)$ in:



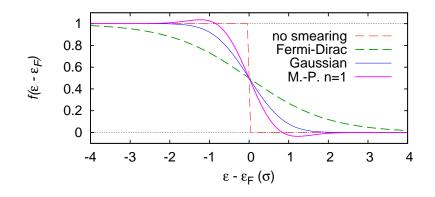
N. Mermin, Phys. Rev. **137**, A1441 (1965).
 C.-L. Fu, K.-H. Ho, Phys. Rev. B **28**, 5480 (1983).
 M. Methfessel, A. Paxton, Phys. Rev. B **40**, 3616 (1989).

	Gradien
000	00000

Relaxation

Vibrations 0000000

Comparison of electronic smearing approaches



N. Mermin, Phys. Rev. **137**, A1441 (1965).
 C.-L. Fu, K.-H. Ho, Phys. Rev. B **28**, 5480 (1983).
 M. Methfessel, A. Paxton, Phys. Rev. B **40**, 3616 (1989).

iradients

Relaxation

Vibrations

Electronic "free energy"

• Kohn-Sham equations now from minimizing a "free energy":

$$E_{\text{tot}} \rightarrow \Omega_{\text{tot}} := E_{\text{tot}} - \sigma S(\sigma, \{f_i\}).$$

- The shape of the entropy term depends on the smearing type.
- The true ($T \rightarrow 0$) total energy is

$$\Omega_{\text{tot}}(\sigma) \leq E_{\text{tot}}(T \to 0) \leq E_{\text{tot}}(\sigma).$$

as can be shown by applying variational principle for $\sigma \neq 0$ and $\sigma = T = 0$.

 For metallic systems, E_{tot}(T → 0) can be backextrapolated from Ω_{tot}(σ) and E_{tot}(σ).

Gradients 0000000 Relaxation

Vibrations

Preconditioner

• Linear admixture of residual:

$$n \leftarrow n + \alpha \Delta n$$

often overemphasizes large rearrangements of charge.

• Avoid charge sloshing with preconditioner

$$n \leftarrow n + \hat{G} \Delta n$$
 with $\hat{G} = \alpha \frac{k^2}{k^2 + k_0^2}$

which damps long-range ($k \rightarrow 0$) components.

[1] G. Kerker, Phys. Rev. B 23, 3082 (1981).

aradients

Relaxation

Vibrations 0000000

Summary self-consistency

- Cast Kohn-Sham minimization to self-consistency problem
- Linear mixing guarantees convergence (but slow)
- Pulay mixer linearly approximates residues
- Electronic smearing to soften discontinuities
- Preconditioner dampens long-range part of residue

Gradients

Relaxation

Vibrations 0000000

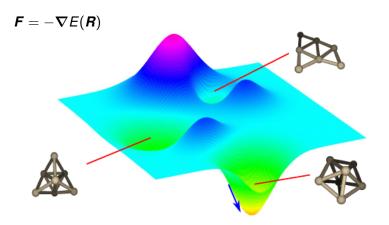


figure adapted from R. Gehrke

Relaxation

Vibrations 0000000

Separation of dependencies

Atomic motion means concomitant motion of several quantities:

- the centers \boldsymbol{R}_{pot} of the external potential $Z_{\mu}/|\boldsymbol{r}-\boldsymbol{R}_{pot,\mu}|$,
- the centers $\mathbf{R}_{\text{basis}}$ of the basis functions $\phi_{nlm}(\mathbf{r} \mathbf{R}_{\text{basis},\mu})$,
- a few other centers for particular approximations

Of course, they are always the same

$$m{R}_{ ext{pot}}(m{R}) = m{R}_{ ext{basis}}(m{R}) = \cdots = m{R}.$$

Gradients

Relaxation

Vibrations

Chain rule

Although all centers move concomitantly

$$m{R}_{ ext{pot}}(m{R}) = m{R}_{ ext{basis}}(m{R}) = \cdots = m{R}$$

we can use them to separate the gradients into independent terms

$$\frac{\mathrm{d}E}{\mathrm{d}R} = \frac{\partial E}{\partial R_{\text{pot}}} \underbrace{\overbrace{\partial R}^{=1}}_{\partial R \text{pot}} + \frac{\partial E}{\partial R_{\text{basis}}} \underbrace{\overbrace{\partial R}^{=1}}_{\partial R_{\text{basis}}} + \cdots$$
$$= \frac{\partial E}{\partial R_{\text{pot}}} + \frac{\partial E}{\partial R_{\text{basis}}} + \cdots$$

Gradients

Relaxation

Vibrations 0000000

Hellmann-Feynman forces

$$\frac{\mathrm{d}E}{\mathrm{d}\mathbf{R}_{\mathrm{pot}}} = \frac{\partial E}{\partial \mathbf{R}_{\mathrm{pot}}} + \underbrace{\sum_{\alpha i} \frac{\partial E}{\partial \mathbf{c}_{\alpha i}} \frac{\partial \mathbf{c}_{\alpha i}}{\partial \mathbf{R}_{\mathrm{pot}}}}_{\alpha i}$$

- *E* is minimal w. r. t. changes in one-particle coefficients c_{αi} consistent with orthonormality.
- Orthonormality defined by *R*_{basis}, not *R*_{pot}.

$$\begin{split} \boldsymbol{F}_{\mathsf{HF},\mu} &= -\frac{\partial \boldsymbol{E}_{\mathsf{nuc-nuc}}}{\partial \boldsymbol{R}_{\mathsf{pot},\mu}} - \frac{\partial \boldsymbol{E}_{\mathsf{ext}}}{\partial \boldsymbol{R}_{\mathsf{pot},\mu}} \\ &= -\sum_{\nu} Z_{\nu} \boldsymbol{\nabla}_{\boldsymbol{R}_{\mu}} \frac{Z_{\mu}}{|\boldsymbol{R}_{\nu} - \boldsymbol{R}_{\mu}|} + \int \mathsf{d}^{3} \boldsymbol{r} \; \boldsymbol{n}(\boldsymbol{r}) \boldsymbol{\nabla}_{\boldsymbol{R}_{\mu}} \frac{Z_{\mu}}{|\boldsymbol{r} - \boldsymbol{R}_{\mu}|} \end{split}$$

Gradients

Relaxation

Vibrations

Pulay forces

$$\frac{\mathsf{d}\boldsymbol{E}}{\mathsf{d}\boldsymbol{R}_{\mathsf{basis}}} = \sum_{\alpha} \frac{\partial \boldsymbol{E}}{\partial \phi_{\alpha}} \frac{\partial \phi_{\alpha}}{\partial \boldsymbol{R}_{\mathsf{basis}}} + \sum_{\alpha i} \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{c}_{\alpha i}} \frac{\partial \boldsymbol{c}_{\alpha i}}{\partial \boldsymbol{R}_{\mathsf{basis}}}$$

- None of these terms vanish.
- Make use of
 - definition of H,
 - Kohn-Sham equations,
 - orthonormality.

$$m{F}_{\mathsf{Pulay},\mu} = -2\sum_{lpha,lpha',i} m{c}_{lpha i}^* \left\langle rac{\partial \phi_lpha}{\partial m{R}_{\mathsf{basis},\mu}} \bigg| H - arepsilon_i \bigg| \phi_{lpha'}
ight
angle m{c}_{lpha' i}$$

• Particularly involved for GGAs

Gradients

Relaxation

Vibrations 0000000

Other force terms

- Moving integration grid **R**_{grid}:
 - Force term vanishes for converged grid settings.
 - Can be done, but is cumbersome.
 - If really needed, the grid is too coarse anyway [1].
- Electrostatic multipole derivatives (Hartree potential):
 - Important but straight-forward.
- Scalar relativistic corrections:
 - Important but straight-forward.

[1] Baker et al., J. Chem. Phys. 101, 8894 (1994).

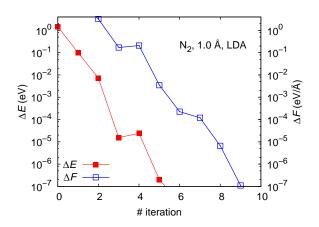
Self-consistency

Gradients

Relaxation

Vibrations 0000000

Practitioner's guide



Forces converge slower (first order) within the SCF procedure than energies (second order).

Gradients

Relaxation

Vibrations 0000000

Summary gradients

- Forces are invaluable probe for potential energy surface
- Forces separate in distinct terms:
 - Hellmann-Feynman from moving potential centers
 - Pulay from moving basis functions
 - additional terms from other moving approximations.
- Forces need better SCF convergence than energies.

Gradients 0000000 Relaxation

Vibrations

Relaxation

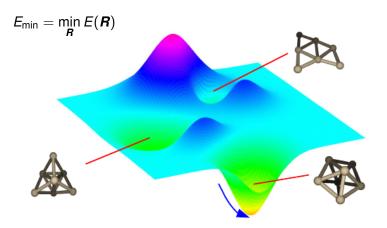


figure adapted from R. Gehrke

Gradients

Relaxation

Vibrations

Steepest descent

• Minimum of energy is zero of force:

$$\min_{\boldsymbol{R}} E(\boldsymbol{R}) \quad \Rightarrow \quad \boldsymbol{F}(\boldsymbol{R}) \stackrel{!}{=} 0.$$

- Similar to $\Delta n \stackrel{!}{=} 0$ in electronic self-consistency.
- E.g. linear mixing corresponds to "steepest descent"

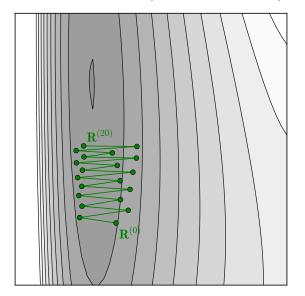
$$\mathbf{R}^{(k+1)} := \mathbf{R}^{(k)} + \alpha \mathbf{F}(\mathbf{R}^{(k)}).$$

aradients

Relaxation

Vibrations 0000000

Steepest descent in practice



Step in direction of steepest descent:

 $\Delta \pmb{R} = \alpha \pmb{F}$

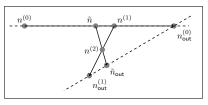
Gradients

Relaxation

Vibrations 0000000

Geometrical DIIS

• The Pulay mixer corresponds to "Geometrical direct inversion in iterative subspace" (GDIIS) [1].



- Special precautions to avoid problems with saddle points [2].
- Very low administrative footprint.

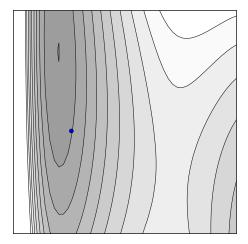
P. Császár and P. Pulay, J. Mol. Struct. **114**, 31 (1984).
 Ö. Farkas and H. B. Schlegel, Phys. Chem. Chem. Phys. **4**, 11 (2002).

Gradients 0000000 Relaxation

Vibrations

Quadratic model

$\tilde{E}(\boldsymbol{R}+\Delta \boldsymbol{R})=E(\boldsymbol{R})$

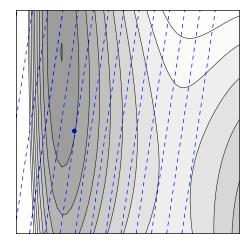


Gradients 0000000 Relaxation

Vibrations

Quadratic model

$\tilde{E}(\boldsymbol{R} + \Delta \boldsymbol{R}) = E(\boldsymbol{R}) - \boldsymbol{F}(\boldsymbol{R}) \cdot \Delta \boldsymbol{R}$

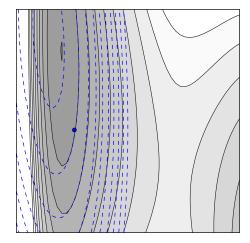


Gradients 0000000 Relaxation

Vibrations 0000000

Quadratic model

$$ilde{\mathsf{E}}(\mathbf{\textit{R}}+\Delta\mathbf{\textit{R}})=\mathsf{E}(\mathbf{\textit{R}})-\mathbf{\textit{F}}(\mathbf{\textit{R}})\cdot\Delta\mathbf{\textit{R}}+rac{1}{2}\Delta\mathbf{\textit{R}}^{\mathsf{T}}\,\mathsf{H}\,\Delta\mathbf{\textit{R}}$$

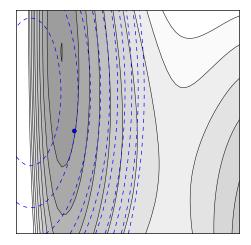


Gradients 0000000 Relaxation

Vibrations 0000000

Quadratic model

$$ilde{E}(oldsymbol{R}+\Deltaoldsymbol{R})=E(oldsymbol{R})-oldsymbol{F}(oldsymbol{R})\cdot\Deltaoldsymbol{R}+rac{1}{2}\Deltaoldsymbol{R}^T\,oldsymbol{ extsf{H}}\,\Deltaoldsymbol{R}$$



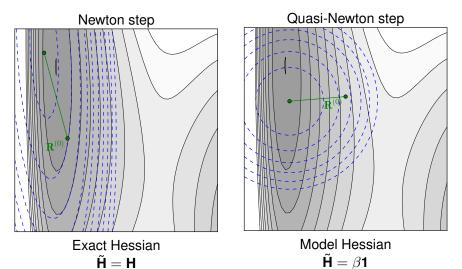
Gradients

Relaxation

Vibrations 0000000

(Quasi-)Newton step

Step to model minimum $\boldsymbol{F}(\boldsymbol{R}) - \tilde{\boldsymbol{H}} \Delta \boldsymbol{R} \stackrel{!}{=} 0 \quad \Rightarrow \quad \Delta \boldsymbol{R} = \tilde{\boldsymbol{H}}^{-1} \boldsymbol{F}$



aradients

Relaxation

Vibrations 0000000

Hessian approximation

Twofold strategy for Hessian approximation

- Need initial approximation. However, even $\tilde{H}_0 = \beta \mathbf{1}$ is not so bad.
- After each step, update Hessian to fulfill

$$\tilde{\mathbf{H}} \Delta \mathbf{R} = -\Delta \mathbf{F},$$

e.g. by Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [1]

$$\tilde{\mathbf{H}} \quad \leftarrow \quad \tilde{\mathbf{H}} - \frac{\tilde{\mathbf{H}} \Delta \boldsymbol{R} \, (\tilde{\mathbf{H}} \Delta \boldsymbol{R})^T}{\Delta \boldsymbol{R}^T \, \tilde{\mathbf{H}} \Delta \boldsymbol{R}} - \frac{\Delta \boldsymbol{F} \Delta \boldsymbol{F}^T}{\Delta \boldsymbol{F}^T \, \Delta \boldsymbol{R}}$$

[1] J. Nocedal and S. J. Wright, "Numerical optimization" (Springer, 2006).

aradients

Relaxation

Vibrations 0000000

Initial Hessian approximation

Diagonal matrix ($\tilde{\mathbf{H}} = \beta \mathbf{1}$): penalty on Cartesian shifts

$$\tilde{E}(\mathbf{R} + \Delta \mathbf{R}) = E - \mathbf{F} \cdot \Delta \mathbf{R} + \underbrace{\sum_{\nu} \frac{\beta}{2} \Delta R_{\nu}^{2}}_{\text{Cartesian shifts}}$$

Lindh [1]: penalty on changes in internal coordinates

$$\tilde{E} = E - \mathbf{F} \cdot \Delta \mathbf{R} + \underbrace{\sum_{ij}' \frac{k_{ij}}{2} \Delta r_{ij}^{2}}_{\text{stretches}} + \underbrace{\sum_{ijk}' \frac{k_{ijk}}{2} \Delta \theta_{ijk}^{2}}_{\text{bendings}} + \underbrace{\sum_{ijkl}' \frac{k_{ijkl}}{2} \Delta \tau_{ijkl}^{2}}_{\text{torsions}}$$

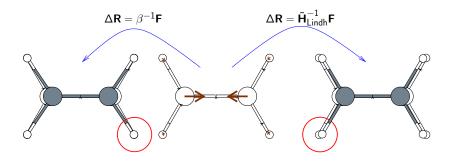
[1] R. Lindh et al., Chem. Phys. Lett. 241, 423 (1995).

Gradients

Relaxation

Vibrations 0000000

Lindh model in practice



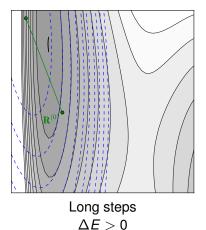
No forces on hydrogen atoms:

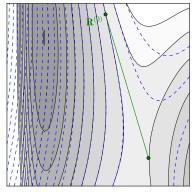
- Diagonal matrix preserves Cartesian coordinates of H.
- Lindh matrix preserves bond lengths/angles of H

Gradients 0000000 Relaxation

Vibrations

Failure of pure quasi-Newton





Negative Hessian mode Aims at saddle

aradients

Relaxation

Vibrations

Step control: line search

 $\Delta \boldsymbol{R} := \alpha \tilde{\mathbf{H}}^{-1} \mathbf{F}$

- Try Quasi-Newton ($\alpha = 1$) first
- For bad step (e.g. $\Delta E > 0$), interpolate

$$E(\alpha) = E(\mathbf{R} + \alpha \, \Delta \mathbf{R})$$

and find optimal α in 1D

- After each line search, update Hessian
- Drawbacks:
 - Need positive definite Hessian ($\boldsymbol{u}^T \tilde{\boldsymbol{H}} \boldsymbol{u} > 0 \ \forall \boldsymbol{u}$)
 - Might need multiple steps in same direction
- Can avoid explicit $\tilde{\mathbf{H}}$ with L-BFGS.

[1] J. Nocedal and S. J. Wright, "Numerical optimization" (Springer, 2006).

aradients

Relaxation

Vibrations 0000000

Step control: trust radius

$$\Delta m{R} \coloneqq rgmin ilde{E}(m{R} + \Delta m{R}) \ |\Delta m{R}| \le \Delta R_{ ext{max}}$$

- Only trust quadratic model within finite region $|\Delta \mathbf{R}| \leq \Delta R_{max}$.
- Model minimum can be calculated exactly.
- Initial trust radius can be guessed (e.g. $\Delta R_{max} = 0.2 \text{ Å}$).
- Update trust radius according to

$$\rho = \frac{\Delta E}{\Delta \tilde{E}} \begin{cases} > 0.75 & \Delta R_{\max} \leftarrow 2\Delta R_{\max} & \text{(good model)} \\ < 0.25 & \Delta R_{\max} \leftarrow \frac{1}{2}\Delta R_{\max} & \text{(bad model)} \end{cases}$$

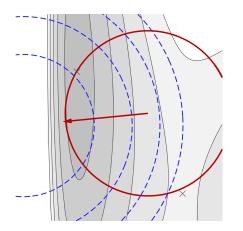
• Stick to old *R* if $\rho < 0$.

[1] J. Nocedal and S. J. Wright, "Numerical optimization" (Springer, 2006).

Gradients 0000000 Relaxation

Vibrations

Trusted step



Step to minimum within trust region:

$$\Delta oldsymbol{R} := rgmin ilde{E}(oldsymbol{R} + \Delta oldsymbol{R}) \ |\Delta oldsymbol{R}| \leq \Delta R_{ ext{max}}$$

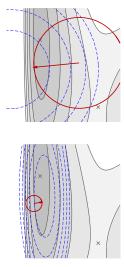
Approximate Hessian $\tilde{\mathbf{H}} = \beta \mathbf{1}$

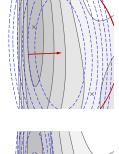
Gradients

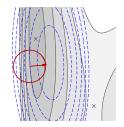
Relaxation

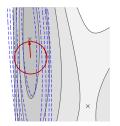
Vibrations

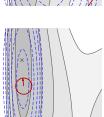
Trust region method











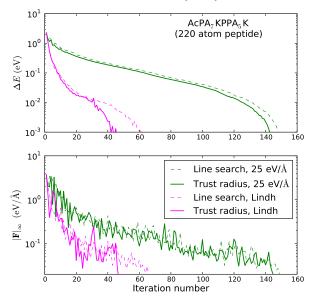
×

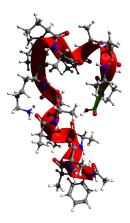
aradients

Relaxation

Vibrations 0000000

Example performance





Gradients

Relaxation

Vibrations 0000000

Summary relaxation

- Quasi-Newton methods are "industry standard"
- If optimization runs smooth, use quasi-Newton step
- Methods of step size control:
 - line search
 - trust region
- Hessian approximation:
 - initial model
 - updates to enfoce $\tilde{\mathbf{H}} \Delta \mathbf{R} = -\Delta \mathbf{F}$
- Initial Hessian is decisive for performance

Gradients 0000000 Relaxation

Vibrations

Vibrations

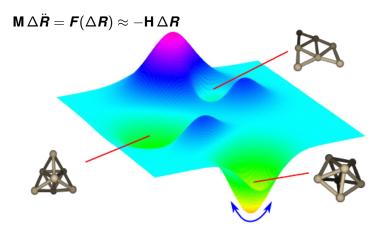


figure adapted from R. Gehrke

aradients

Relaxation

Vibrations

Beyond frozen nuclei

Minimum of potential energy surface is ground state given

- classical nuclei and
- zero temperature (no kinetic energy).

Go beyond these approximations to leading order by

$$E(\mathbf{R}) pprox \tilde{E}(\mathbf{R}) = E_{\min} + rac{1}{2} \Delta \mathbf{R}^T \, \mathbf{H} \, \Delta \mathbf{R}$$

with $\Delta \boldsymbol{R} = \boldsymbol{R} - \boldsymbol{R}_{\min}$.

Relaxation

Calculating second derivatives

- Effort for first derivatives (forces *F*) is moderate because energy is stationary w. r. t. electronic structure.
- Analytical second derivatives (Hessian H) need second derivative w.r.t. electronic structure.
- Can be done by perturbation theory (see, e.g. [1]), but is cumbersome.
- Alternative: Numerical differentiation:

$$H_{lphaeta} = rac{\mathsf{d}^2 E}{\mathsf{d} R_lpha \mathsf{d} R_eta} pprox - rac{oldsymbol{F}_lpha(oldsymbol{R} + \Delta oldsymbol{e}_eta) - oldsymbol{F}_lpha(oldsymbol{R} - \Delta oldsymbol{e}_eta)}{2\Delta}$$

[1] S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001).

Gradients

Relaxation

Vibrations

Harmonic vibrations

Newton's equation

$$\mathbf{M} \Delta \ddot{\mathbf{R}} \stackrel{!}{=} \tilde{\mathbf{F}} = -\mathbf{H} \Delta \mathbf{R}$$

Exponential ansatz

$$\Delta \mathbf{R} = \mathbf{u} \mathrm{e}^{-\mathrm{i}\omega t} \quad \Rightarrow \quad -\omega^2 \mathrm{M} \mathbf{u} = -\mathrm{H} \mathbf{u}$$

• Generalized eigenproblem $\mathbf{H} \mathbf{u}^{(\nu)} = \omega_{\nu}^{2} \mathbf{M} \mathbf{u}^{(\nu)}$

$$m{R}(t) = m{R}_{\min} + \sum_{
u} m{c}_{
u} m{u}^{(
u)} \cos(\omega_{
u} t + \Phi_{
u}).$$

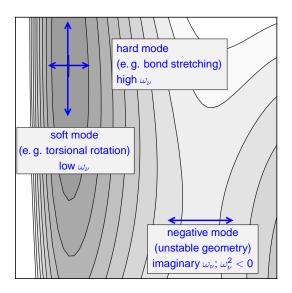
- Vibrational modes $\boldsymbol{u}^{(\nu)}$ with frequencies ω_{ν}
- Amplitudes c_{ν} and phases Φ_{ν} from initial conditions

Gradients

Relaxation

Vibrations

Interpretation of modes



Gradients

Relaxation

Vibrations

Vibrational free energy

Classical solution

$$m{R}(t) = m{R}_{\min} + \sum_{
u} c_{
u} m{u}^{(
u)} \cos(\omega_{
u} t + \Phi_{
u}).$$

is set of independent harmonic oscillators.

• Free energy at T with quantum vibrational effects

$$F(T) = E_{\min} + \sum_{\nu} \left\{ \frac{\hbar \omega_{\nu}}{2} + k_{\rm B} T \ln \left[1 - e^{-\frac{\hbar \omega_{\nu}}{k_{\rm B} T}} \right] \right\}$$

Zero-point vibrational energy

$$E(T\!=\!0) = F(T\!=\!0) = E_{\min} + \sum_{
u} rac{\hbar\omega_{
u}}{2}$$

Relaxation

Vibrations

Outlook on Molecular Dynamics

- For anharmonic effects we need to go beyond the harmonic approximation.
- Solve Newton's equations

1

 $\mathbf{M}\ddot{\boldsymbol{R}}=\boldsymbol{F}(\boldsymbol{R})$

for actual DFT forces F(R) as initial value problem

$$\boldsymbol{R}(t=0) = \boldsymbol{R}_0, \qquad \dot{\boldsymbol{R}}(t=0) = \boldsymbol{V}_0$$

• Can also be solved iteratively (e.g. Verlet algorithm)

$$\mathbf{R}(t + \Delta t) = 2\mathbf{R}(t) - \mathbf{R}(t - \Delta t) + \ddot{\mathbf{R}}(t) \cdot \Delta t^{2} + \mathcal{O}(\Delta t^{4})$$

Gradients

Relaxation

Vibrations

Summary vibrations

- First order correction to classical geometric ground state
- Hessian harder than forces; often resort to finite differences
- Soft, hard, and negative modes
- Free energy and zero-point corrections

Gradients

Relaxation

Vibrations

Final summary

- Self-consistency
 - $\rightarrow~$ Finding the electronic ground state for a given geometry
- Gradients
 - $\rightarrow~$ Change of energy for infinitesimal changes of geometry
- Relaxation
 - \rightarrow Finding minimal energy geometries
- Vibrations
 - \rightarrow Characterizing minimal energy geometries

Gradients

Relaxation

Vibrations

Final summary

- Self-consistency
 - \rightarrow Finding the electronic ground state for a given geometry
- Gradients
 - $\rightarrow~$ Change of energy for infinitesimal changes of geometry
- Relaxation
 - \rightarrow Finding minimal energy geometries
- Vibrations
 - → Characterizing minimal energy geometries

Thank you for your attention!