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Self-consistency

E = min E[o]
e




The self-consistency cycle
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Naive iteration

We want to find the self-consistent solution to
n= Nout[N],
or, equivalently, the zero of the residual
0= An= An[n] := nou[n] — n.
The naive solution is to iterate

ntkt1) .= ngﬁz = nk) + Ank).



Pulay mixer in practice
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Naive iteration in one dimension

A" (z)] ~1

1A' (@)] >2



Linear mixing

@ The iterations x(**1) = x(k) 1 A(x(K)) converge ...
o slow for |A'] < 1
o fast for |[A/| ~ 1
e not at all for |A'] > 2.

@ Can always ensure convergence by scaling
A(x) = aA(x) with a<1

or
Ak = p®) 4 o An® = (1 — a)n® + anl®)

out*

@ But: Problem is multidimensional.
Different “directions” of An would need different «.



Pulay mixer

@ After M iterations, we already know about

Ant) = Ap[n®] fori=1,...,M

Linearly approximate residue:

An{zi c,-n(")} ~ Y. cAn) =: An(c)

Minimize (An(c)|An(c)) with respectto cand 3, ¢i = 1
“Direct inversion in iterative subspace” (DIIS)

Other mixers exist and differ in details [2]

[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
[2] V. Eyert, J. Comp. Phys. 124, 271 (1996).



Pulay mixer in two dimensions

7(0)

[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).



Idea of electronic smearing

@ Calculate charge density from
n(r) = 0(u - &)ldi(r)?
i

with chemical potential 1, adjusted to give Ne.
@ Tiny changes in Veg[n]
— tiny changes in ¢;
— possibly huge changes in n(r).
@ Get smooth dependence by smearing ©(p — ¢).



Approaches to electronic smearing

Replace ©(er — ¢;) by f(x) with x = (& — p) in:

(O(—x) no smearing
1
—_ Fermi-Dirac [1]
(x) eo + 1
X) =
Terfc % Gaussian [2]

N

X

N
Terfc X 4 Z AmHam_1(X)e” =7 Methfessel-Paxton [3]

m=1

[1] N. Mermin, Phys. Rev. 137, A1441 (1965).
[2] C.-L. Fu, K.-H. Ho, Phys. Rev. B 28, 5480 (1983).
[3] M. Methfessel, A. Paxton, Phys. Rev. B 40, 3616 (1989).



Comparison of electronic smearing approaches
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[1] N. Mermin, Phys. Rev. 137, A1441 (1965).
[2] C.-L. Fu, K.-H. Ho, Phys. Rev. B 28, 5480 (1983).
[3] M. Methfessel, A. Paxton, Phys. Rev. B 40, 3616 (1989).




Electronic “free energy”

@ Kohn-Sham equations now from minimizing a “free energy”:
Eiot — Qiot := Eot — 0S(0, {fi}).

@ The shape of the entropy term depends on the smearing type.
@ The true (T — 0) total energy is

Qiot(0) < Eiot(T — 0) < Eot(0).

as can be shown by applying variational principle for ¢ # 0
ando =T =0.

@ For metallic systems, Eiot(T — 0) can be backextrapolated
from Qit(0) and Eiet(0).



Preconditioner

@ Linear admixture of residual:
n«—n+alAn

often overemphasizes large rearrangements of charge.
@ Avoid charge sloshing with preconditioner

A s k2
n<—n+GAn with G:am

which damps long-range (k — 0) components.

[1] G. Kerker, Phys. Rev. B 23, 3082 (1981).



Summary self-consistency

Cast Kohn-Sham minimization to self-consistency problem
Linear mixing guarantees convergence (but slow)

Pulay mixer linearly approximates residues

Electronic smearing to soften discontinuities

Preconditioner dampens long-range part of residue



Gradients

F=—-VE(R)

A

figure adapted from R. Gehrke
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Separation of dependencies

Atomic motion means concomitant motion of several quantities:
@ the centers Ry of the external potential Z/|r—Rpot, .|,
@ the centers Rysis of the basis functions ¢pm(r — Roasis ),
@ a few other centers for particular approximations

Of course, they are always the same

Rpot(R) = Rbasis(R) =---=R



Chain rule

Although all centers move concomitantly
Rpot(R) = Rbasis(R) =---=R

we can use them to separate the gradients into independent terms

=1 =1
ﬁ . 8E aRpot 8E 8Rbasis
dR N aRpot aR aRbasis 8R
OE OE

aF"pot 8Rbasis




Hellmann-Feynman forces

=0

——
dE Z 0E 0c,;
dRpot 8Rpot 0Cqi ORpot

@ E is minimal w.r.t. changes in one-particle coefficients c,;

consistent with orthonormality.
@ Orthonormality defined by Rbpasis, Not Rpot.
aEnu(:-nu(: 8Eext
ORpot;.  ORoor

Fur, = —

Zy 3
= —;ZUVRHM—F/C’ rn(r)VRu r

Zu

r =Ryl




Pulay forces

dE 0E 0¢, O0E 0Oc,;
= +
dRbasis ; O¢o ORpasis ; 0Cai ORpasis

@ None of these terms vanish.
@ Make use of

o definition of H,
e Kohn-Sham equations,
o orthonormality.

9
F -2
Pulay,n = Z i <8Rba3|s B

a,a’ i

H—¢

¢a/ > Cu/i

@ Particularly involved for GGAs



Other force terms

@ Moving integration grid Rygriq:
e Force term vanishes for converged grid settings.
e Can be done, but is cumbersome.
o If really needed, the grid is too coarse anyway [1].

@ Electrostatic multipole derivatives (Hartree potential):
e Important but straight-forward.

@ Scalar relativistic corrections:
e Important but straight-forward.

[1] Baker et al., J. Chem. Phys. 101, 8894 (1994).



Practitioner’s guide
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Forces converge slower (first order) within the SCF procedure than
energies (second order).



Summary gradients

@ Forces are invaluable probe for potential energy surface
@ Forces separate in distinct terms:

e Hellmann-Feynman from moving potential centers
e Pulay from moving basis functions
e additional terms from other moving approximations.

@ Forces need better SCF convergence than energies.



Relaxation
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figure adapted from R. Gehrke
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Steepest descent

@ Minimum of energy is zero of force:
mnE(R) = F(R) 2 0.

e Similarto An = 0 in electronic self-consistency.
@ E.g. linear mixing corresponds to “steepest descent”

R 1) .= R¥W) 1 oF (RW).



Steepest descent in practice

Step in direction of
steepest descent:

AR = oF
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Geometrical DIIS

@ The Pulay mixer corresponds to “Geometrical direct inversion
in iterative subspace” (GDIIS) [1].

n©) 7 n

n(2)

o owt
PO

Nout

@ Special precautions to avoid problems with saddle points [2].
@ Very low administrative footprint.

[1] P. Csaszar and P. Pulay, J. Mol. Struct. 114, 31 (1984).
[2] O. Farkas and H.B. Schlegel, Phys. Chem. Chem. Phys. 4, 11 (2002).



Quadratic model

E(R)— F(R)- AR

~

E(R+ AR)
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Quadratic model

AR+ JARTHAR

= E(R) - F(R)

E(R+ AR)

~
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(Quasi-)Newton step
Step to model minimum F(R) —HAR=0 = AR=H"'F

Newton step Quasi-Newton step

Exact Hessian ModNeI Hessian
H=H H=p1



Hessian approximation

Twofold strategy for Hessian approximation

@ Need initial approximation. However, even Hy = (31 is not so
bad.

© After each step, update Hessian to fulfill
HAR = —AF,
e.g. by Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [1]

. - HAR(HAR) AFAFT
H «— H- = — T .
ARTHAR AFT AR

[1] J. Nocedal and S.J. Wright, “Numerical optimization” (Springer, 2006).



Initial Hessian approximation

Diagonal matrix (H = 31): penalty on Cartesian shifts

E(R+AR):E—F-AR+Z§AR§

N——
Cartesian
shifts

Lindh [1]: penalty on changes in internal coordinates

- /k.. /k.. /k..
E=E-F-AR+Y JAf+Y %AH,?,(%—Z %"’ N

stretches bendings torsions

[1] R. Lindh et al., Chem. Phys. Lett. 241, 423 (1995).



Lindh model in practice

AR = 3~IF AR = H[gF

NN
/

No forces on hydrogen atoms:
@ Diagonal matrix preserves Cartesian coordinates of H.
@ Lindh matrix preserves bond lengths/angles of H



Failure of pure quasi-Newton

Negative Hessian mode

g steps

Lon

Aims at saddle

AE >0
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Step control: line search

AR :=oH'F

@ Try Quasi-Newton (a = 1) first
@ For bad step (e.g. AE > 0), interpolate

E(o) = E(R+ o AR)

and find optimal « in 1D
@ After each line search, update Hessian

@ Drawbacks:

o Need positive definite Hessian (u”Hu > 0 Vu)
e Might need multiple steps in same direction

@ Can avoid explicit H with L-BFGS.

[1] J. Nocedal and S.J. Wright, “Numerical optimization” (Springer, 2006).



Step control: trust radius

AR :=argmin E(R + AR)
|AR|<ARmax
Only trust quadratic model within finite region |[AR| < ARmax-
Model minimum can be calculated exactly.
Initial trust radius can be guessed (e.g. ARmax = 0.2 A).

Update trust radius according to

AE {> 0.75 ARmax — 2ARmax  (good model)
P

" AE <025 ARmm — 1ARma (bad model)

Stick to old R if p < 0.

[1] J. Nocedal and S.J. Wright, “Numerical optimization” (Springer, 2006).



Trusted step

Step to minimum
within trust region:

AR := argmin E(R+ AR)
|AR|<ARmax

ApproxiNmate Hessian
H =71



Trust region method




Example performance

AcPA;KPPA; K
(220 atom peptide)
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Summary relaxation

Quasi-Newton methods are “industry standard”

If optimization runs smooth, use quasi-Newton step
Methods of step size control:

e line search
e trust region

Hessian approximation:
e initial model y
@ updates to enfoce HAR = —AF

Initial Hessian is decisive for performance



Vibrations

MAR = F(AR)~ —HAR

Ba
P

A

N\

figure adapted from R. Gehrke
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Beyond frozen nuclei

Minimum of potential energy surface is ground state given
@ classical nuclei and
@ zero temperature (no kinetic energy).

Go beyond these approximations to leading order by

E(R) ~ E(R) = Emin + sAR"HAR

with AR = R — Rpyn.



Calculating second derivatives

@ Effort for first derivatives (forces F) is moderate because
energy is stationary w.r.t. electronic structure.

@ Analytical second derivatives (Hessian H) need second
derivative w.r.t. electronic structure.

@ Can be done by perturbation theory (see, e.g. [1]), but is
cumbersome.

@ Alternative: Numerical differentiation:

d?E  F.(R+ Aeg)— Fu(R— Aeg)

Hop = ——— 0 —
“* "~ dR.dRs 2A

[1] S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001).



Harmonic vibrations

@ Newton’s equation
MAR< F=_-HAR
@ Exponential ansatz
AR =ue ™! = —w?Mu=—Hu
@ Generalized eigenproblem Hu(") = w2Mu(¥)

R(t) = Rmin + Z cu” cos(wyt + ).

v

@ Vibrational modes u(*) with frequencies w,,
@ Amplitudes ¢, and phases ¢, from initial conditions



Interpretation of modes

soft mode

low w,

IR
hard mode

(e.g. bond stretching)
high w,

(e. g. torsional rotation)

negative mode
(unstable geometry)
imaginary w,; w? < 0

VA 1




Vibrational free energy

@ Classical solution

R(t) = Ruin + Z c,u”) cos(wyt + b,).

is set of independent harmonic oscillators.
@ Free energy at T with quantum vibrational effects

F(T) = Emm+2{h‘;” + kg Tln[1 —e‘%’?]}

@ Zero-point vibrational energy

hw,

E(T=0) = F(T=0) = Emin+ »



Outlook on Molecular Dynamics

@ For anharmonic effects we need to go beyond the harmonic
approximation.

@ Solve Newton’s equations
MR = F(R)
for actual DFT forces F(R) as initial value problem
R(t=0)=R,, R(t=0)=V,
@ Can also be solved iteratively (e.g. Verlet algorithm)

R(t + At) = 2R(t) — R(t — At) + R(t) - A + O(AtY)



Summary vibrations

@ First order correction to classical geometric ground state

@ Hessian harder than forces; often resort to finite differences
@ Soft, hard, and negative modes

@ Free energy and zero-point corrections



Final summary

@ Self-consistency

— Finding the electronic ground state for a given geometry
@ Gradients

— Change of energy for infinitesimal changes of geometry
@ Relaxation

— Finding minimal energy geometries
@ Vibrations

— Characterizing minimal energy geometries

Thank you for your attention!
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