The nuts and bolts of electronic structure theory

Part II: Self-consistency, gradients, relaxation, and vibrations

Jürgen Wieferink

Fritz-Haber-Institut der Max-Planck-Gesellschaft
13 July 2011

Self-consistency

$$
E=\min _{\varrho} E[\varrho]
$$

The self-consistency cycle

Naive iteration

We want to find the self-consistent solution to

$$
n \stackrel{!}{=} n_{\text {out }}[n]
$$

or, equivalently, the zero of the residual

$$
0 \stackrel{!}{=} \Delta n=\Delta n[n]:=n_{\text {out }}[n]-n
$$

The naive solution is to iterate

$$
n^{(k+1)}:=n_{\mathrm{out}}^{(k)}=n^{(k)}+\Delta n^{(k)}
$$

Pulay mixer in practice

Naive iteration in one dimension

Linear mixing

- The iterations $x^{(k+1)}=x^{(k)}+\Delta\left(x^{(k)}\right)$ converge \ldots
- slow for $\left|\Delta^{\prime}\right| \ll 1$
- fast for $\left|\Delta^{\prime}\right| \sim 1$
- not at all for $\left|\Delta^{\prime}\right|>2$.
- Can always ensure convergence by scaling

$$
\Delta(x) \rightarrow \alpha \Delta(x) \quad \text { with } \quad \alpha<1
$$

or

$$
n^{(k+1)}=n^{(k)}+\alpha \Delta n^{(k)}=(1-\alpha) n^{(k)}+\alpha n_{\text {out }}^{(k)}
$$

- But: Problem is multidimensional. Different "directions" of Δn would need different α.

Pulay mixer

- After M iterations, we already know about

$$
\Delta n^{(i)}=\Delta n\left[n^{(i)}\right] \text { for } i=1, \ldots, M
$$

- Linearly approximate residue:

$$
\Delta n\left[\sum_{i} c_{i} n^{(i)}\right] \approx \sum_{i} c_{i} \Delta n^{(i)}=: \Delta n(\mathbf{c})
$$

- Minimize $\langle\Delta n(\mathbf{c}) \mid \Delta n(\mathbf{c})\rangle$ with respect to \mathbf{c} and $\sum_{i} c_{i}=1$
- "Direct inversion in iterative subspace" (DIIS)
- Other mixers exist and differ in details [2]
[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
[2] V. Eyert, J. Comp. Phys. 124, 271 (1996).

Pulay mixer in two dimensions

[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

Idea of electronic smearing

- Calculate charge density from

$$
n(\boldsymbol{r})=\sum_{i} \Theta\left(\mu-\varepsilon_{i}\right)\left|\psi_{i}(\boldsymbol{r})\right|^{2}
$$

with chemical potential μ adjusted to give N_{e}.

- Tiny changes in $V_{\text {eff }}[n]$
\rightarrow tiny changes in ε_{i}
\rightarrow possibly huge changes in $n(\boldsymbol{r})$.
- Get smooth dependence by smearing $\Theta\left(\mu-\varepsilon_{i}\right)$.

Approaches to electronic smearing

Replace $\Theta\left(\varepsilon_{\mathrm{F}}-\varepsilon_{i}\right)$ by $f(x)$ with $x=\left(\varepsilon_{i}-\mu\right)$ in:

$$
f(x)= \begin{cases}\Theta(-x) & \text { no smearing } \\ \frac{1}{\mathrm{e}^{\frac{x}{\sigma}}+1} & \text { Fermi-Dirac [1] } \\ \frac{1}{2} \operatorname{erfc} \frac{x}{\sigma} & \text { Gaussian [2] } \\ \frac{1}{2} \operatorname{erfc} \frac{x}{\sigma}+\sum_{m=1}^{N} A_{m} H_{2 m-1}\left(\frac{x}{\sigma}\right) \mathrm{e}^{-\frac{x^{2}}{\sigma^{2}}} & \text { Methfessel-Paxton [3] }\end{cases}
$$

[1] N. Mermin, Phys. Rev. 137, A1441 (1965).
[2] C.-L. Fu, K.-H. Ho, Phys. Rev. B 28, 5480 (1983).
[3] M. Methfessel, A. Paxton, Phys. Rev. B 40, 3616 (1989).

Comparison of electronic smearing approaches

[1] N. Mermin, Phys. Rev. 137, A1441 (1965).
[2] C.-L. Fu, K.-H. Ho, Phys. Rev. B 28, 5480 (1983).
[3] M. Methfessel, A. Paxton, Phys. Rev. B 40, 3616 (1989).

Electronic "free energy"

- Kohn-Sham equations now from minimizing a "free energy":

$$
E_{\mathrm{tot}} \rightarrow \Omega_{\mathrm{tot}}:=E_{\mathrm{tot}}-\sigma S\left(\sigma,\left\{f_{i}\right\}\right)
$$

- The shape of the entropy term depends on the smearing type.
- The true $(T \rightarrow 0)$ total energy is

$$
\Omega_{\mathrm{tot}}(\sigma) \leq E_{\mathrm{tot}}(T \rightarrow 0) \leq E_{\mathrm{tot}}(\sigma)
$$

as can be shown by applying variational principle for $\sigma \neq 0$ and $\sigma=T=0$.

- For metallic systems, $E_{\text {tot }}(T \rightarrow 0)$ can be backextrapolated from $\Omega_{\text {tot }}(\sigma)$ and $E_{\text {tot }}(\sigma)$.

Preconditioner

- Linear admixture of residual:

$$
n \leftarrow n+\alpha \Delta n
$$

often overemphasizes large rearrangements of charge.

- Avoid charge sloshing with preconditioner

$$
n \leftarrow n+\hat{G} \Delta n \quad \text { with } \quad \hat{G}=\alpha \frac{k^{2}}{k^{2}+k_{0}^{2}}
$$

which damps long-range $(k \rightarrow 0)$ components.
[1] G. Kerker, Phys. Rev. B 23, 3082 (1981).

Summary self-consistency

- Cast Kohn-Sham minimization to self-consistency problem
- Linear mixing guarantees convergence (but slow)
- Pulay mixer linearly approximates residues
- Electronic smearing to soften discontinuities
- Preconditioner dampens long-range part of residue

Gradients

$$
\boldsymbol{F}=-\nabla E(\boldsymbol{R})
$$

figure adapted from R. Gehrke

Separation of dependencies

Atomic motion means concomitant motion of several quantities:

- the centers $\boldsymbol{R}_{\mathrm{pot}}$ of the external potential $z_{\mu} /\left|\boldsymbol{r}-\boldsymbol{R}_{\mathrm{pot}, \mu}\right|$,
- the centers $\boldsymbol{R}_{\text {basis }}$ of the basis functions $\phi_{n / m}\left(\boldsymbol{r}-\boldsymbol{R}_{\text {basis }, \mu}\right)$,
- a few other centers for particular approximations

Of course, they are always the same

$$
\boldsymbol{R}_{\mathrm{pot}}(\boldsymbol{R})=\boldsymbol{R}_{\mathrm{basis}}(\boldsymbol{R})=\cdots=\boldsymbol{R}
$$

Chain rule

Although all centers move concomitantly

$$
\boldsymbol{R}_{\text {pot }}(\boldsymbol{R})=\boldsymbol{R}_{\text {basis }}(\boldsymbol{R})=\cdots=\boldsymbol{R}
$$

we can use them to separate the gradients into independent terms

$$
\begin{aligned}
\frac{\mathrm{d} E}{\mathrm{~d} \boldsymbol{R}} & =\frac{\partial E}{\partial \boldsymbol{R}_{\text {pot }}} \overbrace{\frac{\partial \boldsymbol{R}_{\text {pot }}}{\partial \boldsymbol{R}}}^{=1}+\frac{\partial E}{\partial \boldsymbol{R}_{\text {basis }}} \overbrace{\frac{\partial \boldsymbol{R}_{\text {basis }}}{=1}}^{\partial \boldsymbol{R}}+\cdots \\
& =\frac{\partial E}{\partial \boldsymbol{R}_{\text {pot }}}+\frac{\partial E}{\partial \boldsymbol{R}_{\text {basis }}}+\cdots
\end{aligned}
$$

Hellmann-Feynman forces

$$
\frac{\mathrm{d} E}{\mathrm{~d} \boldsymbol{R}_{\mathrm{pot}}}=\frac{\partial E}{\partial \boldsymbol{R}_{\mathrm{pot}}}+\overbrace{\sum_{\alpha i} \frac{\partial E}{\partial c_{\alpha i}} \frac{\partial{c_{\alpha i}}_{\partial \boldsymbol{R}_{\mathrm{pot}}}^{=: 0}}{\text { on}}}
$$

- E is minimal w.r.t. changes in one-particle coefficients $c_{\alpha i}$ consistent with orthonormality.
- Orthonormality defined by $\boldsymbol{R}_{\text {basis }}$, not $\boldsymbol{R}_{\text {pot }}$.

$$
\begin{aligned}
\boldsymbol{F}_{\mathrm{HF}, \mu} & =-\frac{\partial E_{\mathrm{nuc}-\mathrm{nuc}}}{\partial \boldsymbol{R}_{\mathrm{pot}, \mu}}-\frac{\partial E_{\mathrm{ext}}}{\partial \boldsymbol{R}_{\mathrm{pot}, \mu}} \\
& =-\sum_{\nu} Z_{\nu} \nabla_{\boldsymbol{R}_{\mu}} \frac{Z_{\mu}}{\left|\boldsymbol{R}_{\nu}-\boldsymbol{R}_{\mu}\right|}+\int \mathrm{d}^{3} r n(\boldsymbol{r}) \nabla_{\boldsymbol{R}_{\mu}} \frac{Z_{\mu}}{\left|\boldsymbol{r}-\boldsymbol{R}_{\mu}\right|}
\end{aligned}
$$

Pulay forces

$$
\frac{\mathrm{d} E}{\mathrm{~d} \boldsymbol{R}_{\mathrm{basis}}}=\sum_{\alpha} \frac{\partial E}{\partial \phi_{\alpha}} \frac{\partial \phi_{\alpha}}{\partial \boldsymbol{R}_{\mathrm{basis}}}+\sum_{\alpha i} \frac{\partial E}{\partial c_{\alpha i}} \frac{\partial c_{\alpha i}}{\partial \boldsymbol{R}_{\mathrm{basis}}}
$$

- None of these terms vanish.
- Make use of
- definition of H,
- Kohn-Sham equations,
- orthonormality.

$$
\boldsymbol{F}_{\text {Pulay }, \mu}=-2 \sum_{\alpha, \alpha^{\prime}, i} c_{\alpha i}^{*}\left\langle\frac{\partial \phi_{\alpha}}{\partial \boldsymbol{R}_{\mathrm{basis}, \mu}}\right| H-\varepsilon_{i}\left|\phi_{\alpha^{\prime}}\right\rangle c_{\alpha^{\prime} i}
$$

- Particularly involved for GGAs

Other force terms

- Moving integration grid $\boldsymbol{R}_{\text {grid }}$:
- Force term vanishes for converged grid settings.
- Can be done, but is cumbersome.
- If really needed, the grid is too coarse anyway [1].
- Electrostatic multipole derivatives (Hartree potential):
- Important but straight-forward.
- Scalar relativistic corrections:
- Important but straight-forward.
[1] Baker et al., J. Chem. Phys. 101, 8894 (1994).

Practitioner's guide

Forces converge slower (first order) within the SCF procedure than energies (second order).

Summary gradients

- Forces are invaluable probe for potential energy surface
- Forces separate in distinct terms:
- Hellmann-Feynman from moving potential centers
- Pulay from moving basis functions
- additional terms from other moving approximations.
- Forces need better SCF convergence than energies.

Relaxation

figure adapted from R. Gehrke

Steepest descent

- Minimum of energy is zero of force:

$$
\min _{\boldsymbol{R}} E(\boldsymbol{R}) \Rightarrow \boldsymbol{F}(\boldsymbol{R}) \stackrel{!}{=} 0
$$

- Similar to $\Delta n \stackrel{!}{=} 0$ in electronic self-consistency.
- E. g. linear mixing corresponds to "steepest descent"

$$
\boldsymbol{R}^{(k+1)}:=\boldsymbol{R}^{(k)}+\alpha \boldsymbol{F}\left(\boldsymbol{R}^{(k)}\right)
$$

Steepest descent in practice

Step in direction of steepest descent:

$$
\Delta \boldsymbol{R}=\alpha \boldsymbol{F}
$$

Geometrical DIIS

- The Pulay mixer corresponds to "Geometrical direct inversion in iterative subspace" (GDIIS) [1].

- Special precautions to avoid problems with saddle points [2].
- Very low administrative footprint.
[1] P. Császár and P. Pulay, J. Mol. Struct. 114, 31 (1984).
[2] Ö. Farkas and H. B. Schlegel, Phys. Chem. Chem. Phys. 4, 11 (2002).

Quadratic model

$$
\tilde{E}(\boldsymbol{R}+\Delta \boldsymbol{R})=E(\boldsymbol{R})-\boldsymbol{F}(\boldsymbol{R}) \cdot \Delta \boldsymbol{R}
$$

Quadratic model

$$
\tilde{E}(\boldsymbol{R}+\Delta \boldsymbol{R})=E(\boldsymbol{R})-\boldsymbol{F}(\boldsymbol{R}) \cdot \Delta \boldsymbol{R}+\frac{1}{2} \Delta \boldsymbol{R}^{T} \tilde{H} \Delta \boldsymbol{R}
$$

(Quasi-)Newton step

Step to model minimum $\boldsymbol{F}(\boldsymbol{R})-\tilde{\mathbf{H}} \Delta \boldsymbol{R} \stackrel{!}{=} 0 \Rightarrow \Delta \boldsymbol{R}=\tilde{\boldsymbol{H}}^{-1} \boldsymbol{F}$

Exact Hessian
$\tilde{\mathbf{H}}=\mathbf{H}$

Quasi-Newton step

Model Hessian
$\tilde{\mathbf{H}}=\beta \mathbf{1}$

Hessian approximation

Twofold strategy for Hessian approximation
(1) Need initial approximation. However, even $\tilde{\mathbf{H}}_{0}=\beta \mathbf{1}$ is not so bad.
(2) After each step, update Hessian to fulfill

$$
\tilde{\mathbf{H}} \Delta \boldsymbol{R}=-\Delta \boldsymbol{F}
$$

e.g. by Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [1]

$$
\tilde{\mathbf{H}} \leftarrow \quad \tilde{\mathbf{H}}-\frac{\tilde{\mathbf{H}} \Delta \boldsymbol{R}(\tilde{\mathbf{H}} \Delta \boldsymbol{R})^{T}}{\Delta \boldsymbol{R}^{T} \tilde{\mathbf{H}} \Delta \boldsymbol{R}}-\frac{\Delta \boldsymbol{F} \Delta \boldsymbol{F}^{T}}{\Delta \boldsymbol{F}^{T} \Delta \boldsymbol{R}}
$$

[1] J. Nocedal and S. J. Wright, "Numerical optimization" (Springer, 2006).

Initial Hessian approximation

Diagonal matrix $(\tilde{\mathbf{H}}=\beta \mathbf{1})$: penalty on Cartesian shifts

$$
\tilde{E}(\boldsymbol{R}+\Delta \boldsymbol{R})=E-\boldsymbol{F} \cdot \Delta \boldsymbol{R}+\underbrace{\sum_{\nu} \frac{\beta}{2} \Delta R_{\nu}^{2}}_{\begin{array}{c}
\text { Cartesian } \\
\text { shifts }
\end{array}}
$$

Lindh [1]: penalty on changes in internal coordinates

$$
\tilde{E}=E-\boldsymbol{F} \cdot \Delta \boldsymbol{R}+\underbrace{\sum^{\prime} \frac{k_{i j}}{2} \Delta r_{i j}^{2}}_{\text {stretches }}+\underbrace{\sum^{\prime} \frac{k_{i j k}}{2} \Delta \theta_{i j k}^{2}}_{\text {bendings }}+\underbrace{\sum^{\prime} \frac{k_{i j k l}}{2} \Delta \tau_{i j k l}^{2}}_{\text {torsions }}
$$

[1] R. Lindh et al., Chem. Phys. Lett. 241, 423 (1995).

Lindh model in practice

No forces on hydrogen atoms:

- Diagonal matrix preserves Cartesian coordinates of H.
- Lindh matrix preserves bond lengths/angles of H

Failure of pure quasi-Newton

Negative Hessian mode Aims at saddle

Step control: line search

$$
\Delta \boldsymbol{R}:=\alpha \tilde{\mathbf{H}}^{-1} \mathbf{F}
$$

- Try Quasi-Newton $(\alpha=1)$ first
- For bad step (e.g. $\Delta E>0$), interpolate

$$
E(\alpha)=E(\boldsymbol{R}+\alpha \Delta \boldsymbol{R})
$$

and find optimal α in 1D

- After each line search, update Hessian
- Drawbacks:
- Need positive definite Hessian ($\boldsymbol{u}^{\top} \tilde{H} \boldsymbol{u}>0 \forall \boldsymbol{u}$)
- Might need multiple steps in same direction
- Can avoid explicit $\tilde{\mathbf{H}}$ with L-BFGS.
[1] J. Nocedal and S. J. Wright, "Numerical optimization" (Springer, 2006).

Step control: trust radius

$$
\Delta \boldsymbol{R}:=\underset{|\Delta \boldsymbol{R}| \leq \Delta R_{\max }}{\arg \min } \tilde{E}(\boldsymbol{R}+\Delta \boldsymbol{R})
$$

- Only trust quadratic model within finite region $|\Delta \boldsymbol{R}| \leq \Delta R_{\max }$.
- Model minimum can be calculated exactly.
- Initial trust radius can be guessed (e. g. $\Delta R_{\max }=0.2 \AA$).
- Update trust radius according to

$$
\rho=\frac{\Delta E}{\Delta \tilde{E}}\left\{\begin{array}{lll}
>0.75 & \Delta R_{\max } \leftarrow 2 \Delta R_{\max } & \text { (good model) } \\
<0.25 & \Delta R_{\max } \leftarrow \frac{1}{2} \Delta R_{\max } & \text { (bad model) }
\end{array}\right.
$$

- Stick to old \boldsymbol{R} if $\rho<0$.
[1] J. Nocedal and S. J. Wright, "Numerical optimization" (Springer, 2006).

Trusted step

Step to minimum within trust region:

$$
\Delta \boldsymbol{R}:=\underset{|\Delta \boldsymbol{R}| \leq \Delta R_{\max }}{\arg \min } \tilde{E}(\boldsymbol{R}+\Delta \boldsymbol{R})
$$

Approximate Hessian

$$
\tilde{\mathbf{H}}=\beta \mathbf{1}
$$

Trust region method

Example performance

Summary relaxation

- Quasi-Newton methods are "industry standard"
- If optimization runs smooth, use quasi-Newton step
- Methods of step size control:
- line search
- trust region
- Hessian approximation:
- initial model
- updates to enfoce $\tilde{\mathbf{H}} \Delta \boldsymbol{R}=-\Delta \boldsymbol{F}$
- Initial Hessian is decisive for performance

Vibrations

figure adapted from R. Gehrke

Beyond frozen nuclei

Minimum of potential energy surface is ground state given

- classical nuclei and
- zero temperature (no kinetic energy).

Go beyond these approximations to leading order by

$$
E(\boldsymbol{R}) \approx \tilde{E}(\boldsymbol{R})=E_{\min }+\frac{1}{2} \Delta \boldsymbol{R}^{T} \mathbf{H} \Delta \boldsymbol{R}
$$

with $\Delta \boldsymbol{R}=\boldsymbol{R}-\boldsymbol{R}_{\text {min }}$.

Calculating second derivatives

- Effort for first derivatives (forces \boldsymbol{F}) is moderate because energy is stationary w.r.t. electronic structure.
- Analytical second derivatives (Hessian H) need second derivative w. r.t. electronic structure.
- Can be done by perturbation theory (see, e. g. [1]), but is cumbersome.
- Alternative: Numerical differentiation:

$$
H_{\alpha \beta}=\frac{\mathrm{d}^{2} E}{\mathrm{~d} R_{\alpha} \mathrm{d} R_{\beta}} \approx-\frac{\boldsymbol{F}_{\alpha}\left(\boldsymbol{R}+\Delta \boldsymbol{e}_{\beta}\right)-\boldsymbol{F}_{\alpha}\left(\boldsymbol{R}-\Delta \boldsymbol{e}_{\beta}\right)}{2 \Delta}
$$

[1] S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001).

Harmonic vibrations

- Newton's equation

$$
\mathbf{M} \Delta \ddot{\boldsymbol{R}} \stackrel{!}{=} \tilde{\boldsymbol{F}}=-\mathbf{H} \Delta \boldsymbol{R}
$$

- Exponential ansatz

$$
\Delta \boldsymbol{R}=\boldsymbol{u} \mathrm{e}^{-\mathrm{i} \omega t} \quad \Rightarrow \quad-\omega^{2} \mathbf{M} \boldsymbol{u}=-\mathbf{H} \boldsymbol{u}
$$

- Generalized eigenproblem $\mathbf{H} \boldsymbol{u}^{(\nu)}=\omega_{\nu}^{2} \mathbf{M} \boldsymbol{u}^{(\nu)}$

$$
\boldsymbol{R}(t)=\boldsymbol{R}_{\text {min }}+\sum_{\nu} c_{\nu} \mathbf{u}^{(\nu)} \cos \left(\omega_{\nu} t+\Phi_{\nu}\right)
$$

- Vibrational modes $\boldsymbol{u}^{(\nu)}$ with frequencies ω_{ν}
- Amplitudes c_{ν} and phases Φ_{ν} from initial conditions

Interpretation of modes

Vibrational free energy

- Classical solution

$$
\boldsymbol{R}(t)=\boldsymbol{R}_{\min }+\sum_{\nu} c_{\nu} \mathbf{u}^{(\nu)} \cos \left(\omega_{\nu} t+\Phi_{\nu}\right)
$$

is set of independent harmonic oscillators.

- Free energy at T with quantum vibrational effects

$$
F(T)=E_{\min }+\sum_{\nu}\left\{\frac{\hbar \omega_{\nu}}{2}+k_{\mathrm{B}} T \ln \left[1-\mathrm{e}^{-\frac{\hbar \omega_{\nu}}{k_{\mathrm{B}} T}}\right]\right\}
$$

- Zero-point vibrational energy

$$
E(T=0)=F(T=0)=E_{\min }+\sum_{\nu} \frac{\hbar \omega_{\nu}}{2}
$$

Outlook on Molecular Dynamics

- For anharmonic effects we need to go beyond the harmonic approximation.
- Solve Newton's equations

$$
M \ddot{R}=F(R)
$$

for actual DFT forces $\boldsymbol{F}(\boldsymbol{R})$ as initial value problem

$$
\boldsymbol{R}(t=0)=\boldsymbol{R}_{0}, \quad \dot{\boldsymbol{R}}(t=0)=\boldsymbol{V}_{0}
$$

- Can also be solved iteratively (e.g. Verlet algorithm)

$$
\boldsymbol{R}(t+\Delta t)=2 \boldsymbol{R}(t)-\boldsymbol{R}(t-\Delta t)+\ddot{\boldsymbol{R}}(t) \cdot \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)
$$

Summary vibrations

- First order correction to classical geometric ground state
- Hessian harder than forces; often resort to finite differences
- Soft, hard, and negative modes
- Free energy and zero-point corrections

Final summary

- Self-consistency
\rightarrow Finding the electronic ground state for a given geometry
- Gradients
\rightarrow Change of energy for infinitesimal changes of geometry
- Relaxation
\rightarrow Finding minimal energy geometries
- Vibrations
\rightarrow Characterizing minimal energy geometries

Thank you for your attention!

