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Self-consistency

E = min
%

E [%]
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The self-consistency cycle

Hψi = εiψi

n =
∑

i |ψi |2

H = T + Veff[n]

ψ

H

n
nout[n]

n
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Naive iteration

We want to find the self-consistent solution to

n !
= nout[n],

or, equivalently, the zero of the residual

0 !
= ∆n = ∆n[n] := nout[n]− n.

The naive solution is to iterate

n(k+1) := n(k)
out = n(k) + ∆n(k).
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Pulay mixer in practice
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Naive iteration in one dimension
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Linear mixing

The iterations x(k+1) = x(k) + ∆(x(k)) converge . . .
slow for |∆′| � 1
fast for |∆′| ∼ 1
not at all for |∆′| > 2.

Can always ensure convergence by scaling

∆(x)→ α∆(x) with α < 1

or
n(k+1) = n(k) + α∆n(k) = (1− α)n(k) + αn(k)

out .

But: Problem is multidimensional.
Different “directions” of ∆n would need different α.
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Pulay mixer

After M iterations, we already know about

∆n(i) = ∆n[n(i)] for i = 1, . . . ,M

Linearly approximate residue:

∆n
[∑

i cin(i)
]
≈∑i ci∆n(i) =: ∆n(c)

Minimize
〈
∆n(c)

∣∣∆n(c)
〉

with respect to c and
∑

i ci = 1

“Direct inversion in iterative subspace” (DIIS)

Other mixers exist and differ in details [2]

[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
[2] V. Eyert, J. Comp. Phys. 124, 271 (1996).
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Pulay mixer in two dimensions
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[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
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Idea of electronic smearing

Calculate charge density from

n(r) =
∑

i

Θ(µ− εi)|ψi(r)|2

with chemical potential µ adjusted to give Ne.

Tiny changes in Veff[n]
→ tiny changes in εi

→ possibly huge changes in n(r).

Get smooth dependence by smearing Θ(µ− εi).
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Approaches to electronic smearing

Replace Θ(εF − εi) by f (x) with x = (εi − µ) in:

f (x) =



Θ(−x) no smearing

1

e
x
σ + 1

Fermi-Dirac [1]

1
2 erfc x

σ Gaussian [2]

1
2 erfc x

σ +
N∑

m=1

AmH2m−1( x
σ )e−

x2

σ2 Methfessel-Paxton [3]

[1] N. Mermin, Phys. Rev. 137, A1441 (1965).
[2] C.-L. Fu, K.-H. Ho, Phys. Rev. B 28, 5480 (1983).
[3] M. Methfessel, A. Paxton, Phys. Rev. B 40, 3616 (1989).
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Comparison of electronic smearing approaches
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Electronic “free energy”

Kohn-Sham equations now from minimizing a “free energy”:

Etot → Ωtot := Etot − σS(σ, {fi}).

The shape of the entropy term depends on the smearing type.

The true (T → 0) total energy is

Ωtot(σ) ≤ Etot(T → 0) ≤ Etot(σ).

as can be shown by applying variational principle for σ 6= 0
and σ = T = 0.

For metallic systems, Etot(T → 0) can be backextrapolated
from Ωtot(σ) and Etot(σ).
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Preconditioner

Linear admixture of residual:

n← n + α∆n

often overemphasizes large rearrangements of charge.

Avoid charge sloshing with preconditioner

n← n + Ĝ ∆n with Ĝ = α
k2

k2 + k2
0

which damps long-range (k → 0) components.

[1] G. Kerker, Phys. Rev. B 23, 3082 (1981).
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Summary self-consistency

Cast Kohn-Sham minimization to self-consistency problem

Linear mixing guarantees convergence (but slow)

Pulay mixer linearly approximates residues

Electronic smearing to soften discontinuities

Preconditioner dampens long-range part of residue
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Gradients

F = −∇E(R)

figure adapted from R. Gehrke
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Separation of dependencies

Atomic motion means concomitant motion of several quantities:

the centers Rpot of the external potential Zµ/|r−Rpot,µ|,

the centers Rbasis of the basis functions φnlm(r − Rbasis,µ),

a few other centers for particular approximations

Of course, they are always the same

Rpot(R) = Rbasis(R) = · · · = R.



18/49

Chain rule

Although all centers move concomitantly

Rpot(R) = Rbasis(R) = · · · = R

we can use them to separate the gradients into independent terms

dE
dR

=
∂E
∂Rpot

=1︷ ︸︸ ︷
∂Rpot

∂R
+

∂E
∂Rbasis

=1︷ ︸︸ ︷
∂Rbasis

∂R
+ · · ·

=
∂E
∂Rpot

+
∂E

∂Rbasis
+ · · ·



19/49

Hellmann-Feynman forces

dE
dRpot

=
∂E
∂Rpot

+

=:0︷ ︸︸ ︷∑
αi

∂E
∂cαi

∂cαi

∂Rpot

E is minimal w. r. t. changes in one-particle coefficients cαi

consistent with orthonormality.

Orthonormality defined by Rbasis, not Rpot.

F HF,µ = −∂Enuc-nuc

∂Rpot,µ
− ∂Eext

∂Rpot,µ

= −
∑
ν

Zν∇Rµ
Zµ

|Rν − Rµ|
+

∫
d3r n(r)∇Rµ

Zµ
|r − Rµ|
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Pulay forces

dE
dRbasis

=
∑
α

∂E
∂φα

∂φα
∂Rbasis

+
∑
αi

∂E
∂cαi

∂cαi

∂Rbasis

None of these terms vanish.
Make use of

definition of H,
Kohn-Sham equations,
orthonormality.

F Pulay,µ = −2
∑
α,α′,i

c∗αi

〈
∂φα

∂Rbasis,µ

∣∣∣∣H − εi

∣∣∣∣φα′

〉
cα′i

Particularly involved for GGAs
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Other force terms

Moving integration grid Rgrid:
Force term vanishes for converged grid settings.
Can be done, but is cumbersome.
If really needed, the grid is too coarse anyway [1].

Electrostatic multipole derivatives (Hartree potential):
Important but straight-forward.

Scalar relativistic corrections:
Important but straight-forward.

[1] Baker et al., J. Chem. Phys. 101, 8894 (1994).
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Practitioner’s guide
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Summary gradients

Forces are invaluable probe for potential energy surface
Forces separate in distinct terms:

Hellmann-Feynman from moving potential centers
Pulay from moving basis functions
additional terms from other moving approximations.

Forces need better SCF convergence than energies.
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Relaxation

Emin = min
R

E(R)

figure adapted from R. Gehrke
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Steepest descent

Minimum of energy is zero of force:

min
R

E(R) ⇒ F (R)
!

= 0.

Similar to ∆n !
= 0 in electronic self-consistency.

E. g. linear mixing corresponds to “steepest descent”

R(k+1) := R(k) + αF
(
R(k)

)
.
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Steepest descent in practice

R(0)

R(20)
Step in direction of
steepest descent:

∆R = αF
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Geometrical DIIS

The Pulay mixer corresponds to “Geometrical direct inversion
in iterative subspace” (GDIIS) [1].

n(0)

n
(0)
out

n(1)

n
(1)
out

ñ

ñout

n(2)

Special precautions to avoid problems with saddle points [2].

Very low administrative footprint.

[1] P. Császár and P. Pulay, J. Mol. Struct. 114, 31 (1984).
[2] Ö. Farkas and H. B. Schlegel, Phys. Chem. Chem. Phys. 4, 11 (2002).
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Quadratic model

Ẽ(R + ∆R) = E(R)− F (R) ·∆R

+ 1
2 ∆RT H̃ ∆R
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Quadratic model

Ẽ(R + ∆R) = E(R)− F (R) ·∆R + 1
2 ∆RT H̃ ∆R
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(Quasi-)Newton step

Step to model minimum F (R)− H̃ ∆R !
= 0 ⇒ ∆R = H̃−1F

Newton step

R(0)

Exact Hessian
H̃ = H

Quasi-Newton step

R(0)

Model Hessian
H̃ = β1
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Hessian approximation

Twofold strategy for Hessian approximation
1 Need initial approximation. However, even H̃0 = β1 is not so

bad.
2 After each step, update Hessian to fulfill

H̃ ∆R = −∆F ,

e. g. by Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [1]

H̃ ← H̃− H̃ ∆R (H̃ ∆R)T

∆RT H̃ ∆R
− ∆F ∆F T

∆F T ∆R
.

[1] J. Nocedal and S. J. Wright, “Numerical optimization” (Springer, 2006).
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Initial Hessian approximation

Diagonal matrix (H̃ = β1): penalty on Cartesian shifts

Ẽ(R + ∆R) = E − F ·∆R +
∑
ν

β

2
∆R2

ν︸ ︷︷ ︸
Cartesian

shifts

Lindh [1]: penalty on changes in internal coordinates

Ẽ = E − F ·∆R +
∑′ kij

2
∆r2

ij︸ ︷︷ ︸
stretches

+
∑′ kijk

2
∆θ2

ijk︸ ︷︷ ︸
bendings

+
∑′ kijkl

2
∆τ2

ijkl︸ ︷︷ ︸
torsions

[1] R. Lindh et al., Chem. Phys. Lett. 241, 423 (1995).
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Lindh model in practice

∆R = β−1F ∆R = H̃
−1
LindhF

No forces on hydrogen atoms:

Diagonal matrix preserves Cartesian coordinates of H.

Lindh matrix preserves bond lengths/angles of H
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Failure of pure quasi-Newton

R(0)

Long steps
∆E > 0

R(0)

Negative Hessian mode
Aims at saddle
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Step control: line search

∆R := αH̃−1F

Try Quasi-Newton (α = 1) first

For bad step (e. g. ∆E > 0), interpolate

E(α) = E(R + α∆R)

and find optimal α in 1D

After each line search, update Hessian
Drawbacks:

Need positive definite Hessian (uT H̃u > 0 ∀u)
Might need multiple steps in same direction

Can avoid explicit H̃ with L-BFGS.

[1] J. Nocedal and S. J. Wright, “Numerical optimization” (Springer, 2006).
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Step control: trust radius

∆R := arg min
|∆R|≤∆Rmax

Ẽ(R + ∆R)

Only trust quadratic model within finite region |∆R| ≤ ∆Rmax.

Model minimum can be calculated exactly.

Initial trust radius can be guessed (e. g. ∆Rmax = 0.2 Å).

Update trust radius according to

ρ =
∆E

∆Ẽ

{
> 0.75 ∆Rmax ← 2∆Rmax (good model)

< 0.25 ∆Rmax ← 1
2 ∆Rmax (bad model)

Stick to old R if ρ < 0.

[1] J. Nocedal and S. J. Wright, “Numerical optimization” (Springer, 2006).
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Trusted step

Step to minimum
within trust region:

∆R := arg min
|∆R|≤∆Rmax

Ẽ(R +∆R)

Approximate Hessian
H̃ = β1
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Trust region method
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Example performance
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Summary relaxation

Quasi-Newton methods are “industry standard”

If optimization runs smooth, use quasi-Newton step
Methods of step size control:

line search
trust region

Hessian approximation:
initial model
updates to enfoce H̃ ∆R = −∆F

Initial Hessian is decisive for performance
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Vibrations

M ∆R̈ = F (∆R) ≈ −H ∆R

figure adapted from R. Gehrke
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Beyond frozen nuclei

Minimum of potential energy surface is ground state given

classical nuclei and

zero temperature (no kinetic energy).

Go beyond these approximations to leading order by

E(R) ≈ Ẽ(R) = Emin + 1
2 ∆RT H ∆R

with ∆R = R − Rmin.
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Calculating second derivatives

Effort for first derivatives (forces F ) is moderate because
energy is stationary w. r. t. electronic structure.

Analytical second derivatives (Hessian H) need second
derivative w. r. t. electronic structure.

Can be done by perturbation theory (see, e. g. [1]), but is
cumbersome.

Alternative: Numerical differentiation:

Hαβ =
d2E

dRαdRβ
≈ −Fα(R + ∆eβ)− Fα(R −∆eβ)

2∆

[1] S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001).
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Harmonic vibrations

Newton’s equation

M ∆R̈ !
= F̃ = −H ∆R

Exponential ansatz

∆R = ue−iωt ⇒ −ω2Mu = −Hu

Generalized eigenproblem Hu(ν) = ω2
νMu(ν)

R(t) = Rmin +
∑
ν

cνu(ν) cos(ων t + Φν).

Vibrational modes u(ν) with frequencies ων
Amplitudes cν and phases Φν from initial conditions



45/49

Interpretation of modes

negative mode
(unstable geometry)
imaginary ων ; ω2

ν < 0

hard mode
(e. g. bond stretching)
high ων

soft mode
(e. g. torsional rotation)

low ων
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Vibrational free energy

Classical solution

R(t) = Rmin +
∑
ν

cνu(ν) cos(ων t + Φν).

is set of independent harmonic oscillators.

Free energy at T with quantum vibrational effects

F (T ) = Emin +
∑
ν

{
~ων

2
+ kBT ln

[
1− e−

~ων
kBT
]}

Zero-point vibrational energy

E(T =0) = F (T =0) = Emin +
∑
ν

~ων
2
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Outlook on Molecular Dynamics

For anharmonic effects we need to go beyond the harmonic
approximation.

Solve Newton’s equations

MR̈ = F (R)

for actual DFT forces F (R) as initial value problem

R(t =0) = R0, Ṙ(t =0) = V 0

Can also be solved iteratively (e. g. Verlet algorithm)

R(t + ∆t) = 2R(t)− R(t −∆t) + R̈(t) ·∆t2 +O(∆t4)
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Summary vibrations

First order correction to classical geometric ground state

Hessian harder than forces; often resort to finite differences

Soft, hard, and negative modes

Free energy and zero-point corrections
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Final summary

Self-consistency
→ Finding the electronic ground state for a given geometry

Gradients
→ Change of energy for infinitesimal changes of geometry

Relaxation
→ Finding minimal energy geometries

Vibrations
→ Characterizing minimal energy geometries

Thank you for your attention!
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