Basics of periodic systems calculations (Electronic structure theory for materials)

Sergey V. Levchenko

FHI Theory department

Extended (periodic) systems

There are 10²⁰ electrons per 1 mm³ of bulk Cu

Position of every atom in the crystal (Bravais lattice):

$$\mathbf{r}(n_1, n_2, n_3) = \mathbf{r}(0, 0, 0) + n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$$

lattice vector: $\mathbf{R}(n_1, n_2, n_3) = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$ $n_1, n_2, n_3 = 0, \pm 1, \pm 2, \dots$

Example: two-dimensional Bravais lattice

primitive unit cells

The form of the primitive unit cell is not unique

From molecules to solids

Electronic bands as limit of bonding and anti-bonding combinations of atomic orbitals:

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

Bloch's theorem

Periodic potential $U(\mathbf{r} + \mathbf{R}) = U(\mathbf{r})$ (translational symmetry)

 $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$

In an infinite periodic solid, the solutions of the one-particle Schrödinger equations must behave like

$$\psi(\mathbf{r} + \mathbf{R}) = \exp(i\mathbf{k}\mathbf{R})\psi(\mathbf{r})$$

Index **k** is a vector in *reciprocal space*

 $\mathbf{k} = x_1 \mathbf{g}_1 + x_2 \mathbf{g}_2 + x_3 \mathbf{g}_3 \qquad \mathbf{g}_i \cdot \mathbf{a}_j = 2\pi \delta_{ij}$ $\mathbf{g}_l = 2\pi \frac{\mathbf{a}_m \times \mathbf{a}_n}{\Omega} \quad - \text{reciprocal lattice vectors}$

Consequently:

 $\psi(\mathbf{r}) = \exp(i\mathbf{k}\mathbf{r})u(\mathbf{r}), \ u(\mathbf{r}+\mathbf{R}) = u(\mathbf{r})$

The meaning of **k**

$$\psi_k = \sum_j \exp(ikx_j) \chi_{1s}(j \cdot a)$$

k shows the phase with which the orbitals are combined:

k = 0:
$$\psi_0 = \sum_j \exp(0) \chi_{1s}(j \cdot a) = \chi_{1s}(a) + \chi_{1s}(2a) + \dots$$

$$\mathbf{k} = \frac{\mathbf{\pi}}{\mathbf{a}} : \psi_0 = \sum_j \exp(i\pi \cdot j) \chi_{1s}(j \cdot a) = -\chi_{1s}(a) + \chi_{1s}(2a) - \chi_{1s}(3a) + \dots$$

k is a symmetry label and a node counter, and also represents electron momentum

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

Bloch's theorem: consequences

In a periodic system, the solutions of the Schrödinger equations are characterized by an integer number *n* (called *band index*) and a vector **k**:

$$\hat{h}\psi_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}$$

$$\psi_{n\mathbf{k}}(\mathbf{r}) = \exp(i\mathbf{k}\mathbf{r})u_{n\mathbf{k}}(\mathbf{r}), \ u_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$$

For any reciprocal lattice vector

a Bloch state

at k+G with

index *n*

$$\mathbf{G} = n_1 \mathbf{g}_1 + n_2 \mathbf{g}_2 + n_3 \mathbf{g}_3$$

$$\hat{h} \psi_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}} \psi_{n\mathbf{k}}$$

$$\psi_{n\mathbf{k}}(\mathbf{r}) = \exp(i\mathbf{k}\mathbf{r})u_{n\mathbf{k}}(\mathbf{r}), \ u_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$$
or any reciprocal lattice vector
$$\mathbf{G} = n_1\mathbf{g}_1 + n_2\mathbf{g}_2 + n_3\mathbf{g}_3$$

$$\widehat{\psi_{n\mathbf{k}} + \mathbf{G}} = \exp(i\mathbf{k}\mathbf{r})[u_{\mathbf{k}} + \mathbf{G}\exp(i\mathbf{G}\mathbf{r})] = \exp(i\mathbf{k}\mathbf{r})\widetilde{u} = \psi_{n'\mathbf{k}}$$
a Bloch state
at k+G with
a lattice-periodic
a Bloch state at k with
a different index riphered

Can choose to consider only k within single primitive unit cell in reciprocal space

a lattice-periodic

function \widetilde{u}

Brillouin zones

A conventional choice for the reciprocal lattice unit cell

Time-reversal symmetry

For Hermitian \hat{h} , $\mathcal{E}_{n\mathbf{k}}$ can be chosen to be *real*

$$\hat{h}\psi_{n\mathbf{k}}(\mathbf{r}) = \varepsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r}) \Rightarrow \hat{h}\psi_{n\mathbf{k}}^{*}(\mathbf{r}) = \varepsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}^{*}(\mathbf{r})$$

From Bloch's theorem:

$$\psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = \exp(i\mathbf{k}\mathbf{R})\psi_{n\mathbf{k}}(\mathbf{r}) \Rightarrow \psi_{n\mathbf{k}}^{*}(\mathbf{r} + \mathbf{R}) = \exp(-i\mathbf{k}\mathbf{R})\psi_{n\mathbf{k}}^{*}(\mathbf{r})$$

$$\downarrow$$

$$\psi_{n\mathbf{k}}^{*} = \psi_{n(-\mathbf{k})} \qquad \varepsilon_{n(-\mathbf{k})} = \varepsilon_{n\mathbf{k}}$$

Electronic states at k and -k are at least doubly degenerate (in the absence of magnetic field)

Electronic band structure

Band structure represents dependence of $\mathcal{E}_{n\mathbf{k}}$ on \mathbf{k}

For a periodic (infinite) crystal, there is an infinite number of states for each band index *n*, differing by the value of **k**

Electronic band structure in three dimensions

By convention, $\mathcal{E}_{n\mathbf{k}}$ are measured (angular-resolved photoemission spectroscopy, ARPES) and calculated along lines in k-space connecting points of high symmetry

Finite k-point mesh

Charge densities and other quantities are represented by Brillouin zone integrals:

$$n(\mathbf{r}) = \sum_{j}^{\text{occ}} \int_{\Omega_{\text{BZ}}} \left| \psi_{j\mathbf{k}}(\mathbf{r}) \right|^2 \frac{d^3 k}{\Omega_{\text{BZ}}}$$

8x4 Monkhorst-Pack grid

 $\Psi_{n\mathbf{k}}, \mathcal{E}_{n\mathbf{k}}$ – smooth functions of $\mathbf{k} \rightarrow$ can use a finite mesh, and then *interpolate* and/or use perturbation theory to calculate integrals

$$n(\mathbf{r}) \approx \sum_{j}^{\text{occ}} \sum_{m=1}^{N_{\text{kpt}}} w_m |\psi_{j\mathbf{k}_m}(\mathbf{r})|^2$$

H.J. Monkhorst and J.D. Pack, Phys. Rev.B 13, 5188 (1976); Phys. Rev. B 16, 1748 (1977)

Overlap between interacting orbitals determines band gap and band width

Band structure – test example

Orbital energies are smooth functions of k

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

Insulators, semiconductors, and metals

In a metal, some (at least one) energy bands are only partially occupied

The Fermi energy ϵ_{F} separates the highest occupied states from lowest unoccupied

Fermi surface

Plotting the relation

$$\varepsilon_n(\mathbf{k}) = \varepsilon_F$$

in reciprocal space for different *n* yields different parts of the Fermi surface

Periodic table of Fermi surfaces: http://www.phys.ufl.edu/fermisurface/

The grid used in k-space must be sufficiently fine to accurately sample the Fermi surface

Density Of States (DOS)

Atom-Projected Density Of States (APDOS)

Decomposition of DOS into contributions from different atomic functions φ_i :

Recovery of the chemical interpretation in terms of orbitals

Qualitative analysis tool; ambiguities must be resolved by truncating the r-integral *or* by Löwdin orthogonalization of φ_i

Potential of an array of point charges

Convergence of the potential with number of charges is extremely slow

Ewald summation

There is no universal potential energy reference (like vacuum level) for periodic systems – important when comparing different systems

Modeling surfaces, interfaces, and point defects – the supercell approach

The supercell approach

Can we benefit from periodic modeling of non-periodic systems?

Yes, for interfaces (surfaces) and wires (also with adsorbates), and defects (especially for concentration or coverage dependences)

Supercell approach to surfaces

(slab model)

- Approach accounts for the lateral periodicity
- Sufficiently broad vacuum region to decouple the slabs
- Sufficient slab thickness to mimic semi-infinite crystal

- Semiconductors: saturate dangling bonds on the back surface
- Non-equivalent surfaces: use dipole correction
- Alternative: cluster models (for defects and adsorbates)

supercell

Surface band structure

Example: fcc crystal, (111) surface

Surface band structure of Cu(111)

Shockley surface states

For near-free electrons: $\psi_{\mathbf{k}}(\mathbf{r}) \sim \exp(i\mathbf{k} \cdot \mathbf{r})$

Decaying states can be treated as Bloch states with complex k (W. Kohn, Phys. Rev., 115, 809 (1959))

Complex band structures can give useful information about conductance through interfaces and molecular junctions

Tamm surface states

In the tight-binding (localized orbital) picture, surface states may appear due to 'dangling orbitals' split off from the band edge

Surface reconstruction and band structure

Dimerization at (001)-surface of group IV-elements

Surface reconstruction and band structure

Buckling of dimers at Si (100) surface

π-bond

see, e.g., J. Dabrowski and M. Scheffler, Appl. Surf. Sci. **56-58,** 15 (1992)

re-hybridization and charge transfer (from down to up)

Surface reconstruction and band structure

symmetric dimer model (SDM)

asymmetric dimer model (ADM)

Experimental results from angular-resolved photoemission spectroscopy

contour plot of electron density difference with respect to free Si atoms (dashed = decrease)

> P. Krüger & J. Pollmann, Phys. Rev. Lett. **74**, 1155 (1995)

Modeling charged defects in semiconductors

Defects and material properties

- Defects can transform insulator into a semiconductor or a metal (doping)
- Defects can determine optical properties (color)
- At surfaces, defects have unique chemical properties
- Defects can have different number of electrons associated with them (charge), and each charge state can have very different chemical properties
- Measuring concentration of defects, especially at temperatures and pressures relevant for practical applications, is very difficult

Mg

Charged periodic systems

The electrostatic energy of a charged periodic system diverges

$$V_2(\mathbf{r}) = \sum_{i,\mathbf{G}\neq\mathbf{0}} q_i \frac{4\pi}{\mathbf{G}^2 \Omega} \exp\left(-\frac{\eta^2 \mathbf{G}^2}{4} + i\mathbf{G} \cdot (\mathbf{r} - \mathbf{r}_i)\right)$$

For charged systems, removing $\mathbf{G} = \mathbf{0}$ term \leftrightarrow *uniform compensating background charge*

• Can model *isolated* charged defects in the *bulk*

- Interaction of charged defects with each other and with the background can be removed using a correction scheme
- Special care must be taken to align potential reference in systems with different charge per unit cell
- Cannot be applied to surfaces

Example: Oxygen vacancies on MgO (100) surface

Contributions to the vacancy formation energy

1) Local bonding (ionic or covalent)

2) Atomic and electronic relaxation (change in local bonding, screening)

Alternative approaches: Virtual Crystal Approximation (VCA)

Simulate distributed doping via VCA (L. Vegard, Z. Phys. 5, 17 (1921); M. Scheffler, Physica 146B, 176 (1987))

 $q_{\rm Mg} = 12 - q_{\rm defect}/N_{\rm Mg}$ – modified Mg nuclear charge

p-type doping:

Alternative approaches: Introducing explicit dopants

May require larger supercell due to geometric constraints

Two different effects of doping must be distinguished: local (interaction between the defect and the dopant site) and global (electron transfer to/from distant isolated dopant sites)

Local effect of doping

Global effect of doping

A. Schindlmayr and M. Scheffler, In *Theory of Defects in Semiconductors*; D. A. Drabold, S. E. Estreicher, Eds. Springer Verlag: Berlin, Germany, 2007, p. 165; Bo Li and Horia Metiu, J. Phys. Chem. C **114**, 12234 (2010)

Formation energies of charged O vacancies on MgO (100)

Concluding remarks

1) Periodic models can be efficiently used to study concentration/coverage dependence, including infinitely dilute limit (low-dimensional systems, defects, etc.)

2) A lot of useful and experimentally testable information on material's properties can be obtained from the analysis of its electronic structure (band structure, DOS, APDOS, etc.)

3) A lot of development (in both computational methods and code efficiency) is still necessary to go beyond standard DFT for periodic systems, and to approach accuracy that can be achieved nowadays for molecules

Recommended literature

Neil W. Ashcroft and N. David Mermin, "Solid state physics"

Axel Groß, "Theoretical surface science: A microscopic perspective"

Roald Hoffmann (1981 Noble Prize in Chemistry (shared with Kenichi Fukui)):

1) "How Chemistry and Physics Meet in the Solid State", Angew. Chem. Int. Ed. Engl. 26, 846-878 (1987)

2) "A chemical and theoretical way to look at bonding on surfaces", Reviews of modern physics, 60, 601-628 (1988)

Surface modeling: important issues

- 1) Finite slab thickness (surface-surface interaction)
- 2) Finite vacuum layer thickness (image-image interactions)
- 3) Long-range interactions (charge, dipole moment)

4) Surface polarity

Shockley surface states

For nearly-free electrons:

