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Extended (periodic) systems

There are 1020 electrons per 1 mm3 of bulk Cu
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Example: two-dimensional Bravais lattice
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The form of the primitive unit cell is not unique



From molecules to solids

Electronic bands as limit of bonding and anti-bonding combinations of
atomic orbitals:

electronic 
band 

band
gap 

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)



Bloch’s theorem
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In an infinite periodic solid, the solutions of the 
one-particle Schrödinger equations must 
behave like
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Consequently: 
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Index k is a vector in reciprocal space
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The meaning of k

chain of hydrogen atoms
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Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

k shows the phase with which the orbitals are combined:
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k is a symmetry label and a node counter, and also 
represents electron momentum



Bloch’s theorem: consequences
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a Bloch state 
at k+G with 
index n

a Bloch state at k with 
a different index n’
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In a periodic system, the solutions of the Schrödinger equations are 

characterized by an integer number n (called band index) and a vector k:

For any reciprocal lattice vector 
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a lattice-periodic 
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Can choose to consider only k within single primitive 
unit cell in reciprocal space
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Brillouin zones

A conventional choice for the reciprocal lattice unit cell

For a square lattice

For a hexagonal lattice

Wigner-Seitz cell

Wigner-Seitz cell

In three dimensions:

Face-centered 
cubic (fcc) lattice

Body-centered 
cubic (bcc) lattice



Time-reversal symmetry

For Hermitian ,        can be chosen to be realĥ knε
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From Bloch’s theorem: 
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Electronic states at k and –k are at least doubly degenerate

(in the absence of magnetic field)



Electronic band structure
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For a periodic (infinite) crystal, there is an infinite number 

of states for each band index n, differing by the value of k

Band structure represents dependence of          on k
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Electronic band structure in three dimensions

z

Γ
Λ
L

U

X
WK
∆Σ y

x

Brillouin zone of the fcc lattice

By convention,          are measured (angular-resolved 
photoemission spectroscopy, ARPES) and calculated 
along lines in k-space connecting points of high symmetry
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Finite k-point mesh

kk nn εψ , – smooth functions of k ����
can use a finite mesh, and then 
interpolate and/or use perturbation 
theory to calculate integrals

Charge densities and other quantities are 
represented by Brillouin zone integrals:
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H.J. Monkhorst and J.D. Pack, Phys. Rev.B 13, 5188 (1976); Phys. Rev. B 16, 1748 (1977)



Band gap and band width (dispersion)

a a a …0.8 Å – hydrogen molecule chain
(DFT-PBE)

a = 10.0 Å
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Overlap between interacting orbitals determines band gap and band width



Band structure – test example

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

Orbital energies are smooth functions of k

Example: chain of Pt-L4 complexes (K2[Pt(CN)4])
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Insulators, semiconductors, and metals

Eg>>kBT

Insulators (MgO, NaCl,
ZnO,…)

Eg~kBT

Semiconductors (Si, 
Ge,…) 

Eg=0

Metals (Cu, Al, Fe,…)

k
k

εF

In a metal, some (at least one) energy bands are only partially occupied

The Fermi energy εF separates the highest occupied states from lowest 
unoccupied



Plotting the relation

The grid used in k-space must be sufficiently fine to accurately sample the 
Fermi surface

Fermi surface

in reciprocal space for different n yields different parts of the Fermi surface
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For free electrons, Fermi surface is a sphere
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Periodic table of Fermi surfaces: http://www.phys.ufl.edu/fermisurface/



Density Of States (DOS)
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Atom-Projected Density Of States (APDOS)

Decomposition of DOS into contributions from different atomic 
functions         :iϕ
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Recovery of the chemical interpretation in terms of orbitals

Qualitative analysis tool; ambiguities must be resolved by truncating
the r-integral or by Löwdin orthogonalization of iϕ

O(2s)

O(2p)

Mg(3s)
Mg(3p)
Mg(3d)
O(3d)



Potential of an array of point charges
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Ewald summation
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screening gaussian charge 
distribution
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There is no universal potential energy reference (like vacuum level) 
for periodic systems – important when comparing different systems



Modeling surfaces, interfaces, and point defects –
the supercell approach



The supercell approach

Can we benefit from periodic modeling of non-periodic systems?

Yes, for interfaces (surfaces) and wires (also with adsorbates), and 
defects (especially for concentration or coverage dependences)

Supercell approach to surfaces 
(slab model)

supercell

• Approach accounts for the lateral periodicity

• Sufficiently broad vacuum region to decouple the 
slabs

• Sufficient slab thickness to mimic semi-infinite
crystal

• Semiconductors: saturate dangling bonds on the
back surface

• Non-equivalent surfaces: use dipole correction

• Alternative: cluster models (for defects and 
adsorbates)



Surface band structure
Example: fcc crystal, (111) surface
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Surface band structure of Cu(111)
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Shockley surface states

For near-free electrons:
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matching condition

potential

Decaying states can be treated as Bloch states with complex k 
(W. Kohn, Phys. Rev., 115, 809 (1959))

Complex band structures can give useful information about 
conductance through interfaces and molecular junctions



Tamm surface states

In the tight-binding 
(localized orbital) 
picture, surface 
states may appear 
due to ‘dangling 
orbitals’ split off 
from the band edge



Surface reconstruction and band structure

Dimerization at (001)-surface of group IV-elements

[001]

side view

bulk-terminated atomic structure

top view

[110]

[110]

side view



Surface reconstruction and band structure

Buckling of dimers at Si (100) surface

π-bond re-hybridization and charge 
transfer (from down to up)

see, e.g., J. Dabrowski and M. Scheffler,

Appl. Surf. Sci. 56-58, 15 (1992)



Surface reconstruction and band structure

symmetric dimer model (SDM)

asymmetric dimer model (ADM)

Experimental results from 
angular-resolved photo-
emission spectroscopy

total density contour plot

contour plot of electron density 
difference with respect to free 
Si atoms (dashed = decrease) 

P. Krüger & J. Pollmann, 

Phys. Rev. Lett. 74, 1155 
(1995)



Modeling charged defects in semiconductors



Defects and material properties

• Defects can have different number of electrons 
associated with them (charge), and each charge 
state can have very different chemical properties

• Measuring concentration of defects, especially at 
temperatures and pressures relevant for practical 
applications, is very difficult

Mg O

• Defects can transform insulator 
into a semiconductor or a metal 
(doping)

• Defects can determine optical 
properties (color)

• At surfaces, defects have unique 
chemical properties



Charged periodic systems
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For charged systems, removing             term↔ uniform compensating 

background charge
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The electrostatic energy of a charged periodic system diverges

• Can model isolated charged defects in 
the bulk

• Interaction of charged defects with 
each other and with the background can 
be removed using a correction scheme

• Special care must be taken to align 
potential reference in systems with 
different charge per unit cell 

• Cannot be applied to surfaces
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Example: Oxygen vacancies on MgO (100) surface
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Contributions to the vacancy formation energy

1) Local bonding (ionic or covalent)

2) Atomic and electronic relaxation (change in local bonding, 
screening)

3) Electron transfer (charging)

Mg O

0.18 Å

0.18 Å

top view side view

F2+

The Fermi level can be tuned by doping, electric field, excitations

Doping can occur intentionally and unintentionally

conduction band

valence band

defect levelεF
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Simulate distributed doping via VCA (L. Vegard, Z. Phys. 5, 17 (1921); 
M. Scheffler, Physica 146B, 176 (1987))

Alternative approaches: Virtual Crystal Approximation (VCA)

qMg = 12 – qdefect/NMg – modified Mg nuclear charge

p-type doping:

pristine surface band structure surface O vacancy band structure

conduction band

valence band

conduction band

valence band

empty states (O 2p) at the top
of the valence band

defect level

1) can be applied to surfaces

2) reference energy is well defined (VBM)



Alternative approaches: Introducing explicit dopants

Two different effects of doping must be distinguished:
local (interaction between the defect and the dopant site) and global 

(electron transfer to/from distant isolated dopant sites)

Local effect of doping

interaction locally screened

Global effect of doping
A. Schindlmayr and M. Scheffler, In Theory of Defects in Semiconductors; D. A. Drabold, S. E. Estreicher, Eds. 

Springer Verlag: Berlin, Germany, 2007, p. 165; Bo Li and Horia Metiu, J. Phys. Chem. C 114, 12234 (2010)

May require larger supercell due to geometric constraints



Formation energies of charged O vacancies on MgO (100)
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Concluding remarks

1) Periodic models can be efficiently used to study 
concentration/coverage dependence, including infinitely 
dilute limit (low-dimensional systems, defects, etc.)

2) A lot of useful and experimentally testable information 
on material’s properties can be obtained from the 
analysis of its electronic structure (band structure, DOS, 
APDOS, etc.)

3) A lot of development (in both computational methods 
and code efficiency) is still necessary to go beyond 
standard DFT for periodic systems, and to approach 
accuracy that can be achieved nowadays for molecules
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Surface modeling: important issues

1) Finite slab thickness (surface-surface interaction)

2) Finite vacuum layer thickness (image-image interactions)

3) Long-range interactions (charge, dipole moment)

4) Surface polarity
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Shockley surface states

For nearly-free electrons:
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