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o DFT, PBC's, and Plane waves

© Projector Augmented Wave method

© Reaching the electronic groundstate
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A system of IV electrons

HY(ry,...,ry) = E¥(ry,....,rN)

_,ZA +ZV r; +Z|I'z—1‘g| U(ry,..,ry) = EU(ry,...,ry)

i#]
Many-body WF storage requirements are prohibitive

(Fgrid points)N

Map onto “one-electron” theory

W(ry, ..., tn) = {P1(r), Pa(r), ..., Yn(r)}

such as Hohenberg-Kohn-Sham density functional theory
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Do not need ¥(r1,...,ry), just the density p(r):

Elp] = Ts[{eilpl}] + Eulpl + Exclpl + Ezlp] + U[Z]

= N . = S ()2 E _1 Md dr’
U(ry,orn) = [[wilr)  p(r) = [vi(x)| ulpl = 5 v — ] T
One-electron Kohn-Sham equations

(—%A + Vz(r) + Vi [pl(r) + VXC[PKF))%(I“) — en(r)

Hartree Exchange-Correlation
/
Vel = [ 2D a Beld = i) =2

Per definition: Exc = E — Ts — Eg — Eexs

In practice: Exchange-Correlation functionals are modelled on the uniform
electron gas (Monte Carlo calculations): e.g., local density approximation
(LDA).
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@ Translational invariance implies the existence of a good quantum
number, usually called the Bloch wave vector k. All electronic
states can be indexed by this quantum number

|Pi)

@ In a one-electron theory, one can introduce a second index,
corresponding to the one-electron band n,

‘wnk>

@ The Bloch theorem states that the one-electron wavefunctions obey
the equation:

wnk(r + R) = wnk(r)eikR

where R is any translational vector leaving the Hamiltonian
invariant.

@ k is usually constrained to lie within the first Brillouin zone in
reciprocal space.
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@ The evaluation of many key quantities, e.g. charge density,
density-of-states, and total energy) requires integration over the
first BZ. The charge density p(r), for instance, is given by

o) = o > / Do) Pk

@ fnx are the occupation numbers, i.e., the number of electrons that
occupy state nk.

@ Exploiting the fact that the wave functions at k-points that are
close together will be almost identical, one may approximate the
integration over k by a weighted sum over a discrete set of points

p(r) =D wie frc|mic(r) [Pk,
n k

where the weights wy sum up to one.
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The intractable task of determining ¥(ry,...,ry) (for N ~ 10?3) has
been reduced to calculating ¢,k (r) at a discrete set of points {k} in the
first BZ, for a number of bands that is of the order of the number of

electrons per unit cell.
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@ The total energy
Elp AR, Z}] = Ts[{¢nx[pl}] + Eulp.{R, Z}] + Exc[p] + U{R, Z})
@ The kinetic energy

Lol = 30 3 wnfus k] — 5 Alis)
k

n

@ The Hartree energy

Bulp, {R, Z}] = //pez ez () 1t

—r'|
where pez(r) = p(r) + >, Zid(r —
@ The electronic charge density

=D wicfukclthnic(r) [Pdk,
n k

@ The Kohn-Sham equations

(—32+ Virlpez) () + Vaelpl()) () = €oncinac(r)

@ The Hartree potential

Vilper)(w) = [ 22 0 ae
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@ Introduce the cell periodic part u,) of the wavefunctions

Uk (r) = Uni(r)e™™
with unk(r + R) = upk(r).

@ All cell periodic functions are now written as a sum of plane waves
1 .
— G G+k)r
unk(r) - W Z C’Gnkel Y ¢nk( ) QI/Z Z CGnkel( )x
G

I‘) — Z pGeiGr V(I‘) _ Z VGeiGr
G G
@ In practice only those plane waves |G + k| are included for which

1
§‘G + k‘z < Ecutoff
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real space reciprocal space

G
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Why use plane waves?

@ Historical reason: Many elements exhibit a band-structure that can
be interpreted in a free electron picture (metallic s and p elements).
Pseudopotential theory was initially developed to cope with these
elements (pseudopotential perturbation theory).

@ Practical reason: The total energy expressions and the Hamiltonian
H are easy to implement.

@ Computational reason: The action H|v) can be efficiently evaluated
using FFT's.
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Evaluation of H|y,k)
(-58+V®) vurto)

using the convention

1 2 r
< |G + k> Ql/2 € (@+k) — <G + k|?/1nk> - CGnk

@ Kinetic energy:
1 1
(G+k|l - §A\wnk> = §|G+k\2CGnk Nxprw

@ Local potential: V = Vu[p| + Vic[p] + Vext
) Exchange-correlation: easily obtained in real space Vicr = Vic|pr]
FFT to reciprocal space {Vic,r} — {Vic,c}
Hartree potential: Poisson equation in reciprocal space Vu,g = Gz PG

)
)
) add all contributions Vg = Vi, + Ve, + Vext,a
)
T

FFT to real space {Va} — {V:}
he action

—iGr

<G + k|v|wnk NFFT lOg NFFT

M. Marsman



The action of the local potential

2G eyt

Rr (residual vector)

J
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The PAW method

The number of plane waves needed to describe
@ tightly bound (spatially strongly localized) states

@ the rapid oscillations (nodal features) of the wave functions near the
nucleus

exceeds any practical limit, except maybe for Li and H.

The common solution:

@ Introduce the frozen core approximation:
Core electrons are pre-calculated in an atomic environment and kept
frozen in the course of the remaining calculations.

@ Use pseudopotentials instead of exact potentials:
) Norm-conserving pseudopotentials
) Ultra-soft pseudopotentials
) The Projector-Augmented-Wave (PAW) method
[P.E. Blochl, Phys. Rev. B 50, 17953 (1994)]
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[tn) = |wn+2|¢>z |6:)) (Bl )

o |{Z;n> is a pseudo wave function expanded in plane waves
® |¢), |¢:), and |p;) are atom centered localized functions

@ the all-electron partial waves |¢;) are obtained as solutions to the
radial scalar relativistic Schrodinger equation for the spherical
non-spinpolarized atom

(5 + ven)ln) = ilo)

@ a pseudization procedure yields

|6s) — |) Veff — Ueff <l7i|<2~5j> = 0yj
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@ the pseudo partial waves |¢;) obey

(= 58+Ter+ 315D ) 6w = ex (14 17)Qu 73l ) )

ij
@ with the socalled PAW parameters:
Qij = (ilo;) — (9il@;)
1 ~ 1 o~
Dij = (il = 5A +ve|d;) — (9il = 5A + Verr|d)

The all-electron and pseudo eigenvalue spectrum is identical, all-electron
scattering properties are reproduced over a wide energy range.
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(—5A -+ ver)l6) = eildi)

7/

_ %A + Tt + 30 15 DBl ) |8 = € (1+ 3 1) Quatil ) 192)
kl kl

w E i T 3
T a4 E N HOE
= E \___‘ 1 E
@ :‘\
% 0 5\'\ ?\
= E & E a
52 - \ i
E % -.:\
£ -4 ‘1\ |
£ E \
o =PI TETH PP T i R e
g =2 0 8- 0 3
E (Ry)
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o Gu(r,e) . or  gu(rye)|,_,.
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1st s-channel: ¢;
Mn 4s "bound” state 0.

2nd s-channel: €5 1.
Mn s "non-bound” state 0.

Frozen core approximation:

Vet [pu] = vi[po] + vE [Pz + Vaclpo + 0] pu(r) = Z ailgi(r)|?

Vott[Pv] = vE[Pu] + vE[PZC] + Vac[Po + Pe] pu(r) = Z ai|$i(r)|2
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@ Character of wavefunction: c¢jpe = <ﬁlme|1/~)n>

|thn) = ) = > |Gime)cime + Y |Sime) Cime
~ o] 00
0 . 1O O

pseudo pseudo-onsite AE-onsite
@ Same trick works for
@ Wavefunctions ® Kinetic energy

. @ Exchange correlation ener,
o Charge density ° Hartreegenergy ®
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The kinetic energy

@ For instance, the kinetic energy is given by

1
Eyin = ZfTL('L/}n‘ - §A|"/]n>
@ By inserting the transformation (i = lme)

¥n) = \wn+2|¢z |6:)) (iln)

into Eyin one obtains: Fyin = E—FE! + E! (assuming completeness)

S il = 5AI) = 373 (il = 5 A+ 303 il - 5 Al)

site (4,5) site (i,5)

E Bl El
@ p;; is an on-site density matrix:

Pij = Z fn<1/~1n |15z‘><13j |1;n>
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@ For any (quasi) local operator A there exists a PS operator

A=A+ X I ((eilAle) — (3:1416,)) (5|

so that

W|Alp) = (|Al)

@ For instance the PS operator that corresponds to the density operator
|r){r| is given by

r|+2|pl( ) (xl5) = (Bilr) (x165) ) (5|

and the density

@R (elw) = @Il + > W15 (40ule)irls) — (Gilr)(xlds) ) (Bsl)

= ) -7 () + ')

@ Non-local operators are more complicated
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The Hartree energy

@ The pseudo-wavefunctions do not have the same norm as the AE
wavefunctions inside the spheres

@ To deal with long range electrostatic interactions between spheres a
soft compensation charge p is introduced (similar to FLAPW).

AE pseudo + compens. pseudo+comp. onsite AE-onsite

@ Hartree energy becomes: Ey = E — E' + E*

Eulp+pl— Y _ Eulp' +p'1+ > Eulp']

sites sites

p' one-center pseudo charge p' one-center compensation
charge
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PAW energy functional

Total energy becomes a sum of three terms: E = E + E' — E*

E

El

- 1 -
Bulp+ 1+ [ vulpz) (50) + o) &' + U(R, Ziow)
S { st - 5l + Bl A 54 A+

sites ™ (i,5)

Eg[p* +p] + /
Q,

S { S puted - Al + Bl o +

sites ™ (i,5)

Eulp ]+ [ onlpzls' @ d3r}

onlpzd (7 w) + pte) e}

M. Marsman



@ F is evaluated on a regular grid
Kohn-Sham functional evaluated in a plane wave basis set

with additional compensation charges to account for the incorrect
norm of the pseudo-wavefunction (very similar to ultrasoft
pseudopotentials).

p=3 Fthntiy pseudo charge density
p compensation charge

@ E' and E' are evaluated on radial grids centered around each ion.
Kohn-Sham energy evaluated for basis sets {¢;} and {¢;}

these terms correct for the shape difference between the pseudo and
AE wavefunctions.

@ No cross-terms between plane wave part and radial grids exist.
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@ The pseudo wave functions |¢,,) (plane waves!) are the
self-consistent solutions of

(=3 2+ Vet 3 IFDi+) 551 ) 190) = e (143 P Qus 1) 1)

j
1 ~ 1 1 1T
Dy = (1] = 58+ vlalpd)|és) — (il = 3+ Tal7E116;)

py(r) = Zﬂij (ilr)(rlp;)  pa(r) = ZPU@HF)@@)

@ If the partial waves form a complete basis within the PAW spheres,
then the all-electron wave functions |¢,,) are orthogonal to the core
states!
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Accuracy

Subset of G2-1 test set: Deviation PAW w.r.t. GTO, in [kcal /mol].

— 10

O L

E o

S e

=

s T

o 2r

>

S o0

2
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C 4

-% o[ “PBE(G03)-PBE(V)
N o PBEO(G03)-PBEO(V)
€ oL

S 7l

m-10 LiIH : CIHIHOI iI ICIH IH(I:NICHIOHI F; : SI T

0 SiH
BeH CH, ‘bH ‘N H,CO° Co, “si0 clo ° %o,

|AEag| < 1 kcal/mol.



Accuracy

Relative PBE bond

lengths of Cly, CIF, and HCI for various GTO basis
sets specified with respect to plane-wave results:

1.03
1.025
¢

1.02
1.015

4
1.01

1.005

QO Cl, rel. bond length
[ £ CIF rel. bond length
A AHCI rel. bond length

DZ

N.B.: aug-cc-

aug-cc-pVXZ (X= D, T,Q,5)

pV5Z basis set for Cl contains 200 functions!
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W’n) = |1Ln> + Z (|¢lme> - |¢lm5>) <ﬁl7ne|l/;n>

lme

-] |1,;n> is the variational quantity of the PAW method.

@ The PAW method is often referred to as an all-electron method.
Not in the sense that all electrons are treated explicitly, but in the
sense that the valence electronic wave functions are kept orthogonal
to the core states.

M. Marsman



D¢ Og ®¢ Tg
Cel 0o O@ ¢

pseudo + compens. pseudo+comp. onsite AE-onsite

@ This general scheme applies to all operators.

@ Sometimes one may choose to include only parts of the PAW
expressions.

lazy: only implement plane wave part (GW, ...)
efficient: physics of localized orbitals; only spheres (LDA+U,
DMFT, ..., )
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Electronic optimization

Direct minimization of the DFT functional (Car-Parrinello, modern)
Start with a set of wavefunctions {¢,(r)|n =1, .., N./2} (random
numbers) and minimize the value of the functional (iteration)

B2 . ,
V(e () - €n> ()

Gradient: F,(r) = <

The Self Consistency Cycle (old fashioned)
Start with a trial density p, set up the Schrodinger equation, and solve it
to obtain wavefunctions v, (r)

(-2 VI D)) () = entn®) = L N2

as a result one obtains a new charge density p(r) = > |¢,(r)|? and a
new Schrodinger equation = iteration
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Direct mimization vs. SCC

disordered diamond, insulator disordered fcc Fe, metal
0 ,‘: energy
2 ¢ /|
uw oy f ~. direct 0
w o F Car—‘R%mneIIo ui
> -6 F ﬁq >
2 Be1248 L
_8 AR RI RN RN (ATL S UPCI R T AR R RA R
n=8 E .
1 E self.consistent
w T * T8
2t <
83 8
/R ATV, SN
0 5. 10 15 20 0 10, 20
iteration forces iteration

G. Kresse and J. Furthmiiller, Phys. Rev. B 54, 11169 (1996).
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Direct optimization (charge sloshing)

The derivative of the total energy w.r.t. the wave function (¢ | is

190) = fu (1= 3 [om) @l ) Elon) + 37 5 Fam (f = fin)liim)

unoccupied charge
occupied
potential

slowly v%rying charge

I /o 4ne /G
’wn - ¢n +A5¢m 1/)m - wm _Asw" strong change in potential

where Hym = (Y| H|thn).

Consider two states

Py = ikE =3y ilkpokor

. 2 .
5p(r) = 2AsRe KT §Viy(r) = %R pi2ker

The smallest |dk| < 1/L where L is the largest dimension of the supercell.

~

= the response of the potential §Vi o< L? = stable step size As o< 1/L?
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A naively straightforward algorithm

Express the Hamiltonian in the plane wave basis set and diagonalize it
H = (G|H[p]|G’) — diagonalize H — {t;,¢;} i =1, .., Nrrr
Self-consistency
po—Ho = p = p1 = f(po,p') —H; — ...

iterate until p = p’

BUT: we do not need Nprr one-electron orbitals, at a cost of O(Ngpr) ...
we only need the N} lowest eigenvectors of H

= lterative diagonalization of H aimed at finding its N, lowest eigenvectors
(Np & Nei/cell).
Blocked Davidson algorithm, RMM-DIIS, ...
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The Self-Consistency Cycle

/ trial-charge p;n and trial-wavevectors 1y,

set up Hamiltonian H (pin)

}

]

iterative refinements of wavefunctions {¢» }

‘ )

}

’ new charge density pout = >, fn|tn(r)|? ‘

l

’ refinement of density pin, pout = NeW pin ‘

o 5

calculate forces, update ions

]

"]

two subproblems
optimization of
{Yn} and pin
refinement of
density:

DIIS algorithm

P. Pulay, Chem. Phys. Lett.
73, 393 (1980)

refinement of
wavefunctions:
DIIS or Davidson
algorithm
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Key ingredients: Subspace diagonalization and the Residual

@ Rayleigh-Ritz: the diagonalization of the Ny x Nj subspace
Z Hntmk = Z €2pp»§ntmk
with ~ . ~ .
Hy = (QnlH|¢m)  and  Swm = ($n]S[m)
The Ny eigenvalues/eigenvectors €7 and [¢x) = >, Bimk|thm) are the

best approximation to the exact N, lowest eigenvalues of H within the
subspace spanned by the one-electron orbitals ,,,.

@ The residual vector:

2 & : <wn|ﬂ|¢n>
R(Yn)) = (H — appS n)s with €app = ~——F—-
| (w )) ( € )W’ > 1 € <¢n|5|¢n>

(its norm is a measure of the error in the eigenvector).
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The blocked Davidson algorithm

@ Take a subset of all bands {t¢,|n =1,..,N} = {¢}|k=1,..,m}

0

L
o
]

Extend this subset by adding the (preconditioned) residual vectors
to the presently considered subspace

{¢Ii/gli =KH - Eapps)zpli‘k =1, ..,n1}

Raighley-Ritz optimization (“sub-space” rotation) in the 2n;
dimensional subspace {¢}/g;} to determine the n; lowest
eigenvectors {7k = 1,..,n1}.

Extend the subspace with the residuals from {17}

{qybli/glle/gi = K(H - Gapps)iﬁivf = 11 ..7711}

Raighley-Ritz optimization = {4k = 1,..,n1}
etc ...
The optimized {¢}'|k = 1,..,n1} replace {¢n|n=1,..,n1}

@ Move on to subset {¥|k =n1 +1,..,n2}, ..., etc, ...

After treating all bands: Raighley-Ritz optimization of {¢n|n =1,.., N}

M. Marsman



Charge density mixing (RMM-DIIS)

Minimization of the norm of residual vector
R[pin] = pout[pin] — pin  [R[pin]| = min
With pout (7) = 3 ceupiea Whfrk [Pnk ()|
DIIS algorithm is used for the optimization of the norm of the residual vector.
Linearization of R[pin] around ps. (linear response theory)
Rlpin] = J(pin — psc)

where J is the charge dielectric function

J=1-PU
and U is the Coulomb kernel )
4me
U= =

Provided J were to be know

Psc = Pin — J_IR[pin]
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___ Basics PAW Optimization |
Starting from
dptot = OPext + OpPind J=1-PU

where P = gf/ﬁ is the irreducible polarizability, we have that
tot

8pmd

EY Uéptot - §ptot 6pind - 6pext
Vtot

J0ptor = 0ptot —

where dpinq is limited to the induced charge density due to changes in
the Hartree potential only.
From

5pt0t = Jilépext
and
6ptot = Pin — Psc = J_lépext

we see that in the linear response regime, where R[pin] X (pin — psc),

5pext =R [pin]

Psc = Pin — JilR[pin] = Pin — Jil(pout [,Din} - pin)



Divergence of the dielectric function

Eigenvalue spectrum of J determines convergence

J=1-P U
—~—

4ane?

a2

“Broader” eigenvalue spectrum = slower convergence

@ For insulators and semi-conductors, the width of the eigenvalue
spectrum is constant and system size independent (€,)!

@ For metals the eigenvalue spectrum diverges, its width is
proportional to the square of the longest dimension of the cell:

@ Short wavelength limit J = 1 (no screening)
o Long wavelength limit J ~ 1/q2 « L2 (metallic screening)

Complete screening in metals causes charge sloshing
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The dielectric matrix

@ Use a model dielectric function
that is a good initial approximation
for most systems

1.1 _ ¢ AMIX
J ~ Gq = max(m, AMIN)

G (1/A%

@ This is combined with a convergence accelerator.

The initial guess for the dielectric matrix is improved using
information accumulated in each electronic (mixing) step (DIIS).

M. Marsman



Return to direct optimization: Why?

Pure DFT functional depends only on the density
1
(=5 Vorb6) + Vo)) ) = )

DFT-Hartree-Fock Hybrid functional depends explicitly on the wave functions

occ

(-%Mveﬂ[purwv;xc( )wn HOD_ ¥ /w’” L' = oo

so density-mixing will not work (reliably).

Unfortunately we know direct optimization schemes are prone to charge

sloshing for metals and small-gap systems.
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Mixed scheme

@ The gradient of the wave functions is given by

190) = F (1= 32 [m) ol ) Eon) 37 2 Fum (o = ) )
with Houn = (o | H[tn)

@ A search direction towards the groundstate w.r.t. unitary transformations
between the orbitals within the subspace spanned by wave functions can
be found from perturbation theory

Hnm

Unm = 0pm — Ase—————

but this is exactly the term that is prone to charge sloshing!

@ Solution: Use density mixing to determine the optimal unitary
transformation matrix Uy,
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Optimal subspace rotation

@ Define a Hamilton matrix Hy; = (| H[p]|vx)

where H[p] = T + Vext + Vert[p] + VX' [{1}. {f}]
@ Determine the subspace rotation matrix V that diagonalizes Hy;
@ Recompute the (partial) occupancies — {f'}

@ The transformed orbitals Y, V9 and partial occupancies {f'} define a
new charge density p’

@ mix p and p’

@ and iterate the above until a stable point is found — psc

@ H5, = (Y| H|[psc]|tn) defines the optimal subspace rotation

U = bon — Brgr e

@ N.B.: we do not update the orbital dependent part of the Hamiltonian

VR {0}, { )]
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The full mixed scheme

The iterative optimization of the wavefunctions cycles through the
following steps:

© construct the Hamiltonian, H, from the current wavefunctions and
partial occupancies, and calculate HJ4);

@ inner loop: determine the self-consistent Hamiltonian, H%, defining
the preconditioned direction for the subspace rotation U.

© minimization along the preconditioned search direction, defined by
(1=, [¥m)(@m|)H 1), U, and a gradient acting on the partial
occupancies. For instance by means of a conjugate-gradient
algorithm.

This loop is repeated until the change in the free energy from one
iteration to the next drops below the required convergence threshold
AFEy, (usually 1074 eV).
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It works: fcc Fe

T T T TS
olcell 4

o2cells 7

o4cells

EEEGEEE —f

EIEEEGEE

00""@005

004 §

o 7

Oo 3

Ooi

1079 10 20 30

Iteration
The convergence behaviour of HSEO3 calculations using the improved direct minimization procedure (solid lines)
and a standard conjugate gradient algorithm (dotted lines). Calculations on single, double, four times, and eight

times repeated cells are marked with circles (), diamonds (<>), squares ([J), and triangles (A), respectively.
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