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Introduction

This tutorial aims to familiarize you with the basic concepts of periodic density func-
tional theory (DFT) calculations and with the settings necessary to run FHI-aims.
Before we start working on the first problem, a short overview is provided.

The practice session consists of three parts:

1. introduces basic bulk properties and convergence tests.
¢ Problem I: Generation and visualization of bulk structures
e Problem II: Energy convergence tests
e Problem III: Phase stability and cohesive properties

e Problem IV: Electronic band structure & density of states

2. discusses surface calculations.
e Problem V: Electronic structure of crystal surfaces

o Problem VI: Relaxing surface structures

3. covers magnetism and collinear spin calculations on iron.
e Problem VII: Lattice constant of non-magnetic iron
e Problem VIII: Ferromagnetic iron

e Problem IX: Anti-ferromagnetic iron

Dedicated folders have been prepared in the skel/ directory for each of these prob-
lems. Please use this directory hierarchy, in particular because a few of the directories
contain some helpful files. One of the first problems contains two scripts. The first
one prepares and starts FHI-aims calculations on a series of geometries and the second
one postprocesses the resulting FHI-aims output. Please try to adapt these scripts to
the other problems along the rest of this tutorial.

All the problem sets are carefully designed to maximize your learning progress within
the limited time of this tutorial. In case you get stuck with a particular problem do
not hesitate to ask one of the tutors. In any case, it is perfectly fine to skip the
rest of a problem and move on to the next. This also applies if your calculation
takes significantly longer than the estimated CPU time for the given problem. Any
intermediate results required for later problems are provided in the reference/ folder.
If you like, you can also use this folder to compare your results to.

Take your time to read the tasks and their supplementary information carefully be-
fore proceeding to actually prepare the calculations. Each subtask starts with a short
summary (gray box) and gives details and hints afterwards. The summaries are par-
ticularly imporant; read every single sentence very carefully. Also, feel free to consult
the supplementary information presented in the Appendices on atomic structures and
high symmetry k-points.



Part I: Basic properties of solids

In the first part of this tutorial we will work on different structural phases of bulk
silicon. The correct description of their pressure dependence by Yin and Cohen [1] is
one of the early success stories of first-principles DFT. In this part you will learn how
to calculate basic properties of solids like lattice constants, cohesive energies, band
structures, and density of states.

Please use the basic settings given in Fig. 1 as default for all problems of this session
(unless specified otherwise).

# Physical settings

XC pw-1lda
spin none
relativistic atomic_zora scalar

# SCF settings

charge_mix_param 0.2
n_max_pulay 8
sc_accuracy_rho 1E-4
sc_accuracy_eev 1E-2
sc_accuracy_etot 1E-5
sc_iter_limit 40

# k-grid settings (to be adjusted)
k_grid nkx nky nkz

Figure 1: Default physical settings for control.in. This file can be found in skel/problem_
1/control.base.in.

For all calculations the Perdew-Wang LDA (xc pw-1da) exchange-correlation func-
tional will be used. The effect of using different xc functionals has been discussed in
Tutorial 1: “The basics of electronic structure theory”. Silicon is known to be non-
magnetic, so no explicit spin treatment is needed. The relativistic atomic_zora
scalar setting is not strictly necessary for silicon. The nuclear charge of silicon
(Z = 14) is still small enough to allow for a nonrelativistic treatment. But as the
correction is computationally inexpensive, it does not hurt to use it, either. Just be
sure to never compare total energies from different relativistic settings. The SCF set-
tings have been discussed in detail in the first tutorial but can also be looked up in
the manual. The k_grid setting will be discussed in the actual exercises.

Additionally, use the default “light” species settings for silicon in $AIMSFILES/
species_defaults/light/14_Si_default. The environmental variable $AIMSFILES
should points to the folder containing the auxiliary files of the FHI-aims distribution.



Problem I: Generation and visualization of bulk structures

Our first step towards studying periodic systems with FHI-aims is to construct periodic
geometries in the FHI-aims geometry input format (geometry.in) and visualize them.
As a next step, we learn how to set basic parameters in control.in for periodic
calculations. Finally, we compare total energies of different Si bulk geometries.

Setting up and visualizing geometry.in

o Construct geometry.in files for the Si fee, bee, and diamond struc-
tures (see Appendix I). Use the experimental lattice constants a of
3.8 A for fee, 3.1 A for bee, and 5.4 A for diamond.

o Visualize them (e.g. with GDIS).

To set up a periodic structure in FHI-aims all three lattice vectors as well as the atomic
positions in the unit cell must be specified. The lattice vectors are specified by the
keyword lattice_vector. For example, fec Si with a lattice constant 4 A is defined
by

lattice_vector 0.0 2.0 2.0
lattice_vector 2.0 0.0 2.0
lattice_vector 2.0 2.0 0.0
atom 0.0 0.0 0.0 Si

A full set of lattice vectors and atomic positions of primitive unit cells for fce, bee, and
diamond can be found in Appendix I.

The simplest way to check the geometry.in file is to visualize the corresponding
geometry. For periodic structures in FHI-aims, we recommend GDIS, a free GTK-
based program for the display and manipulation of isolated molecules and periodic
systems, developed by Sean Fleming. Information on the program and the source code
can be obtained from http://gdis.seul.org. The GDIS installed on the workshop
machines was modified by Jorg Meyer to read the aims geometry.in format as well
as the aims charge density output files .cube format).!

To visualize a structure given in geometry.in with GDIS, please type

gdis geometry.in &

Then, to repeat unit cell geometries and visualize periodic structures, choose the
“Model: Images” and increase the number of cells as shown in Fig. 2.

You may also try JMOL instead of GDIS. JMOL can read the aims geometry.in format. Just
type (jmol geometry.in &). To get periodic images, click the right mouse button and choose
“symmetry” — “reload {444 666 1}”. More information about JMOL can be found at http:
//jmol.sourceforge.net/.


http://gdis.seul.org
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Figure 2: Show periodic replica/images using GDIS.

Setting up control.in und running FHI-aims

e Prepare a control.in file using 3x3x3 k-points and the settings
given in the introduction of Part I (see Fig. 1).

o Use the provided run.sh script (Fig. 3) to calculate total energies of
the different phases as a function of lattice constant a. For this, con-
sider 7 different values of a in steps 0.1 A around the lattice constants
given above for each structure.

[Estimated total CPU time: 2min/

The control.in for periodic calculationss looks much the same as for the cluster case
(the underlying numerics are the same). There is one important difference, though, as
a k-grid for the Brillouin zone integrations must be specified. For example, to specify
a 3x3x3 k-grid, the following line must be added to control.in:

k_grid 3 3 3

Note that the grid factors refer to the reciprocal lattice vectors corresponding to the
real-space lattice vectors in geometry.in. If there are inequivalent lattice vectors,
their order in geometry.in determines the ordering of reciprocal lattice vectors in the
code. The k-point settings will be discussed with more detail in the next problem.

In general, you can run FHI-aims just like in the cluster case by

mpiexec -n 4 $AIMS_BIN </dev/null >aims.out

where the environmental variable $AIMS_BIN contains the actual FHI-aims executable.
It is good practice to use a separate directory for every single run of FHI-aims in order
to preserve the exact input files along with the output files.? In this tutorial, however,

2Using a separate directory for each FHI-aims run interactively is slightly simplified by using the
run_aims.sh script. See run_aims.sh --help for help.



most of the calculations can be started using a prepared script which takes care of
these things and needs to be adjusted only slightly.

In this exercise, we compare energies of different lattice structures as a function of
lattice constant. Each calculation can be prepared and started by hand, in principle,
but we strongly suggest to use the shell script provided in skel/problem_1/02_3x3x3/
run.sh and shown in Fig. 3. This example script calculates the total energy of fec Si
with different lattice constants. Please copy this script to dedicated folders for bcc and
diamond Si (we suggest skel/problem_1/02_3x3x3/bccand . ../02_3x3x3/diamond)
and adjust the copies according to the lattice constants given in this subtask and the
lattice structures given in Appendix I.

#!/bin/bash
set -e # Stop on error
for A in 3.5 3.6 3.7 3.8 3.9 4.0 4.1; do
echo "Processing, lattice constant $A_ AA."
mkdir $A
# Use this construct for simple calculations. As wvalues
# are replaced verbatim, always put them into "(", ")".
A2=$ (python -c "print,($A)/2.")
# Write geometry.in
cat <<EOF >$A/geometry.in
# fcc structure with lattice constant $4 AA.

lattice_vector 0.0 $A2 $A2
lattice_vector $A2 0.0 $A2
lattice_vector $A2 $A2 0.0
atom 0.0 0.0 0.0 Si

EOF

# Write control.in
cp control.in $A/
# Now run $AIMS_BIN with 4 processors im directory $4
cd $A
mpiexec -n 4 $AIMS_BIN </dev/null >aims.out
cd
done

Figure 3: Example input shell script for running calculations for several lattice constants.
This file can be found in skel/problem_1/02_3x3x2/fcc/run.sh.

To retrieve the total energies, you should then use the postprocess. sh script, which
is provided within the same folder and printed in Fig. 4. This script extracts the total
energies and writes them to the file energies.dat, along with the the lattice constants.
You will need to adapt this script to the other phases of silicon. In particular, adjust
the lattice constants. For the next subtask, it is advantageous to write out the total
energy per atom, not per unit cell, which makes a difference for the diamond structure.
You can use the idiom Eatom=$(python -c "print,($E)/2."), which calculates the



#!/bin/bash

for A in 3.5 3.6 3.7 3.8 3.9 4.0 4.1; do
# Check for problems and errors marked by stars aims.out.
grep --with-filename ’*’ $A/aims.out
# Get 6th column from the line
# containing "Total energy corr".
E=$(gawk ’/Total energy corr/ {print $6}’ $A/aims.out)
# Get 7th column out of the line with "Total time "
time=$(gawk ’/Total time / {print $7}’ $A/aims.out)
# Write results to data files.
echo $A $E >>emnergies.dat
echo $A $time >>times.dat

done

Figure 4: Example shell script to retrieve information from the FHI-aims output file. This
file can be found in skel/problem_1/02_3x3x2/fcc/postprocess.sh.

energy per atom and puts it into the bash variable $Eatom.

Plotting total energies

o Plot the total energy per atom of each structure as a function of the
lattice constant (e.g. with Xmgrace).

o What is the most stable bulk phase of Si according to your results?

After running the code plot your data (given in fcc/energies.dat, bcc/energies.
dat, and diamond/energies.dat) using for example Xmgrace by typing:

xmgrace -legend load \
fcc/energies.dat bcc/energies.dat diamond/energies.dat &

You should see that, with the current computational settings, the diamond Si phase
is unfavorable compared to the other two phases by about 0.1eV. As you might or
might not already have heard of, the experimentally most stable phase is the diamond
structure. We will show in the next two problems that the very coarse 3x3x3 k grid
is the reason of this disagreement.



Problem |l: Energy convergence tests

The results of the last problem were not quite physical. As will be shown later this is
because the convergence was not properly checked. Here we will explicitly check total
energy convergence with respect to the k-grid and to the basis set. In principle, each
phase needs to be checked separately. Within this tutorial, however, we split the effort
and everyone should only check one phase of his own choice.

Convergence with k-grid

o Calculate the total energies for (only!) one of the Si phases of Prob-
lem I as a function of the lattice constant for k-grids of 8 x8x8,
12x12x12, and 16x16x16. Otherwise use the same computational
settings and the same lattice constants as in Problem I.

o Prepare one plot with all total energies and another with the compu-
tational times drawn against lattice constant. Add the 3x3x3 results
from Problem I, too.

e Which k-grid should be used to achieve convergence within 10 meV?

[Estimated total CPU time: 2min/

You should dedicate one directory for every series of these calculations. You will find
empty folders in skel/problem_2/. These calculations should be done exactly as in
the last problem but with the appropriate changes to control.in. In particular, use
the scripts provided for the Problem I (Fig. 3 and Fig. 4).

In the metallic fec and bce phases, the total energy of the 3x3x3 calculation differs
by about 0.3€V from the most accurate (16x16x16) calculation. The larger part of
this error is already fixed by the 8 x8x8 k-grid, which is still off by about 30 meV. The
12x12x12 grid, on the other hand, is converged within about 5meV. The semicon-
ducting diamond Si phase, however, shows a 0.6eV error for the 3x3x3 calculation
and very good convergence already for an 8x8x8 k-grid. In general metals (like Si fec
& bee) or small cells require a denser k-grid compared to semiconductors (Si diamond)
or large cells.

Looking at the computational times you see two general trends in FHI-aims. First,
the times strongly decrease towards larger lattice constants. This is because there
is less overlap between atoms and so less integrations are needed. The approach of
FHI-aims is particularly efficient for “open” structures where the atoms occupy more
space and thus have less neighbors. Second, increasing the number of k-points does
not affect the calculational times significantly up to comparably dense k-grids. A total
energy calculation with a 12x12x12 grid is not so much more expensive than a 3x3x3
calculation. Only with even denser k-grids computational times increase noteworthy.

In conclusion, we should use a 12x12x12 k-grid for fcc and bce Si as a good com-
promise of high accuracy and reasonable computational time. For simplicity, we use
the same grid also for diamond Si although 8x8x8 would be enough in that case.



Convergence with basis set size

o Calculate the total energies for your phase of Si as a function of the
lattice constant for the minimal and the tierl basis sets. Use the
same lattice constants and computational settings as in Problem I to-
gether with the 12x12x12 k-grid.

e Again, prepare one plot with the total energies and another with the
computational times. Add the results for the minimal+spd basis set
from the k-point convergence test above.

[Estimated total CPU time: 2min/

In order to change the basis size settings, you should have a look into the species-
dependent settings within control.in. There, you will find a line starting with
“# "First tier" - ...”. Each line after this defines a basis function which is added
to the minimal basis. Right now, there is one additional function for each valence
function (s and p) as well as a d function to allow the atoms to polarize. This is what
we call minimal+spd in the context of this tutorial. In quantum chemistry and in
particular the Gaussian community, this type of basis set is often called “double zeta
(¢) plus polarisation” (DZP).

To run FHI-aims with a minimal basis, simply comment out these three lines by
prepending a “#” character. To run FHI-aims with a full tierl basis set, uncomment
all four lines following “# "First tier" - ...” by removing the initial “#” character.

You can see that the minimal basis gives completely unphysical results; the en-
ergetic minimum is strongly shifted towards larger lattice constants. The minimal
basis lacks the flexibility to give reasonable geometries. On the other hand, the bind-
ing curve does not change significantly from minimal+spd to the full tier1l basis set
whereas the computational effort increases significantly by adding the f functions from
minimal+spd to full tierl.

While the total energy difference of about 60 meV between minimal+spd and tierl
is still larger than what we were aiming for in the case of the k-grid, we can make use
of the fact that the total energy is variational so that a large part of the basis set error
actually cancels nicely in energy differences.



Bonus: Effect of Gaussian broadening

Bonus: Please skip this subtask if you run out of time.

o Calculate the total energies for fcc Si as a function of the lattice con-
stant for a Gaussian broadening of ¢ = 0.1eV. Use the same lattice
constants and computational settings as before with a 12x12x12 k-
grid and the minimal+spd basis.

e Prepare a plot with the corrected, uncorrected total energies and the
electronic “free energies” for a broadening of ¢ = 0.1eV and the de-
fault value of o = 0.01 eV from the previous calculations.

[Estimated total CPU time: 1min]

You can explicitly set the Gaussian broadening to o = 0.1eV by specifying
occupation_type gaussian 0.1

in control.in.

FHI-aims always outputs three different energies. While these energies are all the
same for systems with a gap, they differ for metallic systems with finite Gaussian
broadening. The “Total energy uncorrected” gives the value of the Kohn-Sham
energy functional for the final self-consistent electronic structure. However, due to the
Gaussian broadening the self-consistency procedure does not minimize this total energy
but a “free energy” (not to be confused with the true free energy of Tutorial 5) specified
right of “Electronic free energy”. From these two numbers, FHI-aims backextrap-
olates to the total energy without broadening and writes the resulting number right
of “Total energy corrected”. For true metals, it is generally best to make use of
the correction. For finite systems and in particular for isolated atoms, however, the
correction is unphysical and may not be used.

For diamond Si the Gaussian broadening of course makes no difference at all as long
as the broadening o is small compared to the band gap. The first thing to notice for
the metallic phases is that all of these numbers agree to each other within about 2 meV.
For the default broadening of 0 = 0.01 eV the energies even agree within 0.1 meV. It
can be shown using the variational principle that the total energy always increases and
the electronic “free energy” always decreases for finite broadening.

For the following calculations, we will use the default smearing of ¢ = 0.01eV
because there is no benefit in convergence by increasing this parameter for the studied
phases of Si. We will stick to the corrected total energy for the periodic systems in
this tutorial as it is the most accurate value for metals and makes no difference for
semiconductors.

10



Problem Ill: Phase stability and cohesive properties

After finding “converged” computational settings, we now revisit the phase stability
of bulk silicon in Problem I. Please note that in practice you should always check
convergence first to avoid false conclusions as in Problem I. We will learn how to
compute the basic cohesive properties and study the pressure dependence of phase
stability.

Recalculation of E(a) curves

o Calculate the total energy of fec, bee, and diamond Si as a function
of lattice constant a. Use the settings from Problem II (k-grid of
12x12x12, minimal+spd basis) and the same lattice constants as in
Problem 1.

o Plot the results as done in Problem I.

[Estimated total CPU time: 2min/

Problem I. The resulting binding curves clearly show that the experimentally observed
diamond structure of silicon is most stable in LDA among the crystal structures studied

in this tutorial.?
In the rest of this exercise, we will analyze the results obtained so far.

Cohesive energies and atomic volumes

e Calculate the total energy of a free Si atom as described in the text
below.

o Figure out how to calculate the cohesive energies and the atomic vol-
umes for all FHI-aims runs in the first subtask.

e Plot all cohesive energies of all three phases into one plot with the
atomic volume on the z axis.

[Estimated total CPU time: <1min]

For the single atom energy, special care has to be taken. First, the free atom is of
course spin polarized and you should use “spin collinear” instead of “spin none” as
well as properly initialize the magnetization with “default_initial_moment hund”.

Second, we use a more converged basis. In particular, uncomment all basis functions
up to and including “tier 3”, increase the cutting potential to “cut_pot 8. 3. 1.7,

3If you happen to use different lattice constants from what is specified in Problem I, you might run
into trouble with bee Si at a = 2.6 A. The one-particle energies differ that strongly for different
k-points that the default number of states calculated per k-point is not large enough. Look up
the keyword empty_states in the manual to fix the problem, then.

11



and turn off basis dependent confining potentials with “basis_dep_cutoff 0.” in the
species section of control.in.*

Additionaly, use the “Total energy uncorrected” instead of the “Total energy
corrected” because the entropy correction is not physical for finite systems and in
particular for atoms.

The cohesive energy (Eeon) of a crystal is the energy per atom needed to separate
it into its constituent neutral atoms. E..; is defined as

Eouk = NEatom | Epulk
N N

Ecoh = — - Eatom:| ) (1)

where Ey,x is the bulk total energy per unit cell and N the number of atoms in the
unit cell. Fatom is the energy of the isolated atom calculated above.

In order to compare the pressure dependence of phase stabilities we need to express
the lattice constant behavior of all phases on equal footing. One possibility to do so is
to express the lattice constant in terms of the volume per atom. This atomic volume
can be calculated quite easily from the lattice constant a. The simple cubic (super-)cell
has the volume Vi, = a®. This number has to be divided by the number of atoms N
in this cell Vigom = a®/Ns.. Please verify that there are two, four, and eight atoms
in the simple cubic supercell in the case of the bee, fce, and the diamond structure,
respectively.

In summary, a file energies.dat containing the lattice constants and and total
energies per atom can be converted to a file cohesive.dat containing atomic volumes
Vatom and (negative) cohesive energies —Econ by

../convert-coh.awk Nsc=.. Eatom=.. <energies.dat >cohesive.dat

“ ”

where the need to be replaced by the corresponding values of Ny, and FEatom.
The heart of the script, which is given in skel/problem_3/convert-coh.awk is the
following line:

gawk '/ #/ {printf "Z%.8f 4.8f\n", $1%*3/Nsc, $2 - (Eatom)}’

After plotting with xmgrace -legend load */cohesive.dat you see that the dia-
mond structure is indeed the energetically most stable phase. But it is considerably
more space consuming. This results from the very open structure of the diamond phase
compared to the much closer packing of the bcc and fec phases. It is plausible that
upon high pressure, phases with more compact atomic volumes might be favorable.

4In most other finite-basis approaches it is common to ensure equivalent basis sets for energy differ-
ences. The numerical atomic orbitals of FHI-aims, however, treat the free atom in principle exact
already with a minimal basis and no such cancellation of errors is needed. We make use of this
fact by using one and the same atomic reference for all basis sizes used for the compounds. This
way, basis set convergence can be checked more easily as cohesive energies strictly increase with
increasing basis size.

12



Equation of states and pressure dependence

o Fit the cohesive energy data for the three phases to the Birch-
Murnaghan equation of states using the program murn.py.

e Determine the lattice constant a, the bulk modulus By, and the cohe-
sive energy per atom F.q, at equilibrium.

o Compare the above quantities for the diamond phase with the exper-
imental values of @ = 5.430 A, By = 98.8 GPa, and E.,, = 4.636eV

[2].

o Plot the the energies E(V) with respect to the atomic volume for all
three phases. Given this data, can you estimate at what pressure a
phase transition would occur? Recall the Maxwell construction.

An important equilibrium quantity we can calculated from our data is the equilibrium
lattice constant ag. In principle, this can be done with a quadratic ansatz for E(a) or
E (V). Here we will discuss and use a thermodynamically motivated and more accurate
fitting function, the Birch-Murnaghan equation of states [3, 4]. The energy per atom

(E = —Econ) is expressed as a function of the atomic volume (V' = Vytom)
BoV [ (Vo) V)P0 BoVi
FE(V)=E —_— — . 2
(V) = Eo B) | By—1 B)—1 2)

The fitting parameters V; and Ej are the equilibrium atomic volume and atomic energy,
By the bulk modulus and BY its derivative with respect to pressure. Equation (2) can
be derived by assuming a constant pressure derivative By.

The fitting program murn. py is part of the FHI-aims distribution. You can get usage
information by typing murn.py --help. If you have prepared the files cohesive.dat
using the provided gawk script, you can simply use the script with

murn.py cohesive.dat -o fit.dat

The program then outputs the parameters Vy, Eg, By and B for the given data set
as output. As a quick plausibility check of the fit, you can use the option -p to see
a plot. The script performs no unit conversions, so the bulk modulus By is output in
units of éV/A? because the cohesive energies and atomic volumes were provided in eV
and A3. You can use “GNU units” to convert to SI units. For example, use

units -v "0.5,eV/angstrom~3" "GPa"

to convert 0.5eV/A? to about 80 GPa. The optimal lattice constant can be calculated
from the equilibrium atomic volume by ag = /Ne.Vo.

Compare the calculated results with experimental reference values given above.
Note: Exact agreement between DFT and experimental data is not our goal right
here — DFT-LDA is an approximation, and we here see how well (or not) it works. It
is well known that LDA in general gives only slightly overbound lattice constants and
cohesive energies.

13



After performing the Birch-Murnaghan fit for all three phases, please plot the result-
ing fitted curves saved in fit.dat into one figure. You should get something similar
to Fig. 1 in the paper by Yin and Cohen [1].

By exposing the crystal to the right pressure one can enforce many different atomic
volumes smaller than the equilibrium ones. In principle, the most stable phase for a
given atomic volume V can simply be deduced from the curve with the lowest E(V).
The corresponding pressure can be calculated from the slope of the curve by the simple
thermodynamic relation p = —9E/0V.

However, in the regime of about 13 A3 < Vatom < 18 A3 coexistence of a diamond
phase at ~ 18 A3 and a bee phase at ~ 13 A3 is favorable. The fraction of atoms in the
two phases then determines the average atomic volume. The resulting average atomic
energy is a straight line between the corresponding points, which is below both the
lines of diamond and bce Si. This is called the Maxwell construction. From the slope
of this line we can deduce a transition pressure of 15 GPa at which diamond and bcc Si
could coexist according to our calculations. This is about 1.5 - 10° times the ambient
pressure of about 100 kPa. Note that there are additional phases for silicon which have
not been calculated here. For a more thorough discussion, please refer to [1].

14



Problem IV: Electronic band structure & density of states

o Calculate the electronic structure of diamond Si using the equilibrium
geometries found in Problem ITI

e Choose the band structures along the high symmetry lines
LT —=-X->W = K.

o For the DOS use the energy range of -18 eV to 0eV, Gaussian broaden-
ing of 0.1 eV, a k-grid of 12 x 12 x 12, and dos_kgrid_factors of 5 for
each k-grid.

[Estimated total CPU time: 1min/

In order to calculate the band structure, we have to specify the high symmetry points
to FHI-aims. An example excerpt from control.in corresponding to the first part of
the suggested path with 50 points per path reads like this:

# diamond band structure:
output band 0.5 0.5 0.5
output band 0.0 0.0 0.0
output band

50 L Gamma
50 Gamma X

o O
o O
o O
o O
o O
o1 O

Please refer to Appendix II: for the location of these high symmetry points.

The density of states (DOS)

The density of states is one of the basis concepts in solid state physics. Particularly,
the DOS around the Fermi level is of interest as it will give you information about the
characteristic of your system, for example, whether it is conducting, semi-conducting or
insulating. Many material properties depend on the DOS for instance the conductivity.

The number of states n within a given energy interval (eg — A€) < € < (eg + A€) per

unit volume V. is given by
eo+Ae
n= [ o de 3)

ofAE

where g(€) is the density of states (DOS). In a free atom or an isolated molecule the
DOS cousists of a series of discrete energy levels (6 peaks) and can be written as

9(6) = 0(ei— o). (@

In a periodic system the single particle energies become k dependent and the DOS
continuous. The number of states per energy is averaged over k

g(e) = é ;/BZ Pk 0(€ei e — €). (5)
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In order to calculate the density of states numerically, we have to replace the integral
over the Brillouin zone in Eqn. (5) by a sum over k-points. In the case of infinite k-
points this replacement is exact. However, to compensate the deficiency of a finite grid,
we broaden the §(ex ; —e¢) distribution by a Gaussian function with an broadening factor
.

o-garpali(] o

Within FHI-aims, we have to specify in the control.in:
output dos -18. 0. 200 0.1

The first two values define the energy window of interest, the first value is the lower
energy bound and the second value is the upper energy bound. The third value is
an integer specifying the number of energy data points, and the last value gives the
Gaussian broadening o. All energies (bounds and broadening) are given in eV.

In the case of independent particles (ip) the total energy of the system (E;p) is given
by

By = [ eato) de (7)

where €p is the Fermi-energy. Also in the DFT this integral contributes to the total
energy. Now Eqn. 6 replaces g(¢) in Eqn. 7

11 1fe—eni)’
oo [T () e o

Small changes in the shape of a peak barely affect the integral and comparably
coarse k-grids for the sum in Eqn. 8 can be used. The same argument applies for the
self-consistent field procedure. There a rather coarse k-grid (defined by the keyword
k_grid) in combination with rather broad choices of o (given by occupation_type
gaussian) can be used. For a well resolved DOS, however, a denser k-grid to determine
the sum over k-points in Eqn. 6 is necessary. After self-convergence is reached, the
DOS is computed using an auxiliary k-grid that is made denser by factors nl,n2,
n3, respectively. The factors nl to n3 have to be given in the control.in with the
keyword:

dos_kgrid_factors 5 5 5

The density of states is calculated on a denser grid after the SCF cycle. The dimen-
sions of the new k-point grid are kn(1)*n1, kn(2)*n2, kn(3)*n3, where kn(i) are
dimensions of the old k& point grid.

o After each calculation, use the python script aimsplot.py, which can
be found in $AIMSFILES/utilities/, to visualize the band structure
data and the DOS. How large is the LDA band gap?
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In order to visualize the band structure, some postprocessing is needed after the FHI-
aims run. Fortunately, the script aimsplot.py is smart enough to do so as long as the
geometry.in and control.in files are in the same directory. Simply run aimsplot.py
without any arguments in this directory.

You see a band structure with an indirect band gap of about 0.6 €V. Please note that
in contrast to convention the energy zero is at the Fermi energy and not at the valence
band maximum. This is of course much smaller than the experimental band gap of
silicon. This disagreement is commonly called the “band gap problem” of (semi-)local
functions.
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Part Il: Basic surface properties

Figure 5: The hydrogen saturated 2x1 Si(001) surface. The cyan (light) atoms correspond
to the bulk Si atoms, the blue (dark) atoms are the top Si atoms and the white
atoms on the bottom layer are hydrogen atoms.

In the second part of this tutorial, we come to standard techniques needed to describe
surfaces. As a physical system, we use the clean Si(001) surface, one of the techno-
logical most relevant surfaces. The surface reconstruction at low temperatures were
unclear for many years. There was a long discussion and different models were used to
understand the differences between various experimental (LEED, STM) and theoreti-
cal approaches. Finally, it has been shown by direct evidence in STM by Wolkow [5]
that the main surface feature at low temperatures is the asymmetric dimer in a 2x1
reconstructed surface unit cell.

Please use the same control.in settings as given in the introduction to Part I. For
saturating the bottom layer of the slab we additionally need the light species defaults
for hydrogen. As you can see in Fig. 5 each silicon atom has to be saturated by two
hydrogen atoms.
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Problem V: Electronic structure of crystal surfaces

Creation and visualization of geometry.in

o Use the provided Python script (Fig. 11) to construct an ideal bulk-
truncated diamond Si(100) surface slab in a 2x1 cell consisting of four
Si layers and an additional layer of H atoms to saturate the bottom
layer. Use sufficient vacuum between the slabs.

e Adjust the Python script to add four additional layers of Si atoms.

o Visualize the surface slabs.

The geometry of four layers of Si(001)-(1x1) in diamond structure is given in the
Appendix I. Please note that by convention the surface is rotated with respect to the
bulk structure by 45° around the z axis. The next four layers are just a repetition of
these layers shifted by a in z direction. The (2x1) reconstructed surface is constructed
by (again) repeating the atomic coordinates, this time shifted by ¢/v2 in 2 direction and
doubling the corresponding lattice vector. Please use the optimized lattice constant
obtained in the last problem.

Obviously, a slab always has two surfaces, a top and a bottom one (see Fig. 5). In
most cases one is only interested in one of these surfaces. In order to avoid physical
states from the bottom layer within the fundamental gap, the bottom silicon layer is
saturated with hydrogen atoms. Additionally one can argue that the atomic environ-
ment of the hydrogen saturated silicon atoms is closer to bulk silicon atoms.

Each bottom layer silicon atom needs two hydrogen atoms placed about 1.5 A in the
direction where the next silicon atoms would have been in the bulk geometry.

For your convenience, we provide a simple python script (the source code is given in
Appendix III) for the ideal hydrogen saturated four layer slab. You should only adjust
the lattice constant in line 14 and execute the script by typing ./write-geom.py.

The eight-layer slab can be created either by hand-editing the resulting geometry.in
or by editing the python script. You can edit the python script without being an
experienced python user. If you read through the code, either on your screen or in
Appendix III, you will find in line 17 the variable n_layer. This variable gives the
number of layers. In line 28 it is used to determine the slab thickness. You have to
change the value from “4” to “8” to ensure you use the same vacuum thickness as you
used before.

As a next step, you have to add the atoms of the next four layers. For every layer
specify two atoms. This is done by using the output_atom command, just like in
line 39. The easiest way is to copy paste lines 39-47 and change the number of the
layer in the third argument. Run the script and visualize the resulting geometry.in
file.

To determine a sufficient amount of vacuum between slabs, you would actually need
to run several calculations with different vacuum thickness. In FHI-aims vacuum is
cheap, you can easily use a vacuum of Lyae = 30 A without noticeable performance
impact. This value is already given in the script by the variable L_vac in line 15.
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Band structure and DOS calculation

e Prepare a control.in and use “safe” k-point settings.

o Calculate the density of states (DOS) and the surface band structures
for these systems along I' — J — K.

[Estimated total CPU time: 2+7min]

There are two important issues to note for the optimal k-grid for this system. First,
there should be no interaction between different periodic images of the slab in z direc-
tion. Therefore, only one k-point is needed on that axis. Second, the lattice vector in
x direction is twice as large as the lattice vector in y direction. As this gives a shorter
periodicity in k, direction, the number of k-points in the first direction can be half of
that in the second direction. As k-points are particularly cheap for this system, use a
“safe” grid of 12 x 24 x 1.

To visualize the band structure, use the script aimsplot.py just like before. Simply
run the script in the directory that contains the input and output files of FHI-aims.

When plotting the band structures as before, note the differences between the four-
and the eight-layer slabs. While the bands within the fundamental band gap, which
stem from the surface, hardly change with the number of layers, the bands get about
twice as dense in the valence and the conduction bands. These bands are bulk-like;
the more layers you add, the more of these bands occur. If you have time, generate a
16 layer slab and calculate its band structure.
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Problem VI: Relaxing surface structures

o Create a geometry.in with the two top Si atoms of the four-layer ge-
ometry in Problem V perturbed.

o Perform a structure relaxation of the top three layers of the resulting
geometry.

o Calculate the DOS and the band structure of the resulting system
along I' = J — K (should be specified within the same control.in).

e Compare this band structure to the ones obtained in the last Problem.

[Estimated total CPU time: 15-30min]

For structure relaxations to forces smaller than 10~2eV/ A, add the following line to
control.in:

relax_geometry trm 1d4-2

During a structure optimization, we like only parts of the structure to relax and the
rest kept at a fixed position. This is done by the keyword constrain_relaxation,
which fixes the position of the last specified atom in geometry.in. In the FHI-aims
manual you find different options, but for constraining all coordinates of an atom, we
use the flag .true.. In the geometry.in file please write:®

constrain_relaxation .true.
An example excerpt from geometry.in reads like this:

atom -1.2063524529754976 0.0000000000000000 -0.8530200000000001 H
constrain_relaxation .true.

atom 1.2063524529754976 0.0000000000000000 -0.8530200000000001 H
constrain_relaxation .true.

atom ...

As a next step, the top Si atoms have to be perturbed. The perturbation is best
chosen in the order of 0.5 A. This ensures that the initial geometry is sufficiently far
away from the symmetry induced saddle point of the ideal geometry. Also make sure
to clearly break the mirror symmetry among these two silicon atoms, e.g. by moving
down one of the two atoms by several tenths of an A. A possible choice for the top
silicon atoms is

atom 2.4148451634531707 0.0000000000000000 3.262 Si
atom 5.2445354903595121 0.0000000000000000 4.062 Si

5You can achieve the same result by replacing output_atom(...) by output_constrained_atom(...)
in write-geom.py.
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The structure optimization with this starting geometry will take about 10 iterations.
Feel free to try out your own guess, depending on the starting guess, the structure
optimization will take between 10 and 30 iterations and therefore 15 to 45 minutes.

You can have a look at geometries along the relaxation path if you run the script
create_geometry_zip.pl aims.out and unzip the resulting file geometries.zip (or
using jmol -s geometry.spt). You will see that one dangling bond per top silicon
atom is saturated by forming a dimer among them. Additionally, this dimer gets
asymmetric as experimentally evidenced by Wolkow [5].

Similar to part I, for calculating the band structure and DOS add the following lines
in the control.in file:

# Si 2x1 surface band structure:
output band 0.0 0.0 0.0 0.5 0.0
output band 0.5 0.0 0.0 0.5 0.5

50 Gamma J
50 J K

o O
o O

and for the DOS

output dos -18. 0. 200 0.1
dos_kgrid_factors 5 5 1

If you compare the band structure of the reconstructed and clean Si(001) surface
around the Fermi level you find that by means of the asymmetric dimer the surface
gets semiconducting and there is a small but clear gap between the valance and the
conduction band.
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Part I1l: Magnetism

Magnetic materials show a variety of unique physical properties. In this part, we focus
on the most common magnetic solid, namely iron. Iron is the most common element in
the whole earth. In particular, it is not only abundant in its crust, it also forms much
of the earth’s outer and inner core. Iron can be found in many different structures
and magnetizations reaching from the ambient (low pressure and low temperature)
ferromagnetic beec phase up to more complex structures under earth’s core conditions
(360 GPa, 5700 K), as sketched in the phase diagram in Fig. 6.
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Figure 6: Phase diagram of iron ranging from the ambient (low temperature and low pres-
sure) bec phase up to pressure and temperatures present in earth’s inner core.
Adapted from [6].

At ambient conditions, iron crystallizes in a ferromagnetic bcc phase. This will be
the main focus of this part. Later on, in Problem IX we will actually consider an
anti-ferromagnetic fcc phase. and compare the relative stability of three phases in
LDA.

Convergence tests

In order to safe precious tutorial time, the convergence tests have already been per-
formed beforehand. Figure 7 shows a logarithmic plot of the differences between the
total energy calculated at different k-grid densities to the converged energy (calculated
with a 48 x 48 x 48 grid). A grid of 16 x 16 x 16 gives a good compromise of com-
putational time and physical accuracy. This grid is significantly denser than what is
needed in the case of silicon. As stated earlier in this tutorial, smaller band gaps as
well as smaller unit cells call for finer integrations grids in reciprocal space. Metals

23



Ferromagnetic BCC iron
light; Tier 1-g; relativistic, LDA
1IE-027  x._
o -
< 1E-03 T
g ...
A
S S R R
W 1E-044 .
~ K.,
Elj .......
) .
o 1e-os4 T
"
1E-06 : ‘ ; ; . ; ‘ : ; , ; : .
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
kgrid
Figure 7: Convergence tests for the k-grid.
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Figure 8: Convergence tests for the cohesive energy with respect to the basis set.
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are particularly demanding. Throughout the iron part we ask you to use a grid of
16 x 16 x 16. Please specify in the control.in:

k_grid 16 16 16

As stated before, basis set convergence is particularly important. Figure 8 shows
cohesive energies for different basis sets. As you can see, the “T1-fg” basis set (tier 1
without f and g functions) is clearly underconverged. By giving the valence electrons
the possibility to polarize by partially occupying f functions the cohesive energy can
be significantly lowered. This basis size is also used in the default light settings of
iron. Please use these settings, given in $AIMSFILESspecies_defaults/light/26_
Fe_default, throughout this part of the tutorial.

For a efficient convergence the linear mixing parameter should be chosen carefully
as metals, in particular magnetic ones, are harder to converge. For the same reason,
the smearing should be broader:

charge_mix_param 0.1
occupation_type gaussian 0.1
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Problem VII: Lattice constant of non-magnetic iron

Find the equilibrium lattice constant of non-magnetic bcc iron

o Calculate the equilibrium lattice constant of non-magnetic bcc iron by
performing five total energy calculations in steps of 0.15 A around the
experimental lattice constant of a = 2.87 A. You find the correspond-
ing lattice vectors in Tab. 1 of Appendix I.

[Estimated total CPU time: 2min/

The lattice constant can be calculated completely along the lines of Problems III
and IV (you may adapt the bash script given in Part I Fig. 3) but with the control.in
adjusted as stated in the introduction of this Part. First, we are interested in the non-
magnetic state, leave the spin setting to none. As you can see, the lattice constant is
underestimated in LDA, which is related to the typical overbinding of this functional.

Calculate the energy of a free Fe atom

o Perform a free atom calculation along the lines of Problem III. In par-
ticular, use spin collinear for the free atom. Calculate the cohesive
energy of non-magnetic bee iron.

[Estimated total CPU time: <1 min]

Just as explained in the first part of this tutorial for the free atom calculation, special
care has to be taken. First, the free atom is spin polarized and instead of “spin none”
you have to use “spin collinear”. The magnetization has to be initialized properly
with “default_initial_moment hund”.

Second, we use a more converged basis. In particular, uncomment all basis functions
up to and including “tier 3”7, increase the cutting potential to “cut_pot 8. 3. 1.7,
and turn off basis dependent confining potentials with “basis_dep_cutoff 0.”.

Calculate the density of states

« For the equilibrium lattice constant in LDA of a = 2.69 A calculate
and plot the DOS.

[Estimated total CPU time: 4 min]

We have already discussed the density of states of silicon in the first part of the tutorial.
For iron, a smaller smoothening factor ¢ should be chosen. Please use for your DOS
calculation the settings given below:

output dos -18. 0. 200 0.05
dos_kgrid_factors 5 5 5
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If you have time left, you may like to increase dos_kgrid_factors to a higher value.
The quality of the DOS plot will improve.

As before, you can use the script aimsplot.py to plot the DOS. The syntax of the
DOS output is rather straight-forward so that you can also use Xmgrace (xmgrace
KS_DOS_total.dat) for this task. The DOS shows a sharp peak at the Fermi energy.

Electron bands can spontaneously split into up and down spins. This happens if
the relative gain in exchange energy is larger than the loss in kinetic energy. To
understand when a material becomes ferromagnetic, E. C. Stoner formulated a model
[7] from which he could derive a criteria for ferromagnetism

2uBIN (ep) > 1, (9)

where I is the Stoner parameter which is a measure of the strength of the exchange
correlation of the electrons in the system, N(ep) is the DOS at the Fermi energy ep.
The factor 2u% is a constant prefactor. According to the Stoner criterion, a very high
DOS at the Fermi energy N(ep) strongly favors ferromagnetism. This will be checked
next for our particular case.
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Problem VIII: Ferromagnetic iron

Find the equilibrium lattice constant of ferromagnetic bcc iron

o Calculate the equilibrium lattice constant of ferromagnetic bec iron by
performing five total energy calculations in 0.1 A steps around a lattice
constant of a = 2.8 A.

o Extract the magnetic moment from the calculations above and plot.

[Estimated total CPU time: 7min/

You should now explicitly take spin into account by specifying
spin collinear

in control.in.

It is much harder to converge the SCF for magnetic materials compared to non-
magnetic ones. For one thing, convergence strongly depends on a sensible initial-
ization of the charge and spin densities. Therefore, FHI-aims will refuse to run if
you do not specify the initial magnetic moments of the atoms. You can do so with
default_initial_moment walue in control.in, where value is either a real number
(specifying Ny — N, ) or “hund” which means to initialize the atom in a high-spin state.
Alternatively, you can add initial_moment walue after the atoms in geometry.in
to specify the initial moments of each atom separately.

Please initialize the magnetic moment of the iron atom with Ny — N| = 2:

atom 0. 0. 0. Fe
initial_moment 2.

Also note that convergence is more sensitive to all kinds of other settings. So please
be careful to use all specified settings or be prepared for comparably slow convergence
(the number of necessary SCF cycles might easily increase by an order of magnitude).

If you compare the lattice constant of bcc Fe to the one of fec Fe, you will see that
the equilibrium lattice constant increases from 2.69 A to 2.75 A.

You can see that the magnetic moments (from the line containing N = N_up -
N_down) get smaller with decreasing lattice constant. This is quite a general trend
among magnetic materials and is a consequence of the Pauli principle.

Calculate and plot the cohesive energy of ferromagnetic bcc iron

o Calculate the cohesive energy of ferromagnetic bec iron and compare
it to the non-magnetic one. Reuse the free atom reference energy from
Problem VII.

e Plot the cohesive energy versus the volume per atom of non-magnetic
and ferromagnetic bee iron in one plot (for example use xmgrace).
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To convert into cohesive energies and atomic volumes, you can reuse the gawk script
given in Problem III.

The cohesive energy of the ferromagnetic phase is more favorable by some 300 meV.
Please note that energy differences between different magnetic states are often even
much smaller than this.

Calculate the density of states for ferromagnetic bcc iron

o For the equilibrium lattice constant in LDA of a = 2.75 A calculate
and plot the DOS using the same settings as in the last Problem.

[Estimated total CPU time: 7Tmin/

As you can see from the density of states, the magnetization leads to a shift of the d-
band peak away from the Fermi energy. In the majority spin channel, the d bands are
shifted towards lower energy and mostly occupied whereas in the minority channel, the
shift is in the opposite direction, giving mainly unoccupied d bands. By this reduction
of symmetry, the instability mentioned in the last problem is resolved and the total
energy decreases.
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Problem IX: Anti-ferromagnetic iron

Of course, in a careful study, you should not stop your search after you found the
expected results; so we now turn towards fec iron.

Cohesive energy and DOS of non-magnetic fcc iron

o Calculate the cohesive energy of non-magnetic fcc iron for the given
LDA lattice constant of a = 3.41 A (single point calculation). Within
the same FHI-aims run, also calculate the density of states using the
same parameters as before.

[Estimated total CPU time: 10min/

So far we have calculated two different phases of iron, namely non-magnetic and fer-
romagnetic bce iron. Thin films of iron grown on top of a metallic surface e.g. copper,
show anti-ferromagnetic order in fec structure. Regrettably, we will not have the time
to calculate thin films, but an important preparation for any thin film calculation is a
bulk calculation.

Please use the lattice parameters given in Appendix I and the same parameters as
in Problem VII (in particular spin none.

First you should note that the non-magnetic fcc iron phase is actually favored by
about 50 meV compared to ferromagnetic bec iron in LDA. Additionally, the DOS is
still comparably high at the Fermi level, but there is not such a pronounced peak as
in Problem VIII.

Writing and visualizing anti-ferromagnetic geometry.in

o Construct geometry.in files for anti-ferromagnetic Fe fecc at the min-
imum lattice constant (a=3.41 A) with an anti-ferromagnetic order in
(001) planes. As a first guess for the initial_moment use £0.5.

In an anti-ferromagnetic system there are spatially varying moments which average to
zero by symmetry. Anti-ferromagnetism breaks the translational symmetry to some
extent because atoms with a majority of spin-up electrons are not equivalent to atoms
with a majority of spin-down electrons. Therefore, the atomic basis twice as large as
before.

Often there are several options to realize an anti-ferromagnetic order. For exam-
ple you can have the spin-up atoms ordered in sheets. The most important anti-
ferromagnetic orders for an fec lattice entail alternating spins along the [111] or the
[001] directions, giving either (111) or (001) planes with atoms of equivalent moments.
The hard task is to find the right primitive lattice vectors for each of these cases.

There are many different ways on finding the right unit cell, one is the recipe given
below:

1. Find the atoms representing the spin up and spin down layer.
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2. Find two primitive vectors spanning a plane. Within a layer in this plane the
atoms should be ordered ferromagnetically

3. Now find a primitive vector out of this plane.

In Appendix I you will find the geometry for anti-ferromagnetic fec(001) iron. As
stated in the subtask description, use initial_moments of 0.5 and -0.5.

In order to check the geometry with a visualization program you can temporarily
rename one of the two atoms in the atomic basis to get them drawn in different colors.

Cohesive energy and DOS of anti-ferromagnetic fcc iron

o Calculate the cohesive energy of anti-ferromagnetic fec iron and the
density of states (for the DOS use the same parameters as before).
Additionally, plot the atom-projected DOS.

o Study the resulting magnetic moments.

o Plot the two points of non-magnetic and anti-ferromagnetic Iron in
your plot from the first subtask of Problem VIII. Where does your
point fall in the plot? Do you believe these points?

[Estimated total CPU time: 20min]

In an anti-ferromagnetic system convergence is even harder than for a ferromagnetic
one. If you start from a physical reasonable point, your calculation will converge, but
it may take some time. Therefore we provide a control.in file in skel/problem_
9/control.base.in. You will find, that we changed the default value (2.0) of the
preconditioner kerker to 1.5 and the Pulay mixer setting n_max_pulay to 4. The
Gaussian broadening is reduced significantly® to 0.01 and the convergence criteria, is
further loosened for sc_accuracy_rho to 5E-4. For the analysis of the final magnetic
moment we add output hirshfeld to get a Hirshfeld partition of the charge and spin
density and output atom_proj_dos ... for an atom-projected DOS. Please note that
the latter does not respect the dos_kgrid_factors settings. Therefore, you should
use a larger smearing of 0.2¢eV.

The magnetic moment cannot be obtained as easily as in the ferromagnetic case
because the total moment Ny — N| vanishes. There are several ways of partitioning
the magnetic moments to the atoms. The Mulliken analysis (done because of the
atom-projected DOS) gives a moment of +0.44 and the Hirshfeld partitioning results
in a very similar moment of +0.41. There is an additional output of the quantity

(s —nyl) = / &r [ns(r) — ny () (10)

6Please note that while in general a larger broadening enhances convergence, in rare cases a small
broadening is more “lucky” to reach self-consistency.
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after the line “Integration grid: ...”. Its final value is 0.886 or about 0.44 per
atom. This is a comparably small magnetization. However, the atomic magnetization
increases with increasing lattice constant.

The atom-projected dos, e. g., for the first atom, can simply be plotted using

xmgrace -legend load atom_proj_dos_spin_xFe0001.dat

However, the result is not as easily interpreted as in the case of ferromagnetic bec iron
in Problem VIII.

In the last part you performed calculations for different phases of bulk iron with
LDA. In the final plot of Problem IX you find anti-ferromagnetic fcc iron as the most
stable phase (closely followed by non-magnetic fec iron). The phase diagram (Fig. 6)
of [6] clearly shows bcc iron in the low temperature and low pressure regime.

This is a known deficiency of LDA with iron. LDA describes the electronic structure
and geometry within a given phase correctly, but the energy hierarchy of different
phases and the geometry is not well captured in LDA. In the case of iron, the deficiency
is lifted by switching from LDA to PBE, as can be seen in Fig. 9.

For magnetic systems some functionals catch the physics better than others. For
example in the case of palladium PBE fails to predict the most stable phase. The im-
portant message is, with DFT you can explore exciting physics of magnetic materials,
but you have to be careful.
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Figure 9: The cohesive energy is plotted against the volume using PBE for the xc-functional.
Ferromagnetic bec iron is the most stable phase at a zero temperature zero pres-
sure.
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Appendix I: Structure Information

Space group atomic coordinates lattice vectors
0 a/2 af2
fec 0 0O ala 0  af2
afy afz 0
0 a2 af2
diamond 0 0 0 afa 0

a 4 a 4 a 4 a/2
/4 /s f afa afa 0

7a/2 a/2 a/2

bee 0 0 0 afa  —afz  afs
a/2 a/2 _a/2
afs  —aV3/y ()
0 0 0
hep . . afy a3/ 0
0 /3 /2 0 0 .
0 0 0 afa  —a/2 0.0
fec anti-ferromagnetic (001) afs 0 afa afa a/a 0.0
0.0 0.0 a

Table 1: Solids: Atomic coordinates and lattice vectors for different space groups. Note:
c¢/a = 4/8/3 ~ 1.633 for ideal hcp.

diamond(001) hep(0001)
atomic coordinates lattice vectors atomic coordinates lattice vectors
0 0 0
a a _a\/§
i 0 s a/(x)/i o 0 aE 0 ﬁ m/éz 0
Y2z e o o L 0 T3 0 o0 L
O a/Q\/ﬁ 3(1/4

Table 2: Surfaces: The atomic coordinates of an ideal diamond (001) and ideal hcp (0001)
surfaces. Note: a is a bulk lattice constant and L is the total slab thickness (L=a+
Lyac with the vacuum size Lyac)-
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Appendix Il: High symmetry k-points

0.125 0.5 0.625
025 0.5 0.75
0.375 0.375 0.75

fec  xy T2 T3

W 025 05 075

L 05 05 05

A 025 025 025 fee(QO) w1 w2
r o 0 0 r 0.0 0.0 0.0
A 0 0.25  0.25 J 05 0.0 0.0
X 0 05 05 K 05 05 0.0
Z

144

K

Table 3: High symmetry points for fecc/diamond bulk and (001) surface structures given in
units of reciprocal lattice vectors (k = x1b1 + x2b2 + x3bs).

Figure 10: Brillouin zones and high symmetry points for fcc and diamond structures.
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Appendix I1I: Si(001) geometry generation python script

#!/usr/bin/python

import sys
from math import sqrt

def output_lattice_vector(x, y, z):
print "lattice_vector,, %.16f,,%.16f,,%.16£" % (x, vy,
def output_atom(x, y, z, name):

print "atomy%.16f,%.16f,,%.16f,,%s" % (x, y, z, name)

def output_constrained_atom(x, y, z, name):

print "atomy%.16f.,%.16f,,%.16£f,,%s" % (x, y, z, name)

print "gyconstrain_relaxationy.true."

A = 5.416

L_vac = 30.

A_1x1 = A/sqrt(2.)
n_layer = 4

Z = A/4.

C = 0.5 x A_1x1

Lattice constant

Vacuum

1zl surface periodicity

Number of layers in z-direction
Layer separation in z-direction

H R R W® R W

# H-saturation is put at this fraction of where the next
# Si atom would have been.
frac_H = 0.63

# (2z1) reconstructed lattice:

output_lattice_vector (2*%A_1x1, 0., 0.)
output_lattice_vector (0., A_1x1, 0.)
output_lattice_vector (0., 0., n_layer*Z+L_vac)
print

# Hydrogen saturation

# The nexzt Si would have been at (+/-C, 0., -Z).
output_atom( -frac_H*C, 0., -frac_H*Z, "H")
output_atom( +frac_H*C, 0., -frac_H*Z, "H")

# The next Si would have been at (2%C+/-C, 0., -Z).
output_atom(2*C-frac_H*C, 0., -frac_Hx*Z, "H")
output_atom (2*C+frac_Hx*C, 0., -frac_H*Z, "H")

# Bottom Si layer

output_atom (0*C, 0., OxZ, "Si")

output_atom(2*C, 0., 0%*Z, "Si")

# Other Si layers

output_atom(0*C, C, 1%Z, "Si")

output_atom(2*C, C, 1%xZ, "Si")

output_atom(1*C, C, 2xZ, "Si")

output_atom(3*C, C, 2%Z, "Si")

output_atom(1*C, 0., 3%xZ, "Si")

output_atom(3*C, 0., 3%*Z, "Si")

Figure 11: The python script used in Part II (skel/problem_5/01_ideal_2x1/write-geom.
py). The script creates a geometry.in file for the ideal hydrogen saturated 2x1

Si(001) surface with 4 layers.
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