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Outline of this tutorial

1 Periodic systems with DFT
The crystal structure
Sampling of the Brillouin zone
Band structure and density of states
Find minimal lattice constant

2 Systems of interest
Bulk Silicon
Silicon surface
Iron

3 Overview
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The crystal structure

A 2-dimensional example

V(~r + ~R) = V(~r)

~R = n1~a1 + n2~a2

with
~a1,2: primitive vectors
n1,2: integers
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The crystal structure

How to specify the crystal structure for a calculation?

The geometry.in file
specify the primitive
unit vectors
give coordinates of
the atoms in the
basis
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The crystal structure

How to specify the crystal structure for a calculation?

The geometry.in file
specify the primitive
unit vectors
give coordinates of
the atoms in the
basis

geometry.in
# Si diamond structure
lattice vector 0.0 2.7 2.7
lattice vector 2.7 0.0 2.7
lattice vector 2.7 2.7 0.0

atom 0.00 0.00 0.00 Si
atom 1.35 1.35 1.35 Si
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Sampling of the Brillouin zone

Bloch’s Theorem

Bloch’s theorem ⇒ give conserved quantum number k for the
single particle state
Kohn-Sham orbital ψn,k(~r) depends on its quantum number n
and on the point k in the first Brillouin zone (1BZ)
The quantum number n is discrete, but k is continous.

The electronic density ρ(~r)

ρ(~r) =
1

VBZ

Nel∑
n=1

∫
Brillouin zone

|ψn,k(~r)|2 d3k
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The Brillouin zone

In practice, calculations are performed on a grid of points in
the 1BZ
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Sampling of the Brillouin zone

The grid in the Brillouin zone

control.in
k grid 4 4 4
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Band structure and density of states

Bandstructure: example silicon

Kohn-Sham equation

ĥkψn,k(~r) = εn,kψn,k(~r)

find SCF solution
choose a path in the Brillouin Zone
typical: along high symmetry lines
plot the Kohn-Sham eigenvalues
(ε(k))
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Band structure and density of states

Bandstructure: example silicon

Kohn-Sham equation

ĥkψn,k(~r) = εn,kψn,k(~r)

find SCF solution
choose a path in the Brillouin Zone
typical: along high symmetry lines
plot the Kohn-Sham eigenvalues
(ε(k))

control.in
output band 0.5 0.5 0.5 0.0 0.0 0.0 50 L Gamma
output band 0.0 0.0 0.0 0.0 0.5 0.5 50 Gamma X
. . .
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Band structure and density of states

The electronic Band structure of Silicon

semiconductor
indirect band gap
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Band structure and density of states

The density of states (DOS)

number of states n within a given energy interval
[ε−∆ε, ε+ ∆ε]

n =

∫ ε+∆ε

ε−∆ε
g(ε) dε

g(ε) is the density of states
g(ε) in a free atom or molecule is

g(ε) =
∑

i
δ(εi − ε)

in a periodic system the number of states per energy is
averaged over k

g(ε) =
1

VBZ

∑
i

∫
BZ

d3k δ(εi ,k − ε)
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Band structure and density of states

Density of states: Broadening and k-points

Density of states (DOS)

g(ε) =
1

VBZ

∑
i

∫
BZ

d3k δ(εi ,k − ε)

=
1√
2πσ

1
Nk

∑
i

∑
k

exp
[
−1

2

(
ε− εk,i
σ

)2
]

where σ is the Gaussian broadening
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Band structure and density of states

Density of states: Broadening and k-points

g(ε) =
1√
2πσ

1
Nk

∑
i

∑
k

exp
[
−1

2

(
ε− εk,i
σ

)2
]

where σ is the Gaussian broadening
σ/grid 20x20x20 40x40x40 60x60x60
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Find minimal lattice constant

Cohesive properties of solids

Cohesive energy:

Ecoh = −Ebulk − N · Eatom
N

energy gain per atom
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Find minimal lattice constant

Find the minimal lattice constant

V : Volume
E0 : Equilibrium energy
V0 : optimum Volume
B0 : Bulk modulus
B′0 : derivative of B0

(w.r.t. pressure)

Birch-Murnaghan equation of states

E (V ) = E0 +
B0V
B′0

(
(V0/V )B′

0

B′0 − 1 + 1
)
− B0V0

B′0 − 1
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Systems of interest

Bulk Silicon
Silicon Surface
Magnetic Iron
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Bulk Silicon

Motivation
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Silicon surface

Motivation

R.A. Wolkow, PRL 68,2636 (1992)
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Silicon surface

Supercell approach

Surface: periodic in two
directions
Start from bulk geometry
insert vacuum
here: increase lattice vector
in z-direction
saturate the dangling bonds
on the bottom layer with
hydrogen
choose vacuum large enough
(no interaction between
slabs)
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Silicon surface

The projected band structure
An example: Hexagonal silicon carbide
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Iron

Iron and steel

Properties: hard, elastic, and tensile strength
steel is an alloy that consists mostly of iron
carbon content between 0.2% and 2.1% by weight
at 0.021% carbon concentration at ∼ 1300 K → (FCC)
structure

Source: wikipedia July 2011
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Iron

Magnetism and collinear spin calculations

strong magnetoelectric
coupling at the surface of
thin iron films
write and store
information
durable and high density
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Magnetism and collinear spin calculations

30 / 40



Periodic Systems
Systems of interest

Iron

Magnetic Iron: BCC and FCC geometry

BCC iron
ferromagnetic

FCC iron
ferromagnetic

FCC iron
anti-ferromagnetic
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Iron

How to set up a magnetic calculation?

The geometry.in file
specify the initial spin
moment

The control.in file
keyword: spin collinear

# Fe FCC ferromagnetic
lattice vector 0.00 1.74 1.74
lattice vector 1.74 0.00 1.74
lattice vector 1.74 1.74 0.00
#
atom 0.00 0.00 0.00 Fe
initial moment 2.0

# control.in
spin collinear
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Overview
1 (Problems I to IV) introduces basic bulk properties and

convergence tests.
Problem I: Generation and visualization of bulk structures
Problem II: Energy convergence tests
Problem III: Phase stability and cohesive properties
Problem IV: Electronic band structure & density of states

2 (Problem V and VI) discusses surface calculations.
Problem V: Electronic structure of crystal surfaces
Problem VI: Relaxing surface structures

3 (Problems VII to IX) covers magnetism and collinear spin
calculations on iron.

Problem VII: Lattice constant of non-magnetic iron
Problem VIII: Ferromagnetic iron
Problem IX: Anti-ferromagnetic iron
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