

FHI "DFT and Beyond" Workshop, Jul. 15, 2011

http://johnbokma.com/

Van der Waals (dispersion) energy

Van der Waals (dispersion) energy

Van der Waals (dispersion) energy

VdW Interactions Are Ubiquitous ...

Current state-of-the-art of modeling

Current state-of-the-art of modeling

Correlated methods: MP2, RPA, CCSD(T)

- Compute the correlation energy based on a Hartree-Fock or DFT wavefunction
- Include different many-body diagrams for the correlation energy
- MP2: Minimal level for correlation energy
- **RPA**: Doubles to infinite order, no singles
- CCSD(T): Quantum chemisty "gold standard"

Why existing methods are not sufficient ?

Polymorphism in drugs

Ritonavir (HIV protease inhibitor)

1996 (launch) 1998 (recall) 2001 (*trans* form found)

Polymorph energies are typically within kcal/mol per molecule

Why existing methods are not sufficient ?

Polymorphism in drugs

Ritonavir (HIV protease inhibitor)

1996 (launch) 1998 (recall) 2001 (*trans* form found)

Polymorph energies are typically within kcal/mol per molecule

Molecular switches at surfaces

Yu, Nakano, Ikeda, Nature (2003).

Accurate *First-Principles* Modeling of vdW Interactions is Challenging

$$E_{\rm vdW}^{(2)} = -\frac{C_6^{\rm AB}}{R_{\rm AB}^6} - C_6^{\rm AB} = \frac{3}{\pi} \int \alpha_{\rm A}(i\omega) \alpha_{\rm B}(i\omega) d\omega$$

Accurate *First-Principles* Modeling of vdW Interactions is Challenging

$$E_{c} = -\int_{0}^{\infty} \frac{d\omega}{2\pi} \int_{0}^{1} d\lambda \operatorname{Tr}\left(\left(\chi_{\lambda}(\mathbf{r_{1}}, \mathbf{r_{2}}; i\omega) - \chi_{0}(\mathbf{r_{1}}, \mathbf{r_{2}}; i\omega)\right) \frac{1}{|\mathbf{r_{1}} - \mathbf{r_{2}}|}\right)$$

Extremely expensive !

Accurate *First-Principles* Modeling of vdW Interactions is Challenging

$$E_c = -\int_0^\infty \frac{d\omega}{2\pi} \int_0^1 d\lambda \operatorname{Tr}\left(\left(\chi_\lambda(\mathbf{r_1}, \mathbf{r_2}; i\omega) - \chi_0(\mathbf{r_1}, \mathbf{r_2}; i\omega)\right) \frac{1}{|\mathbf{r_1} - \mathbf{r_2}|}\right)$$

VdW-corrected DFT methods

Concepts and methods for dispersion in DFT

 $E_{\rm xc} = E_{ex}^{\rm GGA \ or \ EX} + E_{\rm corr}^{\rm LDA, GGA} + E_{\rm corr}^{\rm non-local}$

Concepts and methods for
dispersion in DFT
$$E_{xc} = E_{ex}^{GGA \text{ or } EX} + E_{corr}^{LDA,GGA} + E_{corr}^{non-local}$$

- Non-local functionals (depend explicitly on *r* and *r'*) (*Langreth*, *Lundqvist et al.*).
- Modified pseudopotentials (*von Lilienfeld et al.*)
- Highly empirical (hybrid) meta-GGA functionals (*Truhlar et al.*)
- Interatomic (pairwise or beyond) dispersion corrections (Many people)

Wu and Yang JCP (2002); *Grimme J. Comp. Chem.* (2004,2006); *Dion et al. PRL* (2004); *Zhao and Truhlar JCP* (2006); *von Lilienfeld et al. PRL* (2004); *Johnson and Becke JCP* (2005-2007); *Tkatchenko and Scheffler PRL* (2009); and many others ...

S22 benchmark database

Hydrogen bonding

P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, Phys. Chem. Chem. Phys. (2006)

S22 benchmark database

Stacked A ... T

Stacked uracil dimer

Pyrazine dimer

Stacked indole-benzene

(CH₄)₂

Benzene…CH4

AgK: SZZZ

PD-Benzene dimer

 $(C_2H_4)_2$

VdW bonding

P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, Phys. Chem. Chem. Phys. (2006)

S22 benchmark database

Mixed bonding

P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, Phys. Chem. Chem. Phys. (2006)

Langreth-Lundqvist functional (vdW-DF-04 and vdW-DF-10)

Langreth-Lundqvist functional

$$E_{\rm xc} = E_{\rm ex}^{\rm GGA}[n(\mathbf{r})] + E_{\rm corr}^{\rm LDA}[n(\mathbf{r})] + E_{\rm corr}^{\rm non-local}[n(\mathbf{r})]$$
$$E_{\rm corr}^{\rm non-local}[n(\mathbf{r})] = \frac{1}{2} \int d^3r d^3r' n(\mathbf{r}) K(\mathbf{r},\mathbf{r}') n(\mathbf{r}')$$

Dion, Rydberg, Schroeder, Langreth, Lundqvist, **PRL** (2004). Lee, Murray, Kong, Lundqvist, Langreth, **PRB** (2010). Langreth-Lundqvist functional (vdW-DF-04 and vdW-DF-10) $E_{\rm xc} = E_{\rm ex}^{\rm GGA}[n(\mathbf{r})] + E_{\rm corr}^{\rm LDA}[n(\mathbf{r})] + E_{\rm corr}^{\rm non-local}[n(\mathbf{r})]$ $E_{\rm corr}^{\rm non-local}[n(\mathbf{r})] = \frac{1}{2} \int d^3r d^3r' n(\mathbf{r}) K(\mathbf{r}, \mathbf{r}') n(\mathbf{r}')$ vdW-DF-04 vdW-DF-10

- Exchange: revPBE
- Local corr.: LDA
- No free parameters
- C_6 error: ~ 20%

- Exchange: PW86
- Local corr.: LDA
- 2 parameters
- $C_6 \text{ error: } \sim 60\%^{(*)}$

(*) Vydrov and van Voorhis, **PRA** (2010).

Approximations for $E_{\rm corr}^{\rm non-local}$ in vdW-DF

$$E_c = -\int_0^\infty \frac{d\omega}{2\pi} \int_0^1 d\lambda \operatorname{Tr}\left((\chi_\lambda(\mathbf{r_1}, \mathbf{r_2}; i\omega) - \chi_0(\mathbf{r_1}, \mathbf{r_2}; i\omega)) \frac{1}{|\mathbf{r_1} - \mathbf{r_2}|}\right)$$

Local approximation for the response function
 Only pairwise point-point interaction, ignoring non-additive many-body energy

Performance of vdW-DF on the S22 database

Performance of vdW-DF on the S22 database

Limitations of the Langreth-Lundqvist functional

- vdW-DF-04 is a general purpose functional, however its performance is not optimal (errors significantly larger than chemical accuracy)
- vdW-DF-10 is a special purpose functional with good performance for molecules. Asymptotic vdW interactions are significantly underestimated (~60%), so no good performance should be expected for larger systems
- The vdW-DF concept does not have flexibility for the coupling to semi-local DFT functional. This is being improved by Vydrov and van Voorhis (*PRL* 2009, *JCP* 2010)

Empirical Minnesota functionals (Zhao-Truhlar, M06 family) Empirical Minnesota functionals (Zhao-Truhlar, M06 family)

- Highly flexible (and empirical) form for a functional (**20-40** parameters) trained on a broad set of benchmark (theory and experiment) data
- A *family* of functionals:
 - M06: Hybrid meta-GGA functional
 - M06-L: GGA (non-hybrid) version of M06
 - M06-2X: M06 with twice the amount of HF exchange
 - M06-HF: M06 with 100% HF exchange

The description of vdW in M06

Flexible meta-GGA form allows for an approximate modeling of vdW interactions at short-range whenever there is a non-negligible electron density overlap

M06 converges to zero interaction at ~ 5 Å separation between atoms, in the same way as LDA and GGA

Thus, M06 does not include the correct physics of vdW interactions, typically leading to underbinding of vdW-bound systems

The description of vdW in M06

Marom, Tkatchenko, Gobre, Rossi, Hod, Scheffler, Kronik, to be submitted.

Performance of M06(-L) for S22

Interatomic vdW correction methods

Interatomic vdW methods

$$E_{\rm xc} = E_{ex}^{\rm GGA \ or \ EX} + E_{\rm corr}^{\rm LDA, GGA} + E_{\rm corr}^{\rm non-local}$$
$$E^{vdW}(R) = -\left(f_6(R)\frac{C_6}{R^6} + f_8(R)\frac{C_8}{R^8} + f_{10}(R)\frac{C_{10}}{R^{10}} + \dots\right)$$

- Two parameters per atomic pair: (1) VdW C₆ interaction coefficient and (2) vdW radius.
- Clearly, if (1) and (2) are empirical, this leads to many fitting parameters. This was frequently the case before 2008.

Damping function for vdW-corrected DFT

$$f_{damp}(R_{AB}, R_{AB}^{0}) = [1 + \exp(-\frac{R_{AB}}{s_R R_{AB}^{0}} - 1))]^{-1}$$

- Steep damping function required to separate the short range from vdW energy
- About 5 different functional forms proposed
- Fermi function (above) among the most popular ones
- Works for molecules, but the functional form is arbitrary !

Evolution of interatomic vdW methods

- Grimme's D1,D2 (2004-2006): Parameterization for many elements in the periodic table
 - Highly empirical, some approximations unfounded
- Jurečka et al. (2007): Accurate parameterization for organic molecules
 - Better theoretical ground, but still very empirical
- Johnson and Becke (2005-2008), Silvestrelli (2008): C₆ and vdW radii from HF or DFT orbitals
 - Reduced empiricism, errors of ~ 20%-40% in C_6 coefficients
- Tkatchenko and Scheffler (2009): C_6 coefficients and vdW radii from ground-state electron density
 - First-principles C_6 accurate to 5%

Highlights of TS-vdW method

- VdW asymptotics with an accuracy of 5%
- Transparent partitioning of vdW coefficients over atoms
- Reduced empiricism (1 parameter in the damping function)
- Polarizability is directly proportional to volume
- Computationally efficient
- Valid for the whole periodic table

$$C_{6AA}[n(\mathbf{r})] = \left(\frac{V_A[n(\mathbf{r})]}{V_A^{free}[n^{free}(\mathbf{r})]}\right)^2 C_{6AA}^{free}$$

Tkatchenko and Scheffler, PRL (2009)

Performance of TS-vdW method for molecules

Performance of TS-vdW method for molecules

Results depend negligibly (1% deviation) on the employed xc functional

C_6 is a functional of the density (Carbon-Carbon C_6 coefficient / Hartree Bohr⁶)

DFT+vdW

Leading dispersion term is added to DFT total energy, damped at short interatomic distance,

$$E_{vdW} = -\sum_{A} \sum_{B>A} f_{damp}(R_{AB}, R_{A}^{0}, R_{B}^{0}) C_{6AB} R_{AB}^{-6}$$
$$R_{eff}^{0} = \left(\frac{V^{eff}}{V^{free}}\right)^{1/3} R_{free}^{0}$$

• Effective vdW parameters are functionals of the electron density:

$$C_6 = C_6[n(r)], R_{vdW} = R_{vdW}[n(r)]$$

DFT+vdW: *Tkatchenko and Scheffler*, *PRL* (2009)

Performance of DFT+vdW for S22

Performance of DFT+vdW for S22 (Mean Absolute Error)

Performance of DFT+vdW for S22: Different functionals

What is missing in DFT+vdW?

$$E_c = -\int_0^\infty \frac{d\omega}{2\pi} \int_0^1 d\lambda \operatorname{Tr}\left((\chi_\lambda(\mathbf{r_1}, \mathbf{r_2}; i\omega) - \chi_0(\mathbf{r_1}, \mathbf{r_2}; i\omega)) \frac{1}{|\mathbf{r_1} - \mathbf{r_2}|}\right)$$

Long-range electrostatic screening among fluctuating dipoles
 Non-additive many-body vdW energy beyond two-body

DFT+vdW^{SCS+MB}: Screening and Many-Body vdW Energy

Benzene crystal

PBE+vdW

690 meV/molecule

<u>PBE+vdW^{SCS+MB}</u> 565 meV/molecule ► 2.9 kcal/mol due to screening and many-body VdW effects

<u>Experiment</u>

518-560 meV/molecule

Tkatchenko, DiStasio Jr., Car, Scheffler, to be submitted.

DFT+vdW: Challenges

- DFT+vdW treats intra- and intermolecular interactions accurately. Recent extension permits the treatment of insulators, ionic, and semiconductor solids
- Coupling of (short-range) DFT and (long-range) vdW remains empirical, and one of the biggest issues to address
- No satisfactory model for metallic bulk systems yet
- Interatomic potentials may not work for highly anisotropic low-dimensional systems (*Dobson, Rubio, et al.*)

Applications

Unraveling the Role of vdW Interactions for Peptide Secondary Structure

- Ala₁₅LysH⁺ forms stable helices *in vacuo* up to
 ~ 700 K (in solution only up to ~ 340 K)
- Direct first-principles folding simulations are not feasible, but unfolding dynamics could provide similar insight !

Experiments: Kohtani, Jones, Schneider, Jarrold, JACS (2004)

DFT-PBE+vdW

DFT-PBE

Tkatchenko, Rossi, Blum, Ireta, Scheffler, PRL (2011)

Van der Waals and Inorganic/Organic Interfaces

Van der Waals and Interfaces: Which theoretical method ?

Van der Waals and Interfaces: Which theoretical method ?

PTCDA@Ag(111): PBE+vdW(ZK)

PTCDA@Cu/Ag/Au: PBE+vdW(ZK)

Joint work with V. Ruiz, E. Zojer, M. Scheffler.

VdW Interactions Are Ubiquitous ...

