DFT and beyond Hands-on Tutorial Workshop 2011

Ab Initio Atomistic Thermodynamics

(Elizabeth C. Beret)

Luca M. Ghiringhelli

Fritz-Haber-Institut Berlin

Extending the scale

Essentials of computational chemistry: theories and models. 2nd edition. C. J. Cramer, JohnWiley and Sons Ltd (West Sussex, 2004). Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions K. Reuter, C. Stampfl, and M. Scheffler, in: Handbook of Materials Modeling Vol. 1, (Ed.) S. Yip, Springer (Berlin, 2005). http://www.fhi-berlin.mpg.de/th/paper.html

Equilibrium concentration of point defects

On entropic grounds there will always be a finite concentration of defects at finite temperature, even though the creation of a defect costs energy ($E^{def} > 0$).

$$S^{\text{conf}} = k_B \ln (Z(n)) = k_B \ln (N! / [(N - N_{\text{def}})! N_{\text{def}}!])$$

(assumes no interaction between defects)

In equilibrium:

. .

$$\frac{dG^{def}}{dN_{def}} = \frac{d}{dN_{def}} \Big[G^{\text{perf}} + N_{\text{def}} \Delta G^{\text{def}} - TS^{\text{conf}} + pV \Big] = 0$$

$$\frac{N_{\text{def}}}{N} \approx \frac{1}{\exp\left(\Delta G^{\text{def}}/k_B T\right) + 1} \approx \exp\left(-E^{\text{def}}/k_B T\right)$$

Ab initio atomistic thermodynamics: General concepts Oxide formation on a metal surface Adsorption of O_2 and CO on a metal oxide Formation of defects in semiconductors Ab initio atomistic thermodynamics: General concepts

Oxide formation on a metal surface

Adsorption of O₂ and CO on a metal oxide

Formation of defects in semiconductors

Ab initio atomistic thermodynamics

A surface cannot be separated from a gas (or liquid) above it

Requires $p \le 10^{-12}$ atm to keep a "clean" surface clean; surface can also lose atoms At constant T a system minimizes its free energy, not internal energy U

If also volume V is constant, the energy minimized is Helmholtz free energy F

$$F = U - TS$$

If (T,p) are constant, the energy minimized is Gibbs free energy G

$$G = U + pV - TS = \sum_{i} \mu_{i} N_{i}$$

Chemical potential μ_i of the *i*-th atom type is the change in free energy as the number of atoms of that type in the system increases by one

In thermodynamic equilibrium, μ_i is the same in the whole system (surface, bulk, gas)

Statistics plays a crucial role due to a macroscopically large number of particles in the system

Computation of free energies: ideal gas

$$q = q^{trans} q^{rot} q^{vib} q^{el} q^{conf} q^{uot}$$

Translational:
$$q^{trans} = \left(\frac{2\pi m k T}{h^2}\right)^{\frac{3}{2}} V$$

 $Q = \frac{1}{N'} q^{N}$

Use the ideal gas law to relate V and p

Rotational:
$$\begin{cases} q^{rot} = \frac{8\pi^2 I_A k T}{h^2} \\ q^{rot} = 8\pi^2 \left(\frac{2\pi k T}{h^2}\right)^{\frac{3}{2}} (I_A I_B I_C)^{\frac{1}{2}} \end{cases}$$

Linear molecules

Non-linear molecules

Rigid rotor

Need: moments of inertia I_A , I_B , I_C

→ Need: particle mass *m*

pV = NkT

Computation of free energies: ideal gas

$$Q = \frac{1}{N!} q^{N}$$

$$q = q^{trans} q^{rot} q^{vib} q^{el} q^{conf} q^{nuot}$$

$$\sqrt{ibrational:} q^{vib} = \prod \left[\exp\left(-\frac{hv_i}{2kT}\right) \left(1 - \exp\left(-\frac{hv_i}{kT}\right)\right)^{-1} \right] \longrightarrow \text{Need: vibrational modes}$$

Harmonic oscillator

Electronic:

$$q^{el} = \sum v_i e^{-\frac{E_i}{kT}} \approx v_0 e^{-\frac{E_0}{kT}}$$
$$v_i = 2S_i + 1$$

Assuming that the first excited state is energetically unaccessible

Conformational
$$q^{conf} = \frac{1}{\sigma}$$

Diatomic molecules:

 $\sigma = 1$ (heteroatomic) $\sigma = 2$ (homoatomic) Need: total (DFT) energy of the ground state and its degeneration

pV = NkT

 Need: symmetry number (N. equivalent orientations)

Polyatomic molecules:

 σ = N. symmetry operations according to the symmetry point group

From the partition function *Q*:

Helmholtz free energy: $F = -kT \ln Q$

Canonical ensemble (*NVT*)

pV = NkT

(NVT)

Gibbs free energy: $G = -kT \ln Q + pV$

Isothermal-isobaric ensemble (*NpT*)

 $\int u = kT \ln N - kT \ln a$

Chemical potential:

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T} = \left(\frac{\partial G}{\partial N}\right)_{p,T} \left\{ \mu = kT \left[\ln N + 1 - \ln q\right] \quad (NpT) \right\}$$

Statistical Mechanics, D. A. McQuarrie, University Science Books, 2000 Statistical Thermodynamics, R. Fowler and E. A. Guggenheim, Cambridge University Press, 1949

Computation of free energies: solids

$$G(T, p) = E^{tot} + F^{trans} + F^{rot} + F^{vib} + F^{conf} + pV$$

- E^{tot} Total electronic energy DFT
- F^{trans} Translational free energy F^{rot}
 - Rotational free energy
- F^{vib} Vibrational free energy

Conformational free energy

$$\begin{cases} F^{vib} = \int d\omega F^{vib}(T, \omega) \sigma(\omega) \\ F^{vib}(T, \omega) \approx \frac{h\omega}{2} + kT \ln \left[1 - \exp\left(-\frac{h\omega}{kT}\right) \right] \end{cases}$$

Needs more advanced methods (Ex: cluster expansion)

рV Expansion term

 F^{conf}

$$G(T,p) \approx E^{tot} + F^{vib}$$

Discarded (consider fixed solids)

Ab initio atomistic thermodynamics: General concepts

Oxide formation on a metal surface

Adsorption of O₂ and CO on a metal oxide

Formation of defects in semiconductors

Heterogeneous catalysis:

Which oxide forms at given experimental conditions (*T*,*p*)?

Reuter and Scheffler, Appl. Phys. A, 78, 793-798, 2004 J. Rogal and K. Reuter, Ab initio atomistic thermodynamics for surfaces: A primer. In: Experiment, Modeling and Simulation of Gas-Surface Interactions for Reactive Flows in Hypersonic Flights. Educational Notes RTO-EN-AVT-142, Neuilly-sur-Seine (2007)

$$Pd(100) + x O \leftrightarrow Pd(O)_x$$

$$\Delta G^{ad} = \frac{1}{A} (G_{Pd \cdot O_x} - G_{Pd(100)} - x \mu_0)$$

$$G(T, p) \approx E^{total} + F^{vib} \approx E^{total}$$

 $\Delta F^{vib} \approx \pm 5 \text{ meV/Å}^2 \text{ up to } T = 600 \text{ K}$

$$\mu_{O}(T,p) = \frac{1}{2} \mu_{O_{2}}(T,p)$$

$$\mu_{O_{2}}(T,p) = E_{O_{2}}^{DFT} + E_{O_{2}}^{ZPE} + \Delta \mu_{O_{2}}(T,p)$$

$$\mu_{O}(T,p) = \frac{1}{2} E_{O_{2}}^{DFT} + \frac{1}{2} E_{O_{2}}^{ZPE} + \Delta \mu_{O}(T,p)$$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{Pd \cdot O_x} - E_{Pd(100)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O(T, p) \right) \right]$$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{Pd \cdot O_x} - E_{Pd(100)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O(T, p) \right) \right]$$

- Clean Pd(100) surface

 PdO(101)/Pd(100) surface oxide: (√5x√5)R27°: 0.80 ML

• Bulk PdO

Relation between chemical potential and (T, p)

$$\mu_{O_2}(T, p) = E_{O_2}^{DFT} + E_{O_2}^{ZPE} + \Delta \mu_{O_2}(T, p)$$

From the O_2 partition function:

$$\mu(T,p) = \left(-kT\ln\left[\left(\frac{2\pi m}{h^2}\right)^{\frac{3}{2}}(kT)^{\frac{5}{2}}\right] + kT\ln p - kT\ln\left(\frac{8\pi^2 I_A kT}{\sigma h^2}\right)\right)$$
$$+ \frac{1}{2}h\nu + kT\ln\left(1 - e^{-\frac{h\nu}{kT}}\right) + E^{DFT} - kT\ln\nu_0$$
$$E^{ZPE} = \Delta \mu(T,p)$$

From thermochemical tables: $\Delta \mu(T,p) = \mu(T,p^{\circ}) - \mu(T^{\circ},p^{\circ}) + kT \ln(p/p^{\circ})$ Tables

Example: JANAF Thermochemical tables, D.R. Stull, H. Prophet. US National Bureau of Standards, Washington DC, 1971

 $\implies S^{o}(T), H^{o}(T)$

Relation between chemical potential and (T, p)

$$\mu_{O_2}(T, p) = E_{O_2}^{DFT} + E_{O_2}^{ZPE} + \Delta \mu_{O_2}(T, p)$$

From thermochemical tables:

$$\Delta \mu(T,p) = \mu(T,p^{\circ}) - \mu(T^{\circ},p^{\circ}) + kT \ln(p/p^{\circ})$$
Tables

Example: JANAF Thermochemical tables, D.R. Stull, H. Prophet. US National Bureau of Standards, Washington DC, 1971

 $\square S^{o}(T), H^{o}(T)$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{Pd \cdot O_x} - E_{Pd(100)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O(T, p) \right) \right]$$

- Clean Pd(100) surface

 PdO(101)/Pd(100) surface oxide: (√5x√5)R27°: 0.80 ML

• Bulk PdO

- Number of screened structures: structures not considered cannot be predicted
- Neglecting *F^{vib}*: (slight) horizontal shift of lines
- Neglecting *F^{conf}*: smearing of phase transitions
- Systems in equilibrium: possible kinetic effects in experiment

Comparing with experiment: kinetic effect

E. Lundgren et al., Phys. Rev. Lett. 92, 046101 (2004)

Ab initio atomistic thermodynamics: General concepts

Oxide formation on a metal surface

Adsorption of O₂ and CO on a metal oxide

Formation of defects in semiconductors

Adsorption of O₂ and CO on RuO₂(110)

CO oxidation over a Ru catalyst:

What are the preferred structures for $RuO_2 \cdot (O)_x \cdot (CO)_y$?

This reaction does not take place in the gas phase:

K. Reuter and M. Scheffler, Phys. Rev. Lett. 90, 046103 (2003); Phys. Rev. B 68, 045407 (2003)

Constrained equilibrium

 $\operatorname{RuO}_{2}(110) + x O + y CO \leftrightarrow \operatorname{RuO}_{2}(O)_{x}(CO)_{y}$

$$\Delta G^{ad} = \frac{1}{A} \left[G_{RuO_2 \cdot O_x \cdot (CO)_y} - G_{RuO_2(110)} - x \,\mu_O - y \,\mu_{CO} \right]$$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{RuO_2 \cdot O_x \cdot (CO)_y} - E_{RuO_2(110)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O \right) - y \left(E_{CO}^{DFT} + E_{CO}^{ZPE} + \Delta \mu_{CO} \right) \right]$$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{RuO_2 \cdot O_x \cdot (CO)_y} - E_{RuO_2(110)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O \right) - y \left(E_{CO}^{DFT} + E_{CO}^{ZPE} + \Delta \mu_{CO} \right) \right]$$

Adsorption of O₂ and CO on gold clusters

Ab initio atomistic thermodynamics: General concepts

Oxide formation on a metal surface

Adsorption of O₂ and CO on a metal oxide

Formation of defects in semiconductors

Electronic structure of solids

The electrical conductivity of semiconductors can be enhanced by the presence of defects (vacancies, interstitials, impurities...) which can contribute:

- electrons to the CB: donors, n-type conductivity
- holes to the VB: acceptors, p-type conductivity

The presence of defects can affect the position of the Fermi level

Defects and material properties

- Defects can transform insulator into a semiconductor or a metal (doping)
- Defects can determine optical properties (color)
- At surfaces, defects have unique chemical properties
- Defects can have different number of electrons associated with them (charge), and each charge state can have very different chemical properties
- Measuring concentration of defects, especially at temperatures and pressures relevant for practical applications, is very difficult

Mg

Perfect crystal

Zincblende structure: Each Ga binds 4 As Each As binds 4 Ga in a tetrahedral environment Ga: s²p¹ As: s²p³

a) Ga vacancy $Ga + me^{-}$

5e⁻ remain in the vacancy Acceptor: $m \le 0$

$$m = 0 \longrightarrow V^{0}$$
$$m = -1 \longrightarrow V^{1-}$$
$$m = -2 \longrightarrow V^{2-}$$
$$m = -3 \longrightarrow V^{3-}$$

b) Ga interstitial

Ga can donate up to $3e^{-1}$ Donor: $n \ge 0$

$$n = 0 \longrightarrow |^{0}$$
$$n = +1 \longrightarrow |^{+1}$$
$$n = +2 \longrightarrow |^{+2}$$

 $n = +2 \longrightarrow 1^{+2}$

n = +3 → I⁺³

a) Ga vacancy $0 \Leftrightarrow Ga + V_{Ga}^{m} + me^{-}$ $\Delta G = \mu_{Ga} + G_{V} + m\mu - G_{0}$ b) Ga interstitial $0 + Ga \Leftrightarrow I_{Ga}^{n} + ne^{-}$ $\Delta G = G_{I} + n\mu - G_{0} - \mu_{Ga}$ Need to know: G_{0} , G_{V} , G_{I} , μ , μ_{Ga}

 $\left.\begin{array}{c}
G_{0} \approx E_{0} \\
G_{V} \approx E_{V} \\
G_{I} \approx E_{I}
\end{array}\right\}$ From DFT calculations (use the same cell size) Discard vibrational contributions (very small here)

 $\mu = E_F - E_{VB}$ Energy of Fermi level, *wrt* the maximum of the valence band Varies from E_{VB} to E_{CB}

 μ_{Ga} Depends on the environmental conditions: define upper and lower limiting values

Limiting values for μ_{Ga}

$$\mu_{Ga}$$
 and μ_{As} are related: $Ga(l) + \frac{1}{2}As_2(g) \Leftrightarrow GaAs(s)$
 $\mu_{Ga} + \mu_{As} = \mu_{GaAs} = -6.8 \ eV$

Ga-rich (As-poor) conditions: formation of Ga
droplets
$$Ga(g) \Leftrightarrow Ga(l)$$

 $\Delta G = -2.8 \ eV$
 $\mu_{As} \ge -4.0 \ eV$

As-rich (Ga-poor) conditions: formation of As₂

gas
$$Ga \Leftrightarrow GaAs - \frac{1}{2}As_2(g) \longrightarrow \begin{cases} \mu_{As} \leqslant -1.98 \ eV \\ \mu_{Ga} \geqslant -4.82 \ eV \end{cases}$$

Energies taken from:

R. Hultgren et al, Selected values of the Thermodynamic Properties of the Elements, American Society for Metals, Ohio (1973).

R. C. Weast, Handbook of Chemistry and Physics. 60th edition, CRC Press (1980).

a) Ga vacancy $0 \Leftrightarrow Ga + V_{Ga}^{m} + me^{-}$ $\Delta G = \mu_{Ga} + G_{V} + m\mu - G_{0}$ b) Ga interstitial $0 + Ga \Leftrightarrow I_{Ga}^{n} + ne^{-}$ $\Delta G = G_{I} + n\mu - G_{0} - \mu_{Ga}$ Need to know: G_{0} , G_{V} , G_{I} , μ , μ_{Ga}

 $\left.\begin{array}{c}
G_{0} \approx E_{0} \\
G_{V} \approx E_{V} \\
G_{I} \approx E_{I}
\end{array}\right\}$ From DFT calculations (use the same cell size) Discard vibrational contributions (very small here)

 $\mu = E_F - E_{VB}$ Energy of Fermi level, *wrt* the maximum of the valence band Varies from E_{VB} to E_{CB}

 $-4.82 \ eV \leq \mu_{Ga} \leq -2.80 \ eV$

 μ_{Ga} Depends on the environmental conditions: define upper and lower limiting values

$$0 \Leftrightarrow Ga + V_{Ga}^{m} + me^{-1}$$
$$\Delta G = \mu_{Ga} + G_{V} + m\mu - G_{0}$$

High formation energy Reasonable good acceptor

Energetically favored Good donor

V_{Ga} and *I_{Ga}* have opposite charges: Partial compensation of effects Possibly annihilate

Summary

Ab initio atomistic thermodynamics provides a connection between the microscopic and macroscopic regimes

With *ab initio* atomistic thermodynamics one can predict

- the preferred structure of a material as a function of environmental conditions
- the regions of enhanced catalytic activity

Limitations:

- Only actually sampled structures enter the free energy contest:
- Need for an exhaustive structural sampling
- Equilibrium assumption: possible kinetic hindrance in experiment

Acknowledgements

Sergey Levchenko

Configurational entropy smears out phase transitions

Appendix: estimation of ΔF^{vib}

$$\Delta F^{vib} = \frac{1}{A} \left[F^{vib}_{Pd \cdot O} - F^{vib}_{Pd(100)} - \frac{x}{2} \mu^{vib}_{O_2} \right] \qquad \Delta F^{vib} \approx \frac{1}{A} \qquad \int d\omega F^{vib}(T, \omega) \sigma_{Pd \cdot O}(\omega) \\ -\int d\omega F^{vib}(T, \omega) \sigma_{Pd(100)}(\omega) \\ -\frac{x}{2} \left(\frac{1}{2} h v_{O_2} + kT \ln \left(1 - \exp \left(- \frac{h v_{O_2}}{kT} \right) \right) \right) \right) \\ v_o = 196 \text{ meV } gas \\ phase \\ 120 \text{ meV} \\ 80 \text{ meV} \\ 40 \text{ meV} \\ Pd \cdot O \\ 40 \text{ meV} \\ \end{bmatrix} Pd \cdot O$$

J. Rogal and K. Reuter, Ab initio atomistic thermodynamics for surfaces: A primer. In: Experiment, Modeling and Simulation of Gas-Surface Interactions for Reactive Flows in Hypersonic Flights. Educational Notes RTO-EN-AVT-142, Neuilly-sur-Seine (2007)

Appendix: chemical potential from tables

$$\mu(T, p) = -kT \ln\left[\left(\frac{2\pi m}{h^2}\right)^{\frac{3}{2}} (kT)^{\frac{5}{2}}\right] + kT \ln p - kT \ln\left(\frac{8\pi^2 I_A kT}{\sigma h^2}\right) + \frac{1}{2}h\nu + kT \ln\left(1 - e^{-\frac{h\nu}{kT}}\right) + E^{DFT} - kT \ln\nu_0$$

$$\mu(T, p) = kT \ln p + E^{DFT} + E^{ZPE} + f(T)$$

$$\mu(T, p^{o}) = E^{DFT} + E^{ZPE} + f(T)$$

$$\mu(0, p^{o}) = E^{DFT} + E^{ZPE}$$

$$\Delta \mu(T, p) = \mu(T, p) - \mu(0, p^{\circ}) = kT \ln p + f(T)$$

$$\Delta \mu(T, p^{\circ}) = \mu(T, p^{\circ}) - \mu(0, p^{\circ}) = f(T)$$

$$\Delta \mu(T, p) = \mu(T, p^{\circ}) - \mu(0, p^{\circ}) + kT \ln p$$

Tables