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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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Fig. 9. Dark field image of initially cold worked Pt 14 at.% Cu after heat
treatment at 200 !C for one week.

Fig. 10. Dark field image of initially quenched Pt 14 at.% Cu after heat
treatment at 200 !C for one week.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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treatment at 200 !C for one week.

Fig. 10. Dark field image of initially quenched Pt 14 at.% Cu after heat
treatment at 200 !C for one week.
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 4. Electron diffraction pattern of Pt 14 at.% Cu viewed along the [103] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 5. Hardness vs. heat treatment temperature for initially cold worked
and initially quenched Pt 14 at.% Cu after heat treatment for 3 h.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 4. Electron diffraction pattern of Pt 14 at.% Cu viewed along the [103] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 5. Hardness vs. heat treatment temperature for initially cold worked
and initially quenched Pt 14 at.% Cu after heat treatment for 3 h.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 4. Electron diffraction pattern of Pt 14 at.% Cu viewed along the [103] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 5. Hardness vs. heat treatment temperature for initially cold worked
and initially quenched Pt 14 at.% Cu after heat treatment for 3 h.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 4. Electron diffraction pattern of Pt 14 at.% Cu viewed along the [103] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 5. Hardness vs. heat treatment temperature for initially cold worked
and initially quenched Pt 14 at.% Cu after heat treatment for 3 h.

M. Carelse, C.I. Lang / Scripta Materialia 54 (2006) 1311–1315 1313
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•Vacancies in TiC, ScS, etc.
•Oxygen diffusion in fuel cell materials
•Hydrogen in storage materials
•Li in battery materials
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•Precipitate hardening (Pt-Cu, Al-Cu)
•New phases in metallic alloys (8:1)
•Vacancies in TiC, ScS, etc.
•Oxygen diffusion in fuel cell materials
•Hydrogen in storage materials
•Li in battery materials

Can you think of other problems that are 
configurational in nature? 
Other lattice problems?

Interrupt me, 
please!
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lattice Hamiltonian...
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If we had a fast 
lattice Hamiltonian...

1. Search for new phases (step through millions 
of candidate configurations)

2. Apply thermodynamic modeling
(to identify phase transitions)

3. Build a kinetic simulation
(to model time evolution)
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One-Dim. configurational problem
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f( )
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Expanding in a power series

optimize {a0, a1, a2, . . . } to minimize error

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·
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How do we find the coefficients?
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Expanding configurational functions

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·

f( ) =
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N
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f( ) = J0 + J1Π̄◦ + J2Π̄◦◦ + J3Π̄◦◦◦ + · · ·
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These are the “clusters” or 
“figures” (basis functions)

These are the 
“effective cluster interactions”
(unknown expansion coefficients)

{J0, J1, J2, J3, · · · }
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In more than one dimension...
f( ) = J0 + J1 + J2 + J3 + · · ·
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of MBITs of Fig. 1, we immediately face a 
‘combinatorial explosion’ because selecting p MBITs from the 
possible 2N corresponds to a diffi cult search problem. Thus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
principles11–13, but there are well-established cases where such 
principles fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
Also, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

Our approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ}input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of MBITs of Fig. 1, we immediately face a 
‘combinatorial explosion’ because selecting p MBITs from the 
possible 2N corresponds to a diffi cult search problem. Thus, in 
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algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
Also, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
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quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

Our approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ}input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
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energies E(σ) of these new structures are computed and the process 
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can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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model hamiltonian. Each candidate model is represented by a series of zeros and 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 

Pair 3-body 4-body 5-body 6-body

NN 2NN 3NN Vertex
distance

b.c.c. many-body figures
1,000

100

10

1

To
ta

l n
um

be
r o

f i
ne

q.
 fi

gu
r e

s

Maximum vertex distance
1 2 3 4 5

a

b

6-body

5-body

4-body

3-body

Pairs

Figure 1 The fi rst few MBITs for a b.c.c. lattice. a, Pair and multi-site ‘fi gures’ 
(MBIT) of equation (1) on a b.c.c. lattice up to third nearest-neighbour maximum 
vertex separation are shown. b, Combinatorial explosion of the number of 
inequivalent MBITs with increasing spatial extent (maximum vertex separation, 
nth nearest-neighbour).

01010001000110100
11001000100011010

00100011000101000

Fitness score 1
Fitness score 2

Fitness score n

Current population

Choose 2 parents
Accept child

into population
if fitness score

is improved
Parent 1
Parent 2

00010010000110001

10001000100101010

10011000100110010

00011010100110110

00011000100010110

Reduction

Mutation

Mating

Child

×

× ×

Figure 2 Flowchart of a genetic algorithm for choosing the terms to retain in a 
model hamiltonian. Each candidate model is represented by a series of zeros and 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 

Pair 3-body 4-body 5-body 6-body

NN 2NN 3NN Vertex
distance

b.c.c. many-body figures

1,000

100

10

1

To
ta

l n
um

be
r o

f i
ne

q.
 fi

gu
re

s

Maximum vertex distance
1 2 3 4 5

a

b

6-body

5-body

4-body

3-body

Pairs

Figure 1 The fi rst few MBITs for a b.c.c. lattice. a, Pair and multi-site ‘fi gures’ 
(MBIT) of equation (1) on a b.c.c. lattice up to third nearest-neighbour maximum 
vertex separation are shown. b, Combinatorial explosion of the number of 
inequivalent MBITs with increasing spatial extent (maximum vertex separation, 
nth nearest-neighbour).

01010001000110100
11001000100011010

00100011000101000

Fitness score 1
Fitness score 2

Fitness score n

Current population

Choose 2 parents
Accept child

into population
if fitness score

is improved

Parent 1
Parent 2

00010010000110001

10001000100101010

10011000100110010

00011010100110110

00011000100010110

Reduction

Mutation

Mating

Child

×

× ×

Figure 2 Flowchart of a genetic algorithm for choosing the terms to retain in a 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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Figure 2 Flowchart of a genetic algorithm for choosing the terms to retain in a 
model hamiltonian. Each candidate model is represented by a series of zeros and 
ones, a one indicating that the corresponding term is included.
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of M BI Ts of F ig. 1, we immediately face a 
‘combinator ial explosion’ because selecting p M BI Ts from the 
possible 2N corresponds to a diffi cult search problem. T hus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
pr inciples11–13, but there are well-established cases where such 
pr inciples fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
A lso, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

O ur approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ} input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of MBITs of Fig. 1, we immediately face a 
‘combinatorial explosion’ because selecting p MBITs from the 
possible 2N corresponds to a diffi cult search problem. Thus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
principles11–13, but there are well-established cases where such 
principles fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
Also, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

Our approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ}input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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700 A Zunger et al

Figure 11. Ground state search for Cu–Au (see caption of figure 10).

Ground state search for ScS - S

ScS - S

Figure 12. Ground state search for Sc1−x !xS (see caption of figure 10).
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Enumerating derivative structures
Hermite Normal Form

duplicate labelings !translation duplicates, label-exchange
duplicates, and superperiodic duplicates" have already been
removed. One kind of duplicate remains, however, and these
are eliminated in the current step.

This step removes labelings which are permuted by the
rotations of the parent lattice. Whereas the preceding steps
were applied to generate a list of unique labelings for each
SNF, the current step must be applied to each HNF. In other
words, this step must be applied to the surviving labelings
separately for each superlattice.

Superlattices which are not fixed by rotations of the par-
ent lattice were already eliminated as duplicates in step !2" of
the algorithm. However, rotations which leave the superlat-
tice unchanged may still permute the labeling itself. Such
permutations are physically equivalent !merely rotated with
respect to one another". So any two labelings which are
equivalent under rotations that fix the superlattice are dupli-
cate and one must be removed from the list. Figure 8 illus-
trates the situation in two dimensions.

Here again, the group theory approach and the SNF make
the search extremely efficient. Label-rotation duplicates can
be identified easily using the properties of the quotient group
and the SNF transformation. The row and column operations
required to transform the HNF matrix of a superlattice into
its SNF can be represented by two integer transform matri-
ces, L and R, so that LHR=S, where S is the SNF. This step
of the algorithm is implemented using the left transformation
matrix L.

Let G be a 3!n matrix where each member of the quo-
tient group is represented as a column28 in G and let R be
one of the rotations that fixes the superlattice. Then the per-
mutation of the labels !which is the same as the permutations
of the quotient group" enacted by the rotation R is given by

G! = LA−1R!LA−1"−1G !3"

where columns of A are the lattice vectors of the parent
lattice and L is the left transformation matrix for the SNF.

The power of this expression is that it allows the label-
rotation duplicates to be identified by working entirely
within the quotient group, without requiring any explicit ref-
erence to the geometry of the superlattice. Thus, as in the
other steps, duplicate labelings can be eliminated in a time
proportional only to the number of labelings in the list.

III. EXAMPLES

In this section, we give several example derivative struc-
ture lists enumerated by the algorithm. We discuss the sym-
metry reduction of the structure lists and then give results for
several cases. First, we compare the fcc/bcc binary list to that
generated by the FWZ algorithm. We also show the small-
unit-cell binary structures for a simple-cubic parent lattice
and the small-unit-cell ternary structures for an fcc parent
lattice.

A. Symmetry reduction of superlattice lists

In step !2" of the algorithm, the complete list of HNF
matrices is reduced to those that are unique under the sym-
metry operations of the parent lattice. Asymptotically, the
factor by which the list is reduced is one half the order of the
rotation group of the parent lattice. For example, for cubic
parent lattices !simple cubic, face-centered cubic, or body-
centered cubic", the point group contains 48 rotations !proper

TABLE III. Table showing the number of Hermite normal form !HNF" matrices and Smith normal form !SNF" matrices as a function of
index n !determinant size". The number of HNFs is a rapidly increasing function of n #see Eq. !2"$, whereas the number of SNFs grows very
slowly.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HNFs 7 13 35 31 91 57 155 130 217 133 455 183 399 403 651
SNFs 1 1 2 1 1 1 3 2 1 1 2 1 1 1 4

FIG. 7. !Color online" !I" One-dimensional example of a parent
lattice, !II" a derivative superlattice !index n=4", and !III" a super-
periodic !or nonprimitive" labeling. Although the index of the su-
perlattice is n=4, the structure can be represented by a superlattice
labeling of period 2 instead of 4. The superstructure of line III
would have been found as an index n=2 derivative structure and is
therefore a duplicate.

(a) (b)

FIG. 8. !Color online" Two identical 4!4 superlattices !dotted
lines" with rotationally equivalent labelings !red and blue circles".
Although the superlattices themselves are unchanged, a 90° rotation
applied to the left labeling yields that shown on the right. Thus the
second is a duplicate of the first and should be removed from the
list of labelings.

GENERATING DERIVATIVE STRUCTURES: ALGORITHM… PHYSICAL REVIEW B 77, 224115 !2008"

224115-7
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removed. One kind of duplicate remains, however, and these
are eliminated in the current step.

This step removes labelings which are permuted by the
rotations of the parent lattice. Whereas the preceding steps
were applied to generate a list of unique labelings for each
SNF, the current step must be applied to each HNF. In other
words, this step must be applied to the surviving labelings
separately for each superlattice.
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required to transform the HNF matrix of a superlattice into
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rotation duplicates to be identified by working entirely
within the quotient group, without requiring any explicit ref-
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other steps, duplicate labelings can be eliminated in a time
proportional only to the number of labelings in the list.
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ture lists enumerated by the algorithm. We discuss the sym-
metry reduction of the structure lists and then give results for
several cases. First, we compare the fcc/bcc binary list to that
generated by the FWZ algorithm. We also show the small-
unit-cell binary structures for a simple-cubic parent lattice
and the small-unit-cell ternary structures for an fcc parent
lattice.

A. Symmetry reduction of superlattice lists

In step !2" of the algorithm, the complete list of HNF
matrices is reduced to those that are unique under the sym-
metry operations of the parent lattice. Asymptotically, the
factor by which the list is reduced is one half the order of the
rotation group of the parent lattice. For example, for cubic
parent lattices !simple cubic, face-centered cubic, or body-
centered cubic", the point group contains 48 rotations !proper

TABLE III. Table showing the number of Hermite normal form !HNF" matrices and Smith normal form !SNF" matrices as a function of
index n !determinant size". The number of HNFs is a rapidly increasing function of n #see Eq. !2"$, whereas the number of SNFs grows very
slowly.
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lattice, !II" a derivative superlattice !index n=4", and !III" a super-
periodic !or nonprimitive" labeling. Although the index of the su-
perlattice is n=4, the structure can be represented by a superlattice
labeling of period 2 instead of 4. The superstructure of line III
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FIG. 8. !Color online" Two identical 4!4 superlattices !dotted
lines" with rotationally equivalent labelings !red and blue circles".
Although the superlattices themselves are unchanged, a 90° rotation
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GENERATING DERIVATIVE STRUCTURES: ALGORITHM… PHYSICAL REVIEW B 77, 224115 !2008"

224115-7
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700 A Zunger et al

Figure 11. Ground state search for Cu–Au (see caption of figure 10).

Ground state search for ScS - S

ScS - S

Figure 12. Ground state search for Sc1−x !xS (see caption of figure 10).
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Figure 11. Ground state search for Cu–Au (see caption of figure 10).

Ground state search for ScS - S

ScS - S

Figure 12. Ground state search for Sc1−x !xS (see caption of figure 10).

A ground state search

Tells us which configurations are lowest
in energy, but doesn’t tell us anything about
how the materials behaves as a function of 
temperature...
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Alloy phase diagrams: Ordering
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Monte Carlo, phase transitions...

A2 states is theoretically well understood as a model second-
order transition. For this case, both the analytic (series-
expansion) limit58 and early Monte Carlo simulations59 agree
on a transition temperature kBTc=6.35Jnn. Since the nearest
neighbor interaction Jnn is the clearly dominant term of our
Mo-Ta MBCE [Fig. 8(a)], it would seem natural that a
simple nearest-neighbor-only formula should give a good
idea of the true A2-B2 Tc. In this approximation, DnnJnn
=108 meV of Mo-Ta corresponds to a Tc of almost 2000 K.
This conflicts with experiment, since the published phase
diagram reports only a continuous A2 solid solution, and
early x-ray diffraction measurements60 revealed no super-
structure for samples sintered either at 1773 K !5 h" or
673 K !100 h". Ordering might have been inhibited at 673 K
since diffusion in Mo-Ta is slow,61 but should have been
sufficiently fast at 1773 K.
This failure can be related to the neglected high-order pair

and many-body interactions of real Mo-Ta. To verify this, we
performed canonical Monte Carlo simulations using our con-
verged MBCE Hamiltonian. We used Mo0.5Ta0.5 supercells
sized up to 32!32!32 unit cells, cooling down stepwise
from the high-T solid solution into the B2-ordered regime,
with 2000 or 4000 spin flips per site and step for proper
equilibration. Figure 9 displays the resulting mixing enthalpy
"HCE and the configurational heat capacity Cv for 16!16
!16 supercells. The Monte Carlo simulation agrees with

Ref. 59 when restricted to the nearest-neighbor-only approxi-
mation [Fig. 9(a)]: As expected for a second-order transition,
"Hnn-only varies smoothly with T, and a clear peak in the
specific heat indicates Tc=1980±50 K. In striking contrast,
the maximum of Cv is located around 800 K for the full
Mo-Ta CE [Fig. 9(b)], more than a factor of 2 below the
short-range approximation. The transition is still of second
order, but the presence of additional high-order pair and MB
figures leads to a dramatic slowdown. Once more, the use of
a short-range approximation proves severely dangerous, and
underlines the need for a full MBCE even for qualitative
purposes.
Table III lists critical temperatures, i.e., the upper limits of

thermodynamic stability, also for the remaining ground states
of Mo-Ta. In each case, supercell sizes above 20!20!20
were found sufficiently accurate, and clearly pinpointed first-
order transitions occur everywhere but for B2. Reassuringly,
all ordered ground states are thermodynamically stable only
well below 1000 K. Additionally, the canonical MC simula-
tions suggest an extension of B2 long-range order to the
Mo-rich side at finite T. Both the C11b and A3B2 ground
states transition into a B2 arrangement with one disordered
Ta-rich sublattice rather than directly into A2. For fixed con-
centration and accessible cell sizes, possible interfacial ef-
fects preclude a definitive conclusion on whether the disor-
dered B2 area prevails also in the thermodynamic limit, or
whether a phase-separated A2-B2 regime could provide an
even lower free energy on a very large scale. In any case, the
full MBCE predicts all transitions well below the tempera-
ture range assessed in earlier experiments, and thus yields a
consistent picture of Mo-Ta.

C. Mixing enthalpies

The MBCE also allows us to investigate finite-T energet-
ics of the A2 solid solution. In the fully random limit !T
→#", the mixing enthalpy "Hmix!x ,T" is given analytically
by inserting correlation function averages over all configura-
tions ! at fixed composition x into the MBCE Hamiltonian
Eq. (3). Since #$̄ f%$&x= !2x!1"l for figures f with l vertices,
we obtain20

FIG. 9. (Color online) (a) Monte Carlo simulation of the classic
A2-B2 transition in the nearest-neighbor-only approximation, using
Jnn of the full Mo-Ta MBCE. (b) Same, but using all interactions of
the full MBCE for Mo-Ta.

TABLE III. Critical temperatures of ordered ground states from
Monte Carlo simulations (cell sizes 20!20!20 and above).

Ground state Transition to Tc (K) Transition to Tc (K)

A4B A2 195
A2B B2 400 A2 560
A3B2 B2 275 A2 550
AB A2 600–1000a

A2B3 A2 610
A4B9 A2 490
A4B12 A2 385

aSecond-order transition.

V. BLUM AND A. ZUNGER PHYSICAL REVIEW B 70, 155108 (2004)
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Recap: with a fast lattice 
Hamiltonian we can...

1. Search for new phases (try millions of trial 
configurations) Ground State Search

2. Apply thermodynamic modeling
(to identify phase transitions) Monte Carlo

3. Build a kinetic simulation
(to model time evolution) Kinetic MC
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AgMg, AlCo, AlHf, AlMg, AlPd, AlPt, AlSc, AuMg, BaHf, BaMg, BaPd, BaPt, BeHf, BeMg, BePd, BePt, BiHf, BiHg, 
BiIn, BiIr, BHf, CaHf, CaMg, CaPd, CaPt, CdMg, CNi, CsPd, CuMg, GaHf, GaMg, GaNi, GaPd, GaPt, GeMg, 
GePd, GePt, HfIn, HfK, HfLi, HfMg, HfNa, HfPb, HfSn, HfSr, HfTl, HgMg, InMg, InPd, InPt, IrMg, KMg, KPd, KPt, 
LiMg, LiPd, LiPt, MgPd, MgPt, MgTc, MoMg, NaMg, NaPd, NaPt, NbMg, OsMg, PbMg, PbPd, PbPt, PdMg, PtMg, 
RbMg, RbPd, RbPt, ReMg, RhMg, RhTl, RuMg, ScMg, SiMg, SiPd, SiPt, SnMg, SnPd, SnPt, SrMg, SrPd, SrPt, TaMg, 
TiMg, VMg, WMg, YMg, ZnMg, ZrMg, , AgAu, AgCd, AgCo, AgCr, AgCu, AgFe, AgHf, AgHg, AgIr, AgLa, AgMn, 
AgMo, AgNb, AgNi, AgOs, AgPd, AgPt, AgRe, AgRh, AgRu, AgSc, AgTa, AgTc, AgTi, AgV, AgW, AgY, AgZn, AgZr, 
AuCd, AuCo, AuCr, AuCu, AuFe, AuHf, AuHg, AuIr, AuLa, AuMn, AuMo, AuNb, AuNi, AuOs, AuPd, AuPt, AuRe, 
AuRh, AuRu, AuSc, AuTa, AuTc, AuTi, AuV, AuW, AuY, AuZn, AuZr, CdCo, CdCr, CdCu, CdFe, CdHf, CdHg, 
CdIr, CdLa, CdMn, CdMo, CdNb, CdNi, CdOs, CdPd, CdPt, CdRe, CdRh, CdRu, CdSc, CdTa, CdTc, CdTi, 
CdV, CdW, CdY, CdZn, CdZr, CoCr, CoCu, CoFe, CoHf, CoHg, CoIr, CoLa, CoMn, CoMo, CoNb, CoNi, 
CoOs, CoPd, CoPt, CoRe, CoRh, CoRu, CoSc, CoTa, CoTc, CoTi, CoV, CoW, CoY, CoZn, CoZr, CrCu, CrFe, 
CrHf, CrHg, CrIr, CrLa, CrMn, CrMo, CrNb, CrNi, CrOs, CrPd, CrPt, CrRe, CrRh, CrRu, CrSc, CrTa, CrTc, 
CrTi, CrV, CrW, CrY, CrZn, CrZr, CuFe, CuHf, CuHg, CuIr, CuLa, CuMn, CuMo, CuNb, CuNi, CuOs, CuPd, 
CuPt, CuRe, CuRh, CuRu, CuSc, CuTa, CuTc, CuTi, CuV, CuW, CuY, CuZn, CuZr, FeHf, FeHg, FeIr, FeLa, 
FeMn, FeMo, FeNb, FeNi, FeOs, FePd, FePt, FeRe, FeRh, FeRu, FeSc, FeTa, FeTc, FeTi, FeV, FeW, FeY, FeZn, FeZr, 
HfHg, HfIr, HfLa, HfMn, HfMo, HfNb, HfNi, HfOs, HfPd, HfPt, HfRe, HfRh, HfRu, HfSc, HfTa, HfTc, HfTi, HfV, 
HfW, HfY, HfZn, HfZr, HgIr, HgLa, HgMn, HgMo, HgNb, HgNi, HgOs, HgPd, HgPt, HgRe, HgRh, HgRu, HgSc, 
HgTa, HgTc, HgTi, HgV, HgW, HgY, HgZn, HgZr, IrLa, IrMn, IrMo, IrNb, IrNi, IrOs, IrPd, IrPt, IrRe, IrRh, IrRu, 
IrSc, IrTa, IrTc, IrTi, IrV, IrW, IrY, IrZn, IrZr, LaMn, LaMo, LaNb, LaNi, LaOs, LaPd, LaPt, LaRe, LaRh, LaRu, LaSc, 
LaTa, LaTc, LaTi, LaV, LaW, LaY, LaZn, LaZr, MnMo, MnNb, MnNi, MnOs, MnPd, MnPt, MnRe, MnRh, MnRu, 
MnSc, MnTa, MnTc, MnTi, MnV, MnW, MnY, MnZn, MnZr, MoNb, MoNi, MoOs, MoPd, MoPt, MoRe, MoRh, 
MoRu, MoSc, MoTa, MoTc, MoTi, MoV, MoW, MoY, MoZn, MoZr, NbNi, NbOs, NbPd, NbPt, NbRe, NbRh, 
NbRu, NbSc, NbTa, NbTc, NbTi, NbV, NbW, NbY, NbZn, NbZr, NiOs, NiPd, NiPt, NiRe, NiRh, NiRu, NiSc, 
NiTa, NiTc, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsPd, OsPt, OsRe, OsRh, OsRu, OsSc, OsTa, OsTc, OsTi, OsV, 
OsW, OsY, OsZn, OsZr, PdPt, PdRe, PdRh, PdRu, PdSc, PdTa, PdTc, PdTi, PdV, PdW, PdY, PdZn, PdZr, PtRe, 
PtRh, PtRu, PtSc, PtTa, PtTc, PtTi, PtV, PtW, PtY, PtZn, PtZr, ReRh, ReRu, ReSc, ReTa, ReTc, ReTi, ReV, ReW, 
ReY, ReZn, ReZr, RhRu, RhSc, RhTa, RhTc, RhTi, RhV, RhW, RhY, RhZn, RhZr, RuSc, RuTa, RuTc, RuTi, RuV, 
RuW, RuY, RuZn, RuZr, ScTa, ScTc, ScTi, ScV, ScW, ScY, ScZn, ScZr, TaTc, TaTi, TaV, TaW, TaY, TaZn, TaZr, TcTi, 
TcV, TcW, TcY, TcZn, TcZr, TiV, TiW, TiY, TiZn, TiZr, VW, VY, VZn, VZr, WY, WZn, WZr, YZn, YZr, ZnZrMonday, July 18, 2011
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BiIn, BiIr, BHf, CaHf, CaMg, CaPd, CaPt, CdMg, CNi, CsPd, CuMg, GaHf, GaMg, GaNi, GaPd, GaPt, GeMg, 
GePd, GePt, HfIn, HfK, HfLi, HfMg, HfNa, HfPb, HfSn, HfSr, HfTl, HgMg, InMg, InPd, InPt, IrMg, KMg, KPd, KPt, 
LiMg, LiPd, LiPt, MgPd, MgPt, MgTc, MoMg, NaMg, NaPd, NaPt, NbMg, OsMg, PbMg, PbPd, PbPt, PdMg, PtMg, 
RbMg, RbPd, RbPt, ReMg, RhMg, RhTl, RuMg, ScMg, SiMg, SiPd, SiPt, SnMg, SnPd, SnPt, SrMg, SrPd, SrPt, TaMg, 
TiMg, VMg, WMg, YMg, ZnMg, ZrMg, , AgAu, AgCd, AgCo, AgCr, AgCu, AgFe, AgHf, AgHg, AgIr, AgLa, AgMn, 
AgMo, AgNb, AgNi, AgOs, AgPd, AgPt, AgRe, AgRh, AgRu, AgSc, AgTa, AgTc, AgTi, AgV, AgW, AgY, AgZn, AgZr, 
AuCd, AuCo, AuCr, AuCu, AuFe, AuHf, AuHg, AuIr, AuLa, AuMn, AuMo, AuNb, AuNi, AuOs, AuPd, AuPt, AuRe, 
AuRh, AuRu, AuSc, AuTa, AuTc, AuTi, AuV, AuW, AuY, AuZn, AuZr, CdCo, CdCr, CdCu, CdFe, CdHf, CdHg, 
CdIr, CdLa, CdMn, CdMo, CdNb, CdNi, CdOs, CdPd, CdPt, CdRe, CdRh, CdRu, CdSc, CdTa, CdTc, CdTi, 
CdV, CdW, CdY, CdZn, CdZr, CoCr, CoCu, CoFe, CoHf, CoHg, CoIr, CoLa, CoMn, CoMo, CoNb, CoNi, 
CoOs, CoPd, CoPt, CoRe, CoRh, CoRu, CoSc, CoTa, CoTc, CoTi, CoV, CoW, CoY, CoZn, CoZr, CrCu, CrFe, 
CrHf, CrHg, CrIr, CrLa, CrMn, CrMo, CrNb, CrNi, CrOs, CrPd, CrPt, CrRe, CrRh, CrRu, CrSc, CrTa, CrTc, 
CrTi, CrV, CrW, CrY, CrZn, CrZr, CuFe, CuHf, CuHg, CuIr, CuLa, CuMn, CuMo, CuNb, CuNi, CuOs, CuPd, 
CuPt, CuRe, CuRh, CuRu, CuSc, CuTa, CuTc, CuTi, CuV, CuW, CuY, CuZn, CuZr, FeHf, FeHg, FeIr, FeLa, 
FeMn, FeMo, FeNb, FeNi, FeOs, FePd, FePt, FeRe, FeRh, FeRu, FeSc, FeTa, FeTc, FeTi, FeV, FeW, FeY, FeZn, FeZr, 
HfHg, HfIr, HfLa, HfMn, HfMo, HfNb, HfNi, HfOs, HfPd, HfPt, HfRe, HfRh, HfRu, HfSc, HfTa, HfTc, HfTi, HfV, 
HfW, HfY, HfZn, HfZr, HgIr, HgLa, HgMn, HgMo, HgNb, HgNi, HgOs, HgPd, HgPt, HgRe, HgRh, HgRu, HgSc, 
HgTa, HgTc, HgTi, HgV, HgW, HgY, HgZn, HgZr, IrLa, IrMn, IrMo, IrNb, IrNi, IrOs, IrPd, IrPt, IrRe, IrRh, IrRu, 
IrSc, IrTa, IrTc, IrTi, IrV, IrW, IrY, IrZn, IrZr, LaMn, LaMo, LaNb, LaNi, LaOs, LaPd, LaPt, LaRe, LaRh, LaRu, LaSc, 
LaTa, LaTc, LaTi, LaV, LaW, LaY, LaZn, LaZr, MnMo, MnNb, MnNi, MnOs, MnPd, MnPt, MnRe, MnRh, MnRu, 
MnSc, MnTa, MnTc, MnTi, MnV, MnW, MnY, MnZn, MnZr, MoNb, MoNi, MoOs, MoPd, MoPt, MoRe, MoRh, 
MoRu, MoSc, MoTa, MoTc, MoTi, MoV, MoW, MoY, MoZn, MoZr, NbNi, NbOs, NbPd, NbPt, NbRe, NbRh, 
NbRu, NbSc, NbTa, NbTc, NbTi, NbV, NbW, NbY, NbZn, NbZr, NiOs, NiPd, NiPt, NiRe, NiRh, NiRu, NiSc, 
NiTa, NiTc, NiTi, NiV, NiW, NiY, NiZn, NiZr, OsPd, OsPt, OsRe, OsRh, OsRu, OsSc, OsTa, OsTc, OsTi, OsV, 
OsW, OsY, OsZn, OsZr, PdPt, PdRe, PdRh, PdRu, PdSc, PdTa, PdTc, PdTi, PdV, PdW, PdY, PdZn, PdZr, PtRe, 
PtRh, PtRu, PtSc, PtTa, PtTc, PtTi, PtV, PtW, PtY, PtZn, PtZr, ReRh, ReRu, ReSc, ReTa, ReTc, ReTi, ReV, ReW, 
ReY, ReZn, ReZr, RhRu, RhSc, RhTa, RhTc, RhTi, RhV, RhW, RhY, RhZn, RhZr, RuSc, RuTa, RuTc, RuTi, RuV, 
RuW, RuY, RuZn, RuZr, ScTa, ScTc, ScTi, ScV, ScW, ScY, ScZn, ScZr, TaTc, TaTi, TaV, TaW, TaY, TaZn, TaZr, TcTi, 
TcV, TcW, TcY, TcZn, TcZr, TiV, TiW, TiY, TiZn, TiZr, VW, VY, VZn, VZr, WY, WZn, WZr, YZn, YZr, ZnZr

700 binary x ~200 structures
~20 million cpu hours

Monday, July 18, 2011



www.aflowlib.org

Monday, July 18, 2011

http://www.aflowlib.org
http://www.aflowlib.org


www.aflowlib.org

Monday, July 18, 2011

http://www.aflowlib.org
http://www.aflowlib.org

