

# Modelling Materials and Processes for Solar Cells

Point Defects, Hetero-Junctions & Solid-Solutions

Dr. Aron Walsh Department of Chemistry, University of Bath

E-mail: <u>a.walsh@bath.ac.uk</u>





Engineering and Physical Sciences Research Council









1. Introduction to Solar Energy Conversion

2. Point Defects in Materials

3. Valence Band Alignment

4. Semiconductor Alloys

5. Outlook for Material Design

# **Atomistic Materials Modelling**

**Classical, Quantum & Multi-Scale Computational Chemistry Techniques** 

Materials Characterisation:

- Bulk physical and chemical properties. **Chemical Reactions:**
- Catalysis; lattice defects; redox chemistry.

**Materials Engineering:** 

Beneficial dopants or alloys.

Substrate & Device Effects:

Interfacial & strain phenomena.



(In,Ga,Zn)O<sub>4</sub>



MOFs: **Redox Activity** 







# 1. Introduction to Solar Energy Conversion

2. Point Defects in Materials

- 3. Valence Band Alignment
  - 4. Semiconductor Alloys
- 5. Outlook for Material Design

# **European Solar Energy**



1650>





Yearly sum of solar electricity generated by 1 kWp system with optimally-inclined <450 600 750 900 1050 1200 1350 1500 modules and performance ratio 0.75 Solar electricity [kWh/kWp]

# **Bath versus Berlin**



Germany

100 km



Berlin Frankfurt am Ma )armstad Erlangen

Nürnberg arlsruhe Pforzhe Regensburg Münche 🖸 JRC Yearly sum of global irradiation [kWh/m2] Authors: M. Šúri, T. Cebecauer, T. Huld, E. D. Dunlop PVGIS © European Communities, 2001-2008 < 1100 1150 1200 1250 1300 1350 1400 > http://re.irc.ec.europa.eu/pvgis/

Yearly electricity generated by 1kWpeak system with performance ratio 0.75 [kWh/kWpeak]

# **Solar Energy Conversion**





# Photoelectrochemical H<sub>2</sub>







Thermodynamic Limits:

# Single Junction < 30 %

# Multi-junction < 66 %





# Record 25.0 % Single Crystal Si

# Record 41.6 % Metamorphic 3-junction





# Convert sub band-gap photons

Intermediate band (**IB**) states (*e.g.* dopants).

PRL 78, 5014 (1997)

# าบ **Bulk** MEG ve IB

# Efficient use of "hot" electrons

Multiple exciton generation (**MEG**) for a single short wavelength photon.

Nano Lett. 5, 865 (2005)

# **Complex Material Design**





## **Multernary Semiconductor Screening**

- Build database of plausible materials (stoichiometric).
- Assess structural, electronic and thermodynamic properties.
- Screen / tailor for specific applications.



# **Predicted (and Confirmed) Solar Cell Materials**

• Cu<sub>2</sub>ZnSnS<sub>4</sub>, Cu<sub>2</sub>ZnSnSe<sub>4</sub> and Cu<sub>2</sub>ZnGeS<sub>4</sub>

Applied Physics Letters **94** 041903 (2009)

# **Predicted Spintronic Materials**

• ZnSiAl<sub>2</sub>As<sub>4</sub>, CdGeAl<sub>2</sub>As<sub>4</sub> and CuAlCd<sub>2</sub>Se<sub>4</sub> Applied Physics Letters **95** 052102 (2010)

# **Predicted Topological Insulators**

Cu<sub>2</sub>HgPbSe<sub>4</sub>, Cu<sub>2</sub>CdPbSe<sub>4</sub> and Ag<sub>2</sub>HgPbSe<sub>4</sub>
 *Physical Review B* 83 245202 (2011)

# **Band Gaps and Offsets**



| Material                            | Structure | E <sub>g</sub> (eV) |  |
|-------------------------------------|-----------|---------------------|--|
| Cu <sub>2</sub> ZnSnS <sub>4</sub>  | Kesterite | 1.5                 |  |
| Cu <sub>2</sub> ZnSnSe <sub>4</sub> | Kesterite | 1.0                 |  |

Hybrid Density Functional: HSE06 (Confirmed by GW)



#### Applied Physics Letters 94, 041903 (2009)

# Cu<sub>2</sub>ZnSnS<sub>4</sub> Defect Reactions





Cu poor / Zn rich growth conditions are optimal for robust *p*-type conductivity.

Applied Physics Letters 96, 021902 (2010)





1. Introduction to Solar Energy Conversion

2. Point Defects in Materials

3. Valence Band Alignment

4. Semiconductor Alloys

5. Outlook for Material Design

# **Point Defect Formation**



- Materials are imperfect: defects create unique properties.
- Point defects are present in equilibrium due to configurational entropy:  $n_d = N \exp(-\Delta G/k_B T)$

**Charge Neutrality Condition** [*e*<sup>-</sup>]+[A<sup>-</sup>]=[*h*<sup>+</sup>]+[D<sup>+</sup>] **Charge Carrier Generation** Non-stoichiometry:  $O_{\Omega} \rightarrow V_{\Omega}^{++} + 2e^{-} + \frac{1}{2}O_{2}$ Extrinsic doping:  $D_{O} \rightarrow D_{O}^{+} + e^{-}$ **Ionic Defect Compensation** Electrons:  $e^- + \frac{1}{2}O_2 \rightarrow O_i^-$ Holes:  $h^+ \rightarrow V_0^+ + \frac{1}{2}O_2$ 

# **Point Defect Properties**



|                                         | )                                                                                                                                  |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Calculable                              | Observable                                                                                                                         |  |  |
| Total Energy                            | <ul> <li>Heats of formation and<br/>reaction: relative stabilities<br/>and concentrations.</li> <li>Diffusion barriers.</li> </ul> |  |  |
| Defect Ionization Energy<br>(Vertical)  | Optical absorption, photoluminscence, photoconductivity.                                                                           |  |  |
| Defect Ionization Energy<br>(Adiabatic) | Deep-level transient<br>spectroscopy; thermally<br>stimulated conductivity.                                                        |  |  |
| Defect Vibrational Modes                | <ul> <li>IR / Raman spectra.</li> <li>Diffusion rates; free energy.</li> </ul>                                                     |  |  |

 $(\ln_2 O_3)_{10}$ 



#### **Defect Reaction in Metal Oxides (Neutral Case)**

# **Oxygen Loss:** $O_0 \rightarrow V_0 + \frac{1}{2}O_2$

**Reaction Energy:** E[½O<sub>2</sub>] + E[Defect] - E[Perfect]

# **PBE0 Functional (FHI-AIMS)** $E[1/_2O_2] = -2049.217 \text{ eV} (Spin Triplet)$ E[Defect] = -3302202.055 eVE[Perfect] = -3304251.751 eV

**ΔH** = 0.479 eV

Walsh and Woodley, PCCP 12, 8446 (2010)



Defect Reaction  $(\ln_2 O_3)$ Oxygen Loss:  $O_0 \rightarrow V_0 + \frac{1}{2}O_2$ 1<sup>st</sup> Ionisation:  $V_0 \rightarrow V_0^+ + e^-$ 2<sup>nd</sup> Ionisation:  $V_0^+ \rightarrow V_0^{++} + e^-$ 





- 1. Koopman's: 7.21 eV
- 2. ΔSCF: 8.56 eV
- 3. G<sub>0</sub>W<sub>0</sub>: 8.25 eV



**Point Defect Reaction** 

**Oxygen Loss:** 
$$O_0 \rightarrow V_0 + \frac{1}{2}O_2$$

**Reaction Energy:** E[½O<sub>2</sub>] + E[Defect] - E[Perfect]

**PBE Functional (FHI-AIMS)** E[½O<sub>2</sub>] = -2046.716 eV (Spin Triplet) E[Defect] = -21143773.388 eV E[Perfect] = -21145821.960 eV



(In<sub>2</sub>O<sub>3</sub>)∞

(640 atom supercell)

**ΔH** = 1.856 eV



Defect Reaction  $(In_2O_3)$ Oxygen Loss:  $O_0 \rightarrow V_0 + \frac{1}{2}O_2$ 1<sup>st</sup> Ionisation:  $V_0 \rightarrow V_0^+ + e^-$ 

2<sup>nd</sup> Ionisation:  $V_0^+ \rightarrow V_0^{++} + e^-$ 

### No vacuum level: ensure that all energies are relative!



Charged periodic systems: finite-size effects. See: Leslie & Gillan (1985)

Makov & Payne (1995)

Freysoldt et al (2009)

# **ZnO Defect Spectroscopy**



# BATH BATH





Sokol et al, Faraday Discussions 137, 267 (2007)

# **Charge States**

$$V_{\rm O}$$
;  $[V_{\rm O}^+ + e^-]$ ;  $[V_{\rm O}^{++} + 2e^-]$ 

For semiconductor  $\mu_e$  is not fixed.

 $\mu_{e}(eV)$ 

 $V_{O}$ 

Valence Band



# Spaghetti defects?



Can perform self-consistent solution for n<sub>e</sub>, n<sub>h</sub> and n<sub>d</sub> Baraff, Kane and Schlüter, Phys. Rev. B **21**, 5662 (1980)

 $\varepsilon(0/2+)$ 

# **Defect Free Energies**





Physical Review B 83, 224105 (2011)





1. Introduction to Solar Energy Conversion

2. Point Defects in Materials

3. Valence Band Alignment

4. Semiconductor Alloys

5. Outlook for Material Design

# "Natural" Valence Band Offsets





- Essential for device engineering and modelling.
- Provides understanding of many processes (e.g. redox levels, material doping limits).

# **Band Offset Classification**

e.g.





- Type I: Electrons and holes confined in one layer (A).
- Type IIA: 'Spatially Indirect'. Electron and hole separation.
- Type IIB: Effective 'zero gap'. Electron transfer from B to A.



VOLUME 56, NUMBER 15

#### PHYSICAL REVIEW LETTERS

14 April 1986

#### CdTe-HgTe (111) Heterojunction Valence-Band Discontinuity: A Common-Anion-Rule Contradiction

Steven P. Kowalczyk, <sup>(a)</sup> J. T. Cheung, <sup>(b)</sup> E. A. Kraut, <sup>(a)</sup> and R. W. Grant<sup>(a)</sup>

Microelectronics Research and Development Center, Rockwell International Corporation, Thousand Oaks, California 91360 (Received 7 January 1986)





Different studies adopt different reference levels, even within the same code (here VASP). This applies to both band offsets and charged defect cell alignment.

**Q.** Is this choice important?

- Deep (atomic-like) core level, e.g. O 1s. Walsh & Wei, Phys. Rev. B 76, 195208 (2007).
- Local electrostatic potential (integrated in fixed radius). *Lany & Zunger, Phys. Rev. B* 78, 235104 (2008).
- Averaged electrostatic potential.
   Janotti & Van de Walle, Phys. Rev. B 75, 121201 (2007).

# **Choice of Heterojunction Interface**



YOF

Ensure no dipole across hetero-structure!



# An example: (AIAs|GaAs); isovalent, isostructural, lattice matched.

#### Isolated

|            | AIAs:<br>Reference<br>– VBM (eV) | GaAs:<br>Reference<br>– VBM (eV) | Bulk<br>Difference | Superlattice<br>(Δ Reference) | Total<br>Difference |
|------------|----------------------------------|----------------------------------|--------------------|-------------------------------|---------------------|
|            | 11714.407                        | 11715.316                        | 0.909              | -0.426                        | 0.48                |
| $\bigcirc$ | 53.543                           | 54.339                           | 0.796              | -0.304                        | 0.49                |
|            | 4.183                            | 4.604                            | 0.421              | 0.106                         | 0.53                |

# **Quantitative Calculations**



Core level correction

 $a_c = \frac{d\varepsilon_c}{d\ln V}$ 

APPLIED PHYSICS LETTERS 94, 212109 (2009)

#### Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors

Yong-Hua Li,<sup>1</sup> Aron Walsh,<sup>2,a)</sup> Shiyou Chen,<sup>1</sup> Wan-Jian Yin,<sup>1</sup> Ji-Hui Yang,<sup>1</sup> Jingbo Li,<sup>3</sup> Juarez L. F. Da Silva,<sup>2</sup> X. G. Gong,<sup>1</sup> and Su-Huai Wei<sup>2,b)</sup> <sup>1</sup>Department of Physics, Fudan University, Shanghai 200433, People's Republic of China

- <sup>2</sup>National Renewable Energy Laboratory, Golden, Colorado 80401, USA
- <sup>3</sup>Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China







1. Introduction to Solar Energy Conversion

2. Point Defects in Materials

- 3. Valence Band Alignment
  - 4. Semiconductor Alloys
- 5. Outlook for Material Design

# **Binary Solid-Solution (A<sub>1-x</sub>B<sub>x</sub>)**



**Reaction:** 
$$(1-x)A + (x)B \rightarrow A_{1-x}B_x$$
  
**Mixing Enthalpy:**  $E[A_{1-x}B_x] - E[A] - E[B]$ 

"Ideal Solution"  $\Delta H_{mix} = 0$ "Regular Solution"  $\Delta H_{mix} = \Omega x(1-x)$ 





No translational symmetry for random alloy. Number of configurations (A<sub>0.5</sub>B<sub>0.5</sub>):  $\frac{N!}{\left(\frac{N!}{2}\right)\left(\frac{N!}{2}\right)}$ 

16 atoms: 12,870

32 atoms: 6 × 10<sup>8</sup>

64 atoms: 1.8 × 10<sup>18</sup> Need to approximate!

- Site Occupational Disorder (SOD) sample all symmetry inequivalent configuration: http://www.ucl.ac.uk/~uccargr/sod.htm
- Special Quasirandom Structures (SQS) single representative structures: http://www.its.caltech.edu/~avdw/atat/

# CZT(S,Se) Alloy Thermodynamics





Regular solution model:  $\Omega$  = 52 meV/mixed atom (302 K) CIGS:  $\Omega$  = 176 meV/mixed atom (1021 K)

Physical Review B 83, 125201 (2011)



IBM Experiments: Applied Physics Letters 98, 253502 (2011)



Well behaved alloy: small quadratic bowing parameter.

Physical Review B 83, 125201 (2011)





1. Introduction to Solar Energy Conversion

2. Point Defects in Materials

3. Valence Band Alignment

4. Semiconductor Alloys

5. Outlook for Material Design



### **Semiconductor Nanocrystals for Solar Cells**

1991 (11.1%): Grätzel Cell

2011 ("66% limit")



Funded by EPSRC – Chinese Academy of Sciences (2011 - 2014)



### **Functional Organic-Inorganic Systems**





#### **Interfaces**

**Networks** 

Funded by ERC Starting Grant (2011 - 2016)



# **FHI-AIMS ChemShell Module Under Development**

# Elastic & Electrostatic Embedding





# **Summary and Advice**



Electronic structure methods can be used to provide new insights and directions to a wide range of systems and process with real applications.

Key rules for sensible thermodynamic quantities:

- Convergence (Electronic, Ionic, Basis Set, *k*-points).
- Conservation of mass.
- Conservation of charge.
- Care with finite size effects (supercells).
- Not mentioned (but equally important):
- Band gaps (errors and corrections).
- Electron localisation (self-interaction).

Slides: http://people.bath.ac.uk/aw558/presentations/2011/