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Motivation

Where is electron dynamics important?

I Electron-hole pair creation in solar cells

I Photosynthesis and energy transfer in light-harvesting antenna complexes

I Quantum computing (e.g. electronic transitions in ultracold atoms)

I Molecular electronics, quantum transport
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Time-dependent density-functional theory
I One-to-one correspondence of time-dependent densities and potentials

v(r, t)
1−1←→ ρ(r, t)

For fixed inital states, the time-dependent density determines uniquely the
time-dependent external potential and hence all physical observables.

I Time-dependent Kohn-Sham system
The time-dependent density of an interacting many-electron system can be
calculated as density

ρ(r, t) =

N∑
j=1

|ϕj(r, r)|2

of an auxiliary non-interacting Kohn-Sham system

i~∂tϕj(r, t) =

(
−~2∇2

2m
+ vS [ρ](r, t)

)
ϕj(r, t)

with a local multiplicative potential

vS [ρ(r′, t′)](r, t) = v(r, t) +

∫
ρ(r′, t)

|r− r′|d
3r′ + vxc[ρ(r′, t′)](r, t)

E. Runge, and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).
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Linear Response Theory

I Hamiltonian
Ĥ(t) = Ĥ0 + Θ(t− t0)v1(r, t)

I Initial condition: for times t < t0 the system is in the ground-state of the
unperturbed Hamiltonian Ĥ0 with potential v0 and density ρ0(r)

I For times t > t0, switch on perturbation v1(r, t). Leads to time-dependent density
ρ(r, t) = ρ0(r) + δρ(rt)

I Functional Taylor expansion of ρ[v](r, t) around v0:

ρ[v](r, t) = ρ[v0 + v1](r, t)

= ρ[v0](r, t)

+

∫
δρ[v](rt)

δv(r′t′)

∣∣∣
v0

v1(r′t′)d3r′dt′

+

∫ ∫
δ2ρ[v](rt)

δv(r′t′)δv(r′′t′′)

∣∣∣
v0

v1(r′t′)v1(r′′t′′)d3r′dt′d3r′′dt′′

+ . . .
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Computing Linear Response

Different ways to compute first order response in DFT

I Response functions, Casida equation

I (frequency-dependent) perturbation theory, Sternheimer equation

I real-time propagation with weak external perturbation
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Response functions

I Functional Taylor expansion of ρ[v](r, t) around external potential v0:

ρ[v0 + v1](r, t) = ρ[v0](r) +

∫
δρ[v](rt)

δv(r′t′)

∣∣∣
v0

v1(r′t′)d3r′dt′ + . . .

I Density-density response function of interacting system

χ(rt, r′t′) :=
δρ[v](rt)

δv(r′t′)

∣∣∣
v0

I Response of non-interacting Kohn-Sham system:

ρ[vS,0 + vS,1](r, t) = ρ[vS,0](r) +

∫
δρ[vS ](rt)

δvS(r′t′)

∣∣∣
v0

vS(r′t′)d3r′dt′ + . . .

I Density-density response function of time-dependent Kohn-Sham system

χS(rt, r′t′) :=
δρS [vS ](rt)

δvS(r′t′)

∣∣∣
vS,0
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Derivation of response equation

I Definition of time-dependent xc potential

vxc(rt) = vKS(rt)− vext(rt)− vH(rt)

I Take functional derivative

δvxc(rt)

δρ(r′t′)
=
δvKS(rt)

δρ(r′t′)
− δvext(rt)

δρ(r′t′)
− δ(t− t′)
|r− r′|

fxc(rt, r
′t′) = χ−1

S (rt, r′t′)− χ−1(rt, r′t′)−Wc(rt, r
′t′)

I Act with reponse functions from left and right

χS · | Wc + fxc = χ−1
S − χ

−1 | ·χ

χS(Wc + fxc)χ = χ− χS

I Dyson-type equation for response functions

χ = χS + χS(Wc + fxc)χ
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First order density response

I Exact density response to first order

ρ1 = χv1

= χSv1 + χS(Wc + fxc)ρ1

I In integral notation

ρ1(rt) =

∫
d3r′dt′χS(rt, r′t′)

[
v1(r′t′)

+

∫
d3r′′dt′′(Wc(r

′t′, r′′t′′) + fxc(r
′t′, r′′t′′))ρ1(r′′t′′)

]
I For practical application: iterative solution with approximate kernel fxc

fxc(r
′t′, r′′t′′) =

δvxc[ρ](r′t′)

δρ(r′′t′′)

∣∣∣
ρ0
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Lehmann representation of linear response function

I Exact many-body eigenstates

Ĥ(t = t0)|m〉 = Em|m〉

I Lehmann representation of linear response function:

χ(r, r′;ω) = lim
η→0+

∑
m

( 〈0|ρ̂(r)|m〉〈m|ρ̂(r)|0〉
ω − (Em − E0) + iη

− 〈0|ρ̂(r′)|m〉〈m|ρ̂(r′)|0〉
ω + (Em − E0) + iη

)
Neutral excitation energies are poles of the linear response function!

I Exact linear density response to perturbation v1(ω)

ρ1(ω) = χ̂(ω)v1(ω)

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods July 19, 2011 10 / 62



Excitation energies

I Dyson-type equation for response functions in frequency space

[1̂− χ̂S(ω)(Ŵc + f̂xc(ω))]ρ1(ω) = χSv1(ω)

I ρ1(ω) has poles for exact excitation energies Ωj

ρ1(ω)→∞ for ω → Ωj

I On the other hand, rhs χSv1(ω) stays finite for ω → Ωj
hence the eigenvalues of the integral operator

[1̂− χ̂S(ω)(Ŵc + f̂xc(ω))]ξ(ω) = λ(ω)ξ(ω)

vanish, λ(ω)→ 0 for ω → Ωj .

I Determines rigorously the exact excitation energies

[1̂− χ̂S(Ωj)(Ŵc + f̂xc(Ωj))]ξ(Ωj) = 0
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Casida equation

I (Non-linear) eigenvalue equation for excitation energies

ΩFj = ω2
jFj

with

Ωiaσ,jbτ = δσ,τδi,jδa,b(εa − εi)2 + 2
√

(εa − εi)Kiaσ,jbτ

√
(εb − εj)

and

Kiaσ,jbτ (ω) =

∫
d3r

∫
d3r′φiσ(r)φjσ(r)

[ 1

|r− r′| + fxc(r, r
′, ω)

]
φkτ (r)φlτ (r)

I Eigenvalues ωj are exact vertical excitation energies

I Eigenvectors can be used to compute oscillator strength

I Drawback: need occupied and unoccupied orbitals
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Adiabatic approximation

I Adiabatic approximation: evaluate static Kohn-Sham potential at time-dependent
density

vadiab
xc [ρ](rt) := vstatic DFT

xc [ρ(t)](rt)

I Example: adiabatic LDA

vALDA
xc [ρ](rt) := vLDA

xc (ρ(t)) = −αρ(r, t)1/3 + . . .

I Exchange-correlation kernel

fALDA
xc (rt, r′t′) =

δvALDA
xc [ρ](rt)

δρ(r′t′)
= δ(t− t′)δ(r− r′)

∂vALDA
xc

∂ρ(r)

∣∣∣
ρ0(r)

= δ(t− t′)δ(r− r′)
∂2ehomxc

∂n2

∣∣∣
ρ0(r)

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods July 19, 2011 13 / 62



Failures of the adiabatic approximation in linear response

I H2 dissociation is incorrect

E(1Σ+
u )− E(1Σ+

g )
R→∞−→ 0 (in ALDA)

Gritsenko, van Gisbergen, Grling, Baerends, JCP 113, 8478 (2000).

I sometimes problematic close to conical intersections

I response of long chains strongly overestimated
Champagne et al., JCP 109, 10489 (1998) and 110, 11664 (1999).

I in periodic solids fxc(q, ω, ρ) = c(ρ), whereas for insulators,

f exact
xc

q→0−→ 1/q2 divergent

I charge transfer excitations not properly described
Dreuw et al., JCP 119, 2943 (2003).
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Sternheimer equation
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Sternheimer equation

I Perturbed Hamiltonian and states (zero frequency)

(Ĥ0 + λH1 + . . .)(ψ0 + λψ1 + . . .) = (E0 + λE1 + . . .)(ψ0 + λψ1 + . . .)

I Expand and keep terms to first order in λ

Ĥ0ψ0 + λH1ψ0 + λH0ψ1 = E0ψ0 + λE0ψ1 + λE1ψ0 +O(λ2)

I Use Ĥ0ψ0 = E0ψ0

(Ĥ0 − E0)ψ1 = −(Ĥ1 − E1)ψ0, Sternheimer equation
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Sternheimer equation in TDDFT

I (Weak) monochromatic perturbation

v1(r, t) = λri cos(ωt)

I Expand time-dependent Kohn-Sham wavefunctions in powers of λ

ψm(r, t) = exp(−i(ε(0)
m + λε(1)

m )t)×{
ψ(0)
m (r) +

1

2
λ[exp(iωt)ψ(1)

m (r, ω) + exp(−iωt)ψ(1)
m (r,−ω)]

}
I Insert in time-dependent Kohn-Sham equation and keep terms up to first order in λ
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Sternheimer equation in DFT

I Frequency-dependent response (self-consistent solution!)[
Ĥ(0) − εj ± ω + iη

]
ψ(1)(r,±ω) = Ĥ(1)(±ω)ψ(0)(r),

with first-oder frequency-dependent perturbation

Ĥ(1)(ω) = v(r) +

∫
ρ1(r, ω)

|r− r′| d
3r′ +

∫
fxc(r, r

′, ω)ρ1(r′, ω)d3r′

and first-order density response

ρ1(r′,±ω) =
occ.∑
m

{
[ψ(0)(r)]∗ψ(1)(r, ω) + [ψ(1)(r,−ω)]∗ψ(0)(r)

}
I Main advantages

I Only occupied states need to be considered
I Scales as N2, where N is the number of atoms
I (Non-)Linear system of equations. Can be solved with standard solvers

I Disadvantage
I Converges slowly close to a resonance
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Different types of perturbations

The response equations can be used for different types of perturbations

I Electric perturbations

v(r) = ri

Response contains information about
polarizabilities, absorption, fluoresence,
etc.

I Magnetic perturbations

v(r) = Li

Response contains e.g. NMR signals,
etc.

I Atomic displacements

v(r) =
∂v(r)

∂Ri

Response contains e.g. phonons, etc.
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Real-space grids

I Simulation volumes: sphere, cylinder, parallelepiped

I Minimal mesh: spheres around atoms, filled with uniform mesh of grid points

I Typically zero boundary condition, absorbing boundary, optical potential

I Finite-difference representation (”stencils”) for the Laplacian/kinetic energy

I Pseudopotentials

I Domain-parallelization

Domain A Domain B

Ghost Points of Domain B
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Real-space grids

I Example: five-point finite difference Laplacian in 2D

− 1

2m

∂2ψ

∂x2
≈ 1

2m

1

h2

[
− ψ(i− 1, j) + 2ψ(i, j)− ψ(i+ 1, j)

]
− 1

2m

∂2ψ

∂y2
≈ 1

2m

1

h2

[
− ψ(i, j − 1) + 2ψ(i, j)− ψ(i, j + 1)

]
I Stencil notation for kinetic energy

1

2m

1

h2

 −1
−1 4 −1

−1

ψ(i, j)

I Leads to sparse matrices
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Real-space grids

I Size of Hamiltonian matrix can easily reach 107x107

I Basic operation Ĥψ −→ sparse matrix vector operations

I Sparse solvers
I Conjugate gradients

I Krylov subspace/Lanczos methods

I Davidson or Jacobi-Davidson algorithm

I Multigrid methods
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Real-time evolution for the time-dependent Kohn-Sham system

I Time-dependent Kohn-Sham equations

i~∂tϕj(r, t) =

(
−~2∇2

2m
+ vS [ρ](r, t)

)
ϕj(r, t)

vS [ρ(r′, t′)](r, t) = v(r, t) +

∫
ρ(r′, t)

|r− r′|d
3r′ + vxc[ρ(r′, t′)](r, t)

ρ(r, t) =

N∑
j=1

|ϕj(r, r)|2

I Initial value problem

ϕj(r, t) = ϕ
(0)
j (r)

I Time-evolution operator Û(t, t0)

ϕj(r, t) = Û(t, t0)ϕj(r, t0)
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Properties of Û(t, t0)

I Û(t, t0) is a non-linear operator

I The propagator is unitary Û† = Û−1

I In the absence of magnetic fields the propagator is time-reversal symmetric

Û−1(t, t0) = Û(t0, t)

I Equation of motion for the propagator

i~∂tÛ(t, t0) = Ĥ(t)Û(t, t0), Û(t0, t0) = 1̂

I Representation in integral form

Û(t, t0) = 1̂− i
∫ t

t0

dτĤ(τ)Û(τ, t0)

I Iterated solution of integral equation - time-ordered exponential

Û(t, t0) =
∞∑
n=0

(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtnT̂ [Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)]

= T̂ exp(−i
∫ t

t0

dτĤ(τ))
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Real-time evolution - Short-time propagation

I Group property of exact propagator

Û(t1, t2) = Û(t1, t3)Û(t3, t2)

I Split propagation step in small short-time propagation intervals

Û(t, t0) =

N−1∏
j=1

Û(tj , tj + ∆tj)

I Why is this a good idea?

I If we want to resolve frequencies up to ωmax, the time-step should be no larger than
≈ 1/ωmax

I The time-dependence of the Hamiltonian is small over a short-time interval

I The norm of the time-ordered exponential is proportional to ∆t.
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Real-time evolution - Magnus expansion

I Time-ordered evolution operator

Û(t, t0) =

∞∑
n=0

(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtnT̂ [Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)]

= T̂ exp(−i
∫ t

t0

dτĤ(τ))

I Magnus expansion

Û(t+ ∆t, t) = exp
(

Ω̂1 + Ω̂2 + Ω̂3 + · · ·
)

I Magnus operators

Ω̂1 =− i
∫ t+∆t

t

Ĥ(τ)dτ

Ω̂2 =

∫ t+∆t

t

∫ τ1

t

[Ĥ(τ1), Ĥ(τ2)]dτ2dτ1

...
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Real-time evolution - Magnus expansion

I Second-order Magnus propagator - Exponential midpoint rule

Û (2)(t+ ∆t, t) = exp
(

Ω̂1

)
+O(∆t3)

Ω̂1 = −iĤ(t+ ∆t/2) +O(∆t3).

I Fourth-order Magnus propagator

Û (4)(t+ ∆t, t) = exp
(

Ω̂1 + Ω2

)
+O(∆t5)

Ω̂1 = −i(Ĥ(τ1) + Ĥ(τ2))
∆t

2
+O(∆t5).

Ω̂2 = −i[Ĥ(τ1), Ĥ(τ2)]

√
3∆t2

12
+O(∆t5).

τ1,2 = t+ (
1

2
±
√

3

6
)∆t
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Real-time evolution - Crank-Nicholson/Cayley propagator

I Padé approximation of exponential, e.g. lowest order (Crank-Nicholson)

exp(−iĤ∆t) ≈ 1− iĤ∆t/2

1 + iĤ∆t/2

I Need only action of operator on a state vector

|Ψ(t+ ∆t)〉 =
1− iĤ∆t/2

1 + iĤ∆t/2
|Ψ(t)〉

I (Non-)Linear system of equations at each time-step

(1 + iĤ∆t/2)|Ψ(t+ ∆t)〉 = (1− iĤ∆t/2)|Ψ(t)〉
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Real-time evolution - Operator splitting methods

I Typically, the Hamiltonian has the form Ĥ = T̂ + V̂

I T̂ is diagonal in momentum space, V̂ in position space

I Baker-Campbell-Hausdorff relation

eÂeB̂ = exp(Â+ B̂ +
1

2
[Â, B̂] + . . .)

I Split-Operator

exp(−i∆t(T̂ + V̂ )) ≈ exp(−i∆tT̂ /2) exp(−i∆tV̂ ) exp(−i∆tT̂ /2)

Use FFT to switch between momentum space and real-space.

I Higher-order splittings possible, but require more FFTs
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Real-time evolution - Enforced time reversal symmetry

I Enforced time-reversal symmetry

exp(+i
∆t

2
Ĥ(t+ ∆t))|Ψ(t+ ∆t)〉 = exp(−i∆t

2
Ĥ(t))|Ψ(t)〉

I Propagator with time-reversal symmetry

ÛETRS(t+ ∆t, t) = exp(−i∆t
2
Ĥ(t+ ∆t)) exp(−i∆t

2
Ĥ(t))
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Real-time evolution - Matrix exponential

ÛCN(t+ ∆t, t) =
1− iĤ∆t/2

1 + iĤ∆t/2

ÛEM(t+ ∆t, t) = exp
(
−i∆tĤ(t+ ∆t/2)

)
ÛSO(t+ ∆t, t) = exp(−i∆tT̂ /2)exp(−i∆tV̂ )exp(−i∆tT̂ /2)

ÛETRS(t+ ∆t, t) = exp(−i∆t
2
Ĥ(t+ ∆t))exp(−i∆t

2
Ĥ(t))

. . .
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Real-time evolution - Matrix exponential

ÛCN(t+ ∆t, t) =
1− iĤ∆t/2

1 + iĤ∆t/2

ÛEM(t+ ∆t, t) = exp
(
−i∆tĤ(t+ ∆t/2)

)
ÛSO(t+ ∆t, t) = exp(−i∆tT̂ /2)exp(−i∆tV̂ )exp(−i∆tT̂ /2)

ÛETRS(t+ ∆t, t) = exp(−i∆t
2
Ĥ(t+ ∆t))exp(−i∆t

2
Ĥ(t))

. . .
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Real-time evolution - Matrix exponential

C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of A Matrix, SIAM Review 20, 801 (1978)

C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of A Matrix,

Twenty-Five Years Later, SIAM Review 45, 3 (2003)

Task: Compute exponential of operator/matrix

I Taylor series

I Chebyshev polynomials

I Padé approximations

I Scaling and squaring

I Ordinary differential equation methods

I Matrix decomposition methods

I Splitting methods

Task: Compute eÂv for given v

I Taylor series

I Chebyshev rational approximation

I Lanczos-Krylov subspace projection
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Real-time evolution - Conclusion

So, which method should I use?

I No clear winner

I Depends on spectral properties of Hamiltonian ...

I ... and the basis set or discretization

I Symplectic and/or time-reversal property required?

Default propagator in octopus:

Enforced time-reversal symmetric (ETRS) propagator with 4th order Taylor expansion of
exponential

Do not rely on a single propagator.
Always check time-evolution by comparing different schemes!
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Real-time evolution - Movie time

Proton scattering of fast proton with ethene
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Octopus code

I Octopus: real-space, real-time TDDFT code, available under GPL

http://tddft.org/programs/octopus/wiki/index.php/Main Page

(Parsec: real-space, real-time code using similar concepts)

I libxc: Exchange-Correlation library, available under LGPL
(used by many codes: Abinit, APE, AtomPAW, Atomistix ToolKit, BigDFT, DP,
ERKALE, GPAW, Elk, exciting, octopus, Yambo)

http://tddft.org/programs/octopus/wiki/index.php/Libxc
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Optimal control theory

Control of ring current in a quantum ring
external potential

density profile

Optimal Control of Quantum Rings by Terahertz Laser Pulses, E. Räsänen, et. al, Phys. Rev. Lett. 98, 157404 (2007).

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods July 19, 2011 38 / 62



Optimal control theory

Goal: find optimal laser pulse ε(t) that drives the system to a desired state Φf

I maxize overlap functional

J1[Ψ] = | 〈Ψ(T ) |Φf 〉 |2.

I constrain laser intensity

J2[ε] = −α0

∫ T

0

ε2(t) dt.

I Lagrange multiplier density to ensure evolution with TDSE

J3[Ψ, χ, ε] = −2 Im

∫ T

0

〈
χ(t)

∣∣∣(i∂t − Ĥ(t)
)∣∣∣Ψ(t)

〉
dt,

Find maximum of J1[Ψ] + J2[ε] + J3[Ψ, χ, ε]
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Optimal control theory

I First variation of the functional

δJ = δΨJ + δχJ + δεJ = 0

I Control equations

δΨJ = 0 :
(
i∂t − Ĥ(t)

)
|χ(t) 〉 = 0, |χ(T ) 〉 = |Φf 〉 〈Φf |Ψ(T ) 〉

δχJ = 0 :
(
i∂t − Ĥ(t)

)
|Ψ(t) 〉 = 0, |Ψ(0) 〉 = |Φi 〉 ,

δεJ = 0 : α0 ε(t) = −Im 〈χ(t)|µ̂|Ψ(t)〉.
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Optimal control theory

Optimal laser pulse and level population

Optimal Control of Quantum Rings by Terahertz Laser Pulses, E. Räsänen, et. al, Phys. Rev. Lett. 98, 157404 (2007).
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Outline

Linear Response in DFT

I Response functions

I Casida equation

I Sternheimer equation

Real-space representation and real-time propagation

I Real-space representation for wavefunctions and Hamiltonians

I Time-propagation schemes

I Optimal control of electronic motion

Time-evolution of open quantum systems

I Stochastic Schrödinger equations, master equations

I Stochastic current DFT

I Stochastic quantum molecular dynamics
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Why Open Quantum Systems?

General aspects:

I Cannot have perfectly isolated quantum systems

I Dissipation and Decoherence

I Every measurement implies contact with an environment
One actually needs to bring a system into contact with an environment (i.e.
measurement apparatus), in order to perform a measurement
→ environment as (continuos) measurement of the system.

Research fields:

I Quantum computing/Quantum information theory

I (time-resolved) transport and optics

I (driven) quantum phase transitions

I Quantum measurement
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Open Quantum System

S +B : ĤS ⊗HB ,Ψ, ρ̂

S : ĤS ,ΨS , ρ̂S

System

B : ĤB ,ΨB , ρ̂B

Environment

Hamiltonian of combined system

Ĥ = ĤS ⊗ ÎB + ÎS ⊗ ĤB + ĤSB

Unitary time evolution

i∂tΨ(t) = Ĥ(t)Ψ(t)
d

dt
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
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Ĥ(t), ρ̂(t)

]
Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods July 19, 2011 44 / 62



Reduced system dynamics

S +B : ĤS ⊗HB ,Ψ, ρ̂

S : ĤS ,ΨS , ρ̂S

System

B : ĤB ,ΨB , ρ̂B

Environment

Tracing over bath degrees of freedom

ρ̂S = TrB ρ̂

d

dt
ρ̂S(t) = −iTrB

[
Ĥ(t), ρ̂(t)

]
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Feshbach Projection-Operator Method

Ĥ = ĤS + ĤB + αĤSB , HBχn(xB) = εnχn(xB)

Expand total wavefunction in arbitrary complete and orthonormal basis of the bath

Ψ(xS , xB ; t) =
∑
n

φn(xS ; t)χn(xB)

Projection Operators

P̂n := ÎS ⊗ |χn 〉〈χn | Q̂n := ÎS ⊗
∑
j 6=n

|χj 〉〈χj |

Apply to TDSE

i∂tP̂nΨ(t) = P̂nĤP̂nΨ(t) + P̂nĤQ̂nΨ(t)

i∂tQ̂nΨ(t) = Q̂nĤQ̂nΨ(t) + Q̂nĤP̂nΨ(t)

P. Gaspard, M. Nagaoka, JCP, 111, 5675 (1999).
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∑
j 6=n

|χj 〉〈χj |

Apply to TDSE
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Feshbach Projection-Operator Method

Effective equation for P̂ Ψ (still fully coherent)

i∂tP̂Ψ(t) =(P̂ ĤP̂ )P̂Ψ(t) +

Source Term︷ ︸︸ ︷
P̂ ĤQ̂e−iQ̂ĤQ̂tQ̂Ψ(0)

−i
∫ t

0

dτP̂ ĤQ̂eiQ̂ĤQ̂(t−τ)Q̂ĤP̂ P̂Ψ(τ)︸ ︷︷ ︸
Memory Term

=⇒ Formal similarity to quantum transport formulation of Kurth and Stefanucci et. al.

Non-Markovian Stochastic Schrödinger equation

I perturbative expansion to second order in αHSB
I random phase approximation, dense bath spectrum, bath in statistical equilibrium

i∂tψ(t) =ĤSψ(t) + α
∑
α

ηα(t)V̂αψ(t)

− iα2

∫ t

0

dτ
∑
αβ

Cαβ(t− τ)︸ ︷︷ ︸
Bath correlation functions

V̂ †αe
−iĤS(t−τ)V̂βψ(τ) +O(α3)

P. Gaspard, M. Nagaoka, JCP, 111, 5675 (1999).
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Source Term︷ ︸︸ ︷
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Markovian Stochastic Schrödinger equation

δ-correlated bath

Cαβ(t− τ) = Dαβδ(t− τ)

Stochastic Schrödinger equation in Born-Markov approximation

i∂tψ(t) =ĤSψ(t) + α
∑
α

ηα(t)V̂αψ(t)

− iα2
∑
αβ

DαβV̂
†
α V̂βψ(t) +O(α3)

Statistical average:

ρS(t) =
|ψ(t) 〉〈ψ(t) |
〈ψ(t) |ψ(t) 〉

I Valid for time-dependent Hamiltonians

I Gives always physical states

I Sound starting point to formulate stochastic TDDFT
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Connection to Lindblad equation

Stochastic Schrödinger equation in Born-Markov approximation

i∂tψ(t) =ĤSψ(t) + α
∑
α

ηα(t)V̂αψ(t)

− iα2
∑
αβ

DαβV̂
†
α V̂βψ(t) +O(α3)

=⇒ Lindblad equation can be derived from the Stochastic Schrödinger equation

Lindblad equation

d

dt
ρ̂S(t) = −i

[
ĤS , ρ̂S(t)

]
+
∑
k

γk

(
V̂kρ̂S(t)V̂ †k −

1

2
V̂ †k V̂kρS(t)− 1

2
ρ̂S(t)V̂ †k V̂k

)
On the generator of quantum mechanical semigroups, G. Lindblad, Commun. Math. Phys., 48, 119-130 (1976).

Note: We can consider the Stochastic Schrödinger equation also in non-Markovian form
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TDDFT for Open Quantum Systems

I Approach in terms of density matrices
K. Burke, R. Car, and R. Gebauer, Phys. Rev. Lett. 94, 146803 (2005).

I Approach in terms of stochastic Schrödinger equations
M. Di Ventra and R. D’Agosta, Phys. Rev. Lett. 98, 226403 (2007).

I Comparison to classical stochastic systems:

Fokker-Planck equation ⇐⇒ Langevin equation
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Stochastic Time-Dependent Current-Density-Functional Theory

Can prove: For fixed bath operators V̂ and fixed initial states Φ0 and Ψ0

j(r, t)
1:1←→ A(r, t)

M. Di Ventra and R. D’Agosta, Phys. Rev. Lett. 98, 226403 (2007).

Mapping of fully interacting stochastic TDSE to stochastic TDKS equations

i∂tψj(r, t) =

ĤKS(t)− 1

2
iV̂ †V̂︸ ︷︷ ︸

damping

+ l(t)V̂︸ ︷︷ ︸
fluctuations

ψj(r, t)
l(t) : stochastic process

l(t) = 0, l(t)l(t′) = δ(t− t′)

Assumes

I Markovian approximation: no bath memory

I Weak coupling to the bath (second order in HSB)
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Choice of bath operators: a simple model

Order-N scheme and bath operators which obey Fermi statistics

V jkk′(r) = δkj(1− δkk′)
√
γ(r)fD(εk) |ψj(r) 〉〈ψk′(r) |

Yu. V. Pershin, Y. Dubi, and M. Di Ventra, Phys. Rev. B 78, 054302 (2008).

Fermi-Dirac distribution

fD(εk) =

[
1 + exp

(
εk − µ
kBT

)]−1

Local relaxation rates
γkk′(r) = |ψk(r) 〉γ0〈ψk′(r) |
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Quantum jump algorithm

t0 t1 t1 t2 t2 t3 t3 t4 t4

ψ(t0)

φ(t0) = ψ(t0)

ψ(t1) V̂ ψ(t1)

φ(t1) = V̂ ψ(t1)

auxilary state

physical state

waiting-time
distribution

1) Draw uniform random number ηj ∈ [0, 1]

2) Propagate auxilary state under non-Hermitian Hamiltonian

i∂tφ = Ĥ0φ− iV̂ †
V̂ φ

3) Propagate physical state under norm-conserving Hamiltonian

i∂tψ = Ĥ0ψ − iV̂ †
V̂ ψ + i||V̂ ψ||2ψ

4) If norm of auxilary wave function drops below ηj , act with bath operator

||φ(tj)|| ≤ ηj , ψ(tj) = V̂ ψ(tj), φ(tj) = ψ(tj)

5) Go to step 1)

=⇒ Leads to piecewise deterministic evolution
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Application: Laser excitation of Neon dimer with clamped nuclei

Laser pulse, 50 fs pulse duration
peak intensity 2.2× 1015 W/cm2

closed quantum system

open quantum system
relaxation rate τ = 150 fs

open quantum system
relaxation rate τ = 15 fs
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Molecular Dynamics for Open Systems

Standard approaches like Car-Parinello MD, Born-Oppenheimer MD, Ehrenfest MD:

I Electronic degrees of freedom are treated with closed system approach

I Damping is added only to nuclear EOM (Langevin terms, velocity dep. forces)

However:

Electrons are the first to experience energy transfer to a bath

Nuclei feel bath directly but also through electron-ion interaction
=⇒ different forces on nuclei

Need open quantum theory for both electrons and nuclei
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Stochastic Quantum Molecular Dynamics

Extension of stochastic TDCDFT to include nuclear degrees of freedom

i∂tΨ = Ĥ(t)Ψ− 1

2
iV̂ †V̂Ψ + l(t)V̂Ψ

Ĥ(t) =T̂e(r, t) + Ŵee(r) + Ûext,e(r, t)+

T̂n(R, t) + Ŵnn(R) + Ûext,n(R, t)+

Ŵen(r,R)

Total current
〈 J(x, t) 〉 = 〈 j(r, t) 〉+ 〈 J(R, t) 〉, x = (r,R)

For given initial state Ψ(x, t = 0) and bath operators Vα(x, t)

〈 J(x, t) 〉 1:1←→ A(x, t)

Heiko Appel, Massimiliano Di Ventra, Phys. Rev. B 80, 212303 (2009). Heiko Appel, Massimiliano Di Ventra,

http://dx.doi.org/10.1016/j.chemphys.2011.05.001 (2011).
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Stochastic Quantum Molecular Dynamics: practical scheme

Extension of stochastic TDCDFT to include nuclear degrees of freedom

i∂tΨ(x, t) = Ĥ(t)Ψ(x, t)− 1

2
iV̂ †V̂Ψ(x, t) + l(t)V̂Ψ(x, t)

In practice: resort as approximation to classical nuclei

Bath operators

V jkk′(r,R(t); t) = δkj(1− δkk′)
√
γ(r,R(t); t)fD(εk) |ψj(r,R(t); t) 〉〈ψk′(r,R(t); t) |

Ehrenfest forces as approximation for classical nuclei

MαR̈α(t) = −
∫

Ψ∗∇RαĤeΨdr

Note:

Wavefunctions are stochastic =⇒ stochastic force on the nuclei

Heiko Appel, Massimiliano Di Ventra, Phys. Rev. B 80, 212303 (2009).
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Vibronic excitation of Neon dimer, moving nuclei

closed quantum system
stretched initial condition

open quantum system
relaxation rate τ = 300 fs

Maxwell-Boltzmann velocity distribution at
jumps

f(~v) =
( m

2πkT

)3/2
exp

(
−
m~v2

2kT

)

Average over 15 stochastic realizations
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Stochastic Quantum MD simulation for
4-(N,N-Dimethylamino)benzonitrile

Electron Localization Function

Rotated dimethyl group as
initial condition
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Stochastic Quantum MD simulation for
4-(N,N-Dimethylamino)benzonitrile
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Heiko Appel, Massimiliano Di Ventra, Phys. Rev. B 80, 212303 (2009).
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Thanks to the people over at tddft.org

and

Thank you for your attention!
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