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Outline

Linear Response in DFT
» Response functions
» Casida equation
» Sternheimer equation

Real-space representation and real-time propagation
» Real-space representation for wavefunctions and Hamiltonians

» Time-propagation schemes

» Optimal control of electronic motion

Time-evolution of open quantum systems
» Stochastic Schrodinger equations, master equations
» Stochastic current DFT

» Stochastic quantum molecular dynamics
July 19, 2011

Intro to real-space, linear-response, and TD methods

Heiko Appel (Fritz-Haber-Institut der MPG)

2/62



Motivation

Where is electron dynamics important?

v

Electron-hole pair creation in solar cells

v

Photosynthesis and energy transfer in light-harvesting antenna complexes

\4

Quantum computing (e.g. electronic transitions in ultracold atoms)

v

Molecular electronics, quantum transport
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Time-dependent density-functional theory

> One-to-one correspondence of time-dependent densities and potentials

v(r,t) &L p(r,t)

For fixed inital states, the time-dependent density determines uniquely the
time-dependent external potential and hence all physical observables.

» Time-dependent Kohn-Sham system
The time-dependent density of an interacting many-electron system can be
calculated as density

p(I‘, t) = Z |90j(r’ 7")|2

of an auxiliary non-interacting Kohn-Sham system
2v72

thdppj(r,t) = (—i + vs|pl(r, /,)> w;(r,t)

2m

with a local multiplicative potential

i /\ \ l7t ! ! !
e e = ot [ PED o Ol

E. Runge, and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).
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Linear Response Theory

» Hamiltonian A A
H(t) = Ho+ O(t — to)vi(r, 1)

> Initial condition: for times ¢ < ¢y the system is in the ground-state of the
unperturbed Hamiltonian Ho with potential vg and density po(r)

> For times ¢ > to, switch on perturbation v (r, 7). Leads to time-dependent density
p(r,t) = po(r) + dp(rt)

» Functional Taylor expansion of p[v](r,t) around vo:

plol(r,t) = plvo + v1](r, ¢)
= plwo](r,?)

5ol (r)
du(r't’) lv

// 52p[ v] (rt)
ov(r't')dv( r”t”)

1‘1 (1P dt’

o (e (T dPr dt P d”
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Computing Linear Response

Different ways to compute first order response in DFT

> Response functions, Casida equation

> (frequency-dependent) perturbation theory, Sternheimer equation

> real-time propagation with weak external perturbation
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Response functions

» Functional Taylor expansion of p[v](r,t) around external potential vo:

5plv](rt)

"Br'dt + ...
So(@t) | 1) +

v0

plvo +vi](r, 1) = pluo](r) +

> Density-density response function of interacting system

vo

> Response of non-interacting Kohn-Sham system:

dplus](rt)

/47 3/ ’
Sus (') vs(r't)d’r'dt" + ...

vo

plus,o +vsal(r,t) = plvs,ol(r) +

> Density-density response function of time-dependent Kohn-Sham system

_ Ops(vs](rt)
ovg(r't’)

xs(rt,r't’) :=

vs,0
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Derivation of response equation

v

Definition of time-dependent xc potential

Vge(rt) = vrs(rt) — Vext(rt) — v (rt)

v

Take functional derivative

Svsc(rt)  Svrs(rt)  Svem(rt) S(t—1)
Sp(x't) T Sp(rt) | ep(rt) | [r—r|

Jee(rt, vty = xg' (vt, 't — x ' (xt, v't") — W.(rt,x't")

v

Act with reponse functions from left and right

-1
|

Xs+ | Wc‘l‘fzc:Xgl_X X

xs(We + foe)X = X — Xs

v

Dyson-type equation for response functions

X =Xs + XS(WC + fIC)X
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First order density response

» Exact density response to first order

p1 = X1
= Xsv1 + XS(WC + fzc)pl

> In integral notation
pi(rt) = /d3r'dt'xs(rt,r't') [vl (r't")
+ / & dt" (We(e't 2"ty + fzc(r't',r”t”))pl(r'/t//)]
» For practical application: iterative solution with approximate kernel fz.

_ duaclpl't)
5,0(1‘"t") 00

fzc (r/t/, r//t/l)
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Lehmann representation of linear response function

» Exact many-body eigenstates

H(t = to)|m) = Ew|m)

» Lehmann representation of linear response function:

(<0lﬁ(r)|m><m|ﬁ(r)l0> <0|ﬁ(r’)|m><m|ﬁ(r’)|0>)

/. — 1
x(r,r’;w) = lim w— (Bm —Eo)+i  w+ (Em — Eo) +1n

+
n—0 "

Neutral excitation energies are poles of the linear response function!

» Exact linear density response to perturbation v; (w)

p1(w) = X(w)vr(w)
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Excitation energies

» Dyson-type equation for response functions in frequency space
[1 = Xs(@)(We + foc(w))]p1(w) = xs01(w)
> p1(w) has poles for exact excitation energies 2;
p1(w) = oo for w— Q;

» On the other hand, rhs xsv1(w) stays finite for w — Q;
hence the eigenvalues of the integral operator

[ = Rs(@)(We + foe(@))]E(w) = Aw)éw)

vanish, A(w) — 0 for w — Q;.

> Determines rigorously the exact excitation energies

(1= X5 () (We + foe())]E(Q;) =0
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Casida equation

> (Non-linear) eigenvalue equation for excitation energies

SZF] = M?F]'
with
Qiao,ibr = 00,r0i,70a,6(€a — €i)2 +2v/(€a — €) Kiao,jbor v/ (€6 — €5)
and
1
Kicoor (@) = [ @ [ @000 0000 0) [y + foelrd )] - 0)60: (1)

> Eigenvalues w; are exact vertical excitation energies

» Eigenvectors can be used to compute oscillator strength

» Drawback: need occupied and unoccupied orbitals
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Adiabatic approximation

> Adiabatic approximation: evaluate static Kohn-Sham potential at time-dependent
density

v [pl(rt) i= v [p(1)] (rt)
» Example: adiabatic LDA
B p)(rt) = v (p(1)) = —ap(r, )7 4.

» Exchange-correlation kernel

504 o] () Ovac”
MO (rt, r't) = 2 L — 5t — ) (r — 1) 228
( ) Sp(r't') ( ol ) 9p(r) lpo(r)
82€hom
=6(t—tNo(r—1' -
( ) ( ) on2 ()
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Failures of the adiabatic approximation in linear response

\4

Hs> dissociation is incorrect
E(SH - E(S ) ™0 (in ALDA)

Gritsenko, van Gisbergen, Grling, Baerends, JCP 113, 8478 (2000).
> sometimes problematic close to conical intersections

> response of long chains strongly overestimated
Champagne et al., JCP 109, 10489 (1998) and 110, 11664 (1999).

» in periodic solids fzc(q,w, p) = ¢(p), whereas for insulators,

0 .
oot 1751 /4% divergent

> charge transfer excitations not properly described
Dreuw et al., JCP 119, 2943 (2003).
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Sternheimer equation

PHYSICAL REVIEW VOLUME 84, NUMBER 2 OCTOBER 15, 1951

On Nuclear Quadrupole Moments

R. STERNHEIMER
Los Alamos Scientific Laboratory, Los Alamos, New Mexico, and Brookhaven National Laboratory, Uplon, New York*
(Received June 18, 1951)

units. If E, denotes the unperturbed Is energy, the
Schroedinger equation becomes

(H ot Hy) (wok-0) = Eo (o), 3)

since the first-order perturbation of the energy is zero
for s states. Upon subtracting Houy= Et, and to the
first order in Q, we obtain

(Hy— Eoym= — Hyuo. 4)
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Sternheimer equation

> Perturbed Hamiltonian and states (zero frequency)

(FIO+)\H1+)(’lﬁo-ﬁ-)\’(f}l—i-):(Eo-i-)\El-i-)(wo-i-)\?,bl—i-)

> Expand and keep terms to first order in A

Hovo + ANH1o + AHoy1 = Eotho + AEo1 + AE190 + O()\Q)

> Use oo = Eotbo

(Ho — Eo)py = —(Hy — E1)o, Sternheimer equation
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Sternheimer equation in TDDFT

> (Weak) monochromatic perturbation

v1(r,t) = Ar; cos(wt)
» Expand time-dependent Kohn-Sham wavefunctions in powers of A
Y (1, 8) = exp(—i(ef) + Aefy)t)x
{w) n A[exp(zwt) D (r,w) + exp(—iwt)pP (r, w)]}

> Insert in time-dependent Kohn-Sham equation and keep terms up to first order in A
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Sternheimer equation in DFT

» Frequency-dependent response (self-consistent solution!)
[fl(o) —€ tw+ in} 1/)(1)(r, tw) = lfl(l)(:I:w)w(o)(r)7

with first-oder frequency-dependent perturbation

A (w) = v(r) + T1(r w) d*r’ /fch r, v’ w)p (v, w)d*r’

and first-order density response

0 =3 RO 0) + O 0] 0O @)

» Main advantages

> Only occupied states need to be considered
> Scales as N2, where N is the number of atoms
> (Non-)Linear system of equations. Can be solved with standard solvers

» Disadvantage

> Converges slowly close to a resonance
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Different types of perturbations

The response equations can be used for different types of perturbations

» Electric perturbations

v(r) =r;

© (arb. units)

Response contains information about
polarizabilities, absorption, fluoresence,
etc.

\_/\,&,_.._
4

Energy (V)

> Magnetic perturbations
v(r) =L;

Response contains e.g. NMR signals,
etc.

» Atomic displacements

9u(r)
v(r) =
OR;
20 CHy 1250 am't
Response contains e.g. phonons, etc. : ot
asym stretch . *

Frequency
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Outline

Real-space representation and real-time propagation
» Real-space representation for wavefunctions and Hamiltonians

» Time-propagation schemes

» Optimal control of electronic motion

Time-evolution of open quantum systems
» Stochastic Schrodinger equations, master equations
» Stochastic current DFT

> Stochastic quantum molecular dynamics
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Real-space grids

v

Simulation volumes: sphere, cylinder, parallelepiped

v

Minimal mesh: spheres around atoms, filled with uniform mesh of grid points

\4

Typically zero boundary condition, absorbing boundary, optical potential

v

Finite-difference representation ("stencils”) for the Laplacian/kinetic energy

\4

Pseudopotentials

v

Domain-parallelization

Domain A Domain B

Ghost Points of Domain B
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Real-space grids
» Example: five-point finite difference Laplacian in 2D

2

o T e L L i 1)+ 2000, 5) — (i + 1, 5)]
2

o g ™ e |~ 00T = 1)+ 200.0) = 906, + )

» Stencil notation for kinetic energy

e i RLCr)

> Leads to sparse matrices
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Real-space grids

» Size of Hamiltonian matrix can easily reach 107x10”

» Basic operation Hvy) — sparse matrix vector operations

» Sparse solvers
» Conjugate gradients

> Krylov subspace/Lanczos methods

» Davidson or Jacobi-Davidson algorithm

v

Multigrid methods
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Real-time evolution for the time-dependent Kohn-Sham system

» Time-dependent Kohn-Sham equations

inoLi () = ( o uslpl(n,0)) (.0

vslp(, E)](e,) = v(r, ) + / - d3 ' veelpe, E)](r, 1)

ler

> Initial value problem

;(r,t) = ¢ (r)

» Time-evolution operator U(t, to)

12 (I‘, t) = U(tv to)QOj (I‘, to)
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Properties of ﬁ(t, to)

» U(t,1o) is a non-linear operator
> The propagator is unitary uot=0""

> In the absence of magnetic fields the propagator is time-reversal symmetric
U™ (t,to) = Ulto, t)
» Equation of motion for the propagator
ihdU(t to) = H®)U(t,t0),  Ulto,to) = 1

> Representation in integral form

Ot to) = 1 — i/t dr ()0 (7, 1)

to

> lterated solution of integral equation - time-ordered exponential

Ult, to) i /dtl/ dts . . /dt TIHt)H((t2) ... H(t,))]

:Texp(—l/ drH(7))

to

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods July 19, 2011

25 / 62



Real-time evolution - Short-time propagation

» Group property of exact propagator
Ulti,t2) = U(tr, t3)U(t3, t2)

> Split propagation step in small short-time propagation intervals

N—

Ult, to) H (tj, t; + Aty)

» Why is this a good idea?
> If we want to resolve frequencies up to wmax, the time-step should be no larger than
~ 1/wmax

> The time-dependence of the Hamiltonian is small over a short-time interval

> The norm of the time-ordered exponential is proportional to At.

July 19, 2011 26 / 62
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Real-time evolution - Magnus expansion

» Time-ordered evolution operator
Ult, to) = n| /dtl/ dts .. /dt TIHt)H(ts) ... H(t,))]
n= 0

:Texp(—i/ drH(1))

to
> Magnus expansion

U(t + At,t) = exp (01+Qz+§23+---)

» Magnus operators

) tHAt
O :—z/ H(r)dr

/t+At/ T2)]dT2dT1

@>
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Real-time evolution - Magnus expansion

» Second-order Magnus propagator - Exponential midpoint rule
UP (t 4 At,t) = exp (Ql> +0(A?)
Q1 = —iH(t + At/2) + O(AL).
» Fourth-order Magnus propagator

UM (t+ At,t) = exp ( 1+ Qz) + O(AL°)
H

Qo = —i[H (1), H(72)] 5
T1.2 —t—i—(%ﬂ:%)At

July 19, 2011
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Real-time evolution - Crank-Nicholson/Cayley propagator

» Padé approximation of exponential, e.g. lowest order (Crank-Nicholson)

exp(—iHAL) ~ ﬁ

> Need only action of operator on a state vector

Wt + AL) = %lw))

> (Non-)Linear system of equations at each time-step

(1+iHAL/2)|U(t + Ab)) = (1 — iHAL/2)[T(t))
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Real-time evolution - Operator splitting methods

» Typically, the Hamiltonian has the form H=T+V

v

Tis diagonal in momentum space, Vin position space

v

Baker-Campbell-Hausdorff relation

etef = exp(A + B+

v

Split-Operator

exp(—iAH(T + V) ~ exp(—iAtT/2) exp(—iAtV) exp(—iAtT/2)

Use FFT to switch between momentum space and real-space.

» Higher-order splittings possible, but require more FFTs
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Real-time evolution - Enforced time reversal symmetry

» Enforced time-reversal symmetry

exp(-l—i%f](t A T(L+ AL)) = exp(—i%f[(t))hll(t))

> Propagator with time-reversal symmetry

OFTRS (4 4 At 1) = exp(—i%ﬁ(t + A1) exp(—i%ﬁ(t))
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Real-time evolution - Matrix exponential

1—iHAt/2
14 iHAt/2
U™M(t + At t) = exp (—iAtFI(t + At/Q))

UN(t 4 At t) =

USC(t + At, t) = exp(—iAtT /2)exp(—iAtV )exp(—iAtT/2)

OFTRS (4 4 At 1) = exp(—i%fl(t + Anexp(~i LA (1))
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Real-time evolution - Matrix exponential

1—iHAt/2

14 iHAt/2

U™M(t + At t) = exp (—iAtFI(t + At/Q))

USC(t + At, t) = exp(—iAtT /2)exp(—iAtV )exp(—iAtT/2)

UN(t 4 At t) =

UPTRS (4 + AL t) = exp(—i%ﬂ(t + At))exp(—i%ﬁ(t))
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Real-time evolution - Matrix exponential

C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of A Matrix, SIAM Review 20, 801 (1978)

C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of A Matrix,
Twenty-Five Years Later, SIAM Review 45, 3 (2003)

Task: Compute exponential of operator/matrix
» Taylor series
> Chebyshev polynomials
» Padé approximations
» Scaling and squaring
» Ordinary differential equation methods
» Matrix decomposition methods

> Splitting methods

Task: Compute e for given v
» Taylor series

» Chebyshev rational approximation

» Lanczos-Krylov subspace projection
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Real-time evolution - Conclusion

So, which method should | use?

> No clear winner
» Depends on spectral properties of Hamiltonian ...

> ... and the basis set or discretization

v

Symplectic and/or time-reversal property required?

Default propagator in octopus:

Enforced time-reversal symmetric (ETRS) propagator with 4th order Taylor expansion of
exponential

Do not rely on a single propagator.
Always check time-evolution by comparing different schemes!
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Real-time evolution - Movie time

Proton scattering of fast proton with ethene
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Octopus code

» Octopus: real-space, real-time TDDFT code, available under GPL
http://tddft.org/programs/octopus/wiki/index.php/Main_Page

(Parsec: real-space, real-time code using similar concepts)

> libxc: Exchange-Correlation library, available under LGPL
(used by many codes: Abinit, APE, AtomPAW, Atomistix ToolKit, BigDFT, DP,
ERKALE, GPAW, EIk, exciting, octopus, Yambo)

http://tddft.org/programs/octopus/wiki/index.php/Libxc

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods July 19, 2011 37 /62



Optimal control theory

Control of ring current in a quantum ring

t=0]] t=10

external potential

density profile

Optimal Control of Quantum Rings by Terahertz Laser Pulses, E. Rasanen, et. al, Phys. Rev. Lett. 98, 157404 (2007).
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Optimal control theory

Goal: find optimal laser pulse €(t) that drives the system to a desired state ®y

> maxize overlap functional

J[V] = [(W(T) | @f) [,

> constrain laser intensity

T
bM:—m/e%Mﬁ
0
> Lagrange multiplier density to ensure evolution with TDSE

J3[W, X, €] = —2|m/0T<X(t)

Q@_ﬁwﬂwm>m

Find maximum of J1[¥] + Jo[e] + J3[¥, x, €
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Optimal control theory

» First variation of the functional

0J = 0w + 0y J + 0. =0
» Control equations

bod =0+ (D= HO)[x0) =0, [X(T)) = &) (s ¥(T))

5T =0 (iat—ﬁ(t))|\ll(t)):0, |(0)) =|®;),

0eJ =0 : aoge(t)=—Im{x®)|a|v ().
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Optimal control theory

Optimal laser pulse and level population

(ba) (b)

N
r\ 1=_2v1=2 o.
1=-1*- l7"=1 1=—1 =1
1=0 1=0

0.5 01 0.9999
3 3
< < c
~0.05 €x -0.1 g 0.999
1 1
I=-1 1=1 1=-2 2 3
0.8 0.8 8
H 1=0 § -101 o 0%
2 0.6 % 0.6
] s
8 0.4 8 0.4 0.9
o o
0.2 0.2
0 25 50 0 35 70 %
t(a.u) t(a.u)

Optimal Control of Quantum Rings by Terahertz Laser Pulses, E. Rasanen, et. al, Phys. Rev. Lett. 98, 157404 (2007).
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Outline

Time-evolution of open quantum systems

» Stochastic Schrodinger equations, master equations

» Stochastic current DFT

> Stochastic quantum molecular dynamics
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Why Open Quantum Systems?

General aspects:
» Cannot have perfectly isolated quantum systems
» Dissipation and Decoherence

> Every measurement implies contact with an environment
One actually needs to bring a system into contact with an environment (i.e.
measurement apparatus), in order to perform a measurement
— environment as (continuos) measurement of the system.

Research fields:

» Quantum computing/Quantum information theory

> (time-resolved) transport and optics

v

(driven) quantum phase transitions

v

Quantum measurement
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Open Quantum System

S+B:Hs® Hp,V,p

System

<> 2 X
S HS7\II‘S'7PS

Environment
B:Hp, Vg, pB

Hamiltonian of combined system

H=Hs®Ip+1Is® Hp+ Hsp
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Open Quantum System

S+B:Hs® Hp,V,p

System

- ? X
S HS7\II‘5'7pS

Environment
B:Hp, V5, pB

Hamiltonian of combined system
H=Hs®Ip+1Is®Hp+ Hsp
Unitary time evolution

D) = AW(E) 5 p(t) = —i [H(), 5(0)]
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Reduced system dynamics

S+B:Hs® Hp,V,p

System

<> 2 X
S HS7\II‘5'7pS

Environment
B:Hp, V5, pB

Tracing over bath degrees of freedom
ps

TrBﬁ

d .
@PS(t)

m>

~iTrs [H (1), 5(0)]
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Feshbach Projection-Operator Method

H=Hs+ Hp +aHsp, Hpxn(zB) = enxn(zB)
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Feshbach Projection-Operator Method
H=Hs+ Hg + aHsp, Hpxn(zB) = enxn(zB)

Expand total wavefunction in arbitrary complete and orthonormal basis of the bath

U(zs, wp;t) = Y dulws;t)xn(zn)
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Feshbach Projection-Operator Method
H=Hs+ Hg + aHsp, Hpxn(zB) = enxn(zB)

Expand total wavefunction in arbitrary complete and orthonormal basis of the bath
U(zs, wp;t) = Y dulws;t)xn(zn)
Projection Operators

Poi=Is® |xn){xnl  Qui=Is®Y |x; )5l
i
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Feshbach Projection-Operator Method

H = Ifls +1le +aﬁSB,

Hpxn(zB) = enXxn(zB)
Expand total wavefunction in arbitrary complete and orthonormal basis of the bath

U(zs, wp;t) = Y dulws;t)xn(zn)
Projection Operators

= Is@ Yol Qui=Is®@ ) I x|
j#n
Apply to TDSE
i0: P, W(t) = LU(E) + P HO, (1)

z@t(é,l\ll(t) = I\I/(t) + (anPn\II( )

o HP,
HQ,
P. Gaspard, M. Nagaoka, JCP, 111, 5675 (1999)
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Feshbach Projection-Operator Method
Effective equation for W (still fully coherent)

Source Term

0 U () =(PHPYPW(t) + PHOe " T Ow(0)

t A o
—i / drPHQe MO P Pw(r)
0

Memory Term
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Feshbach Projection-Operator Method
Effective equation for 7’ W (still fully coherent)

Source Term

0 U () =(PHPYPW(t) + PHOe " T Ow(0)

t A o
—i / drPHQe MO P Pw(r)
0

Memory Term

= Formal similarity to quantum transport formulation of Kurth and Stefanucci et. al.
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Feshbach Projection-Operator Method
Effective equation for 7’ W (still fully coherent)

Source Term

0 U () =(PHPYPW(t) + PHOe " T Ow(0)

t A o
—i / drPHQe MO P Pw(r)
0

Memory Term

= Formal similarity to quantum transport formulation of Kurth and Stefanucci et. al.

Non-Markovian Stochastic Schrédinger equation

> perturbative expansion to second order in a« Hsp
» random phase approximation, dense bath spectrum, bath in statistical equilibrium

i00p(t) =Hsp(t) + a > 1a(t)Vath(t)

t 2 - N
—ia? / dr Z Cop(t—7)  VieTHsE=D0(r) + O(®)
0 B (S —

Bath correlation functions

P. Gaspard, M. Nagaoka, JCP, 111, 5675 (1999).

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods July 19, 2011 47 / 62



Markovian Stochastic Schrédinger equation
d-correlated bath

Cag(t — T) = Daﬁ(S(t - T)

Stochastic Schrédinger equation in Born-Markov approximation
i0:p(t) =Hsp(t) + aZna Wath(t)
—ia” EDaﬂva Vath(t) + O(a”)
af

Statistical average:
|9(t) ) () |
ps(t) = ————
ERTTOIFION
» Valid for time-dependent Hamiltonians

> Gives always physical states

> Sound starting point to formulate stochastic TDDFT
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Connection to Lindblad equation

Stochastic Schrédinger equation in Born-Markov approximation
i00p(t) =Hstp(t) + @y ma(t)Var(t)
—ia® Y DasViVato(t) + O(a)

af

— Lindblad equation can be derived from the Stochastic Schrédinger equation

Lindblad equation

d . T . NI ~ 1 Asn 1. IS
S0s0) = =i [f15, (0] + S (Vups OV} = L0 Tips(t) = Sps V4 )
k

On the generator of quantum mechanical semigroups, G. Lindblad, Commun. Math. Phys., 48, 119-130 (1976).

Note: We can consider the Stochastic Schrodinger equation also in non-Markovian form
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Markovian Stochastic Schrédinger equation
d-correlated bath

Cag(t — T) = Dag(s(t — T)

Stochastic Schrédinger equation in Born-Markov approximation
i0:p(t) =Hsp(t) + aZna Wath(t)
—ia” EDaﬂva Vath(t) + O(a”)
af

Statistical average:
|9(t) ) () |
ps(t) = ————
ERTTOIFION
» Valid for time-dependent Hamiltonians

> Gives always physical states

» Sound starting point to formulate stochastic TDDFT
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TDDFT for Open Quantum Systems

> Approach in terms of density matrices
K. Burke, R. Car, and R. Gebauer, Phys. Rev. Lett. 94, 146803 (2005).

> Approach in terms of stochastic Schrédinger equations
M. Di Ventra and R. D'Agosta, Phys. Rev. Lett. 98, 226403 (2007).

» Comparison to classical stochastic systems:

Fokker-Planck equation <= Langevin equation
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Stochastic Time-Dependent Current-Density-Functional Theory

Can prove: For fixed bath operators V and fixed initial states ®o and ¥,

11 A(r,t)

i(r,t)

M. Di Ventra and R. D'Agosta, Phys. Rev. Lett. 98, 226403 (2007).
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Stochastic Time-Dependent Current-Density-Functional Theory
Can prove: For fixed bath operators V and fixed initial states ®o and ¥,
1:1

j(r,t) A(r,t)

M. Di Ventra and R. D'Agosta, Phys. Rev. Lett. 98, 226403 (2007).

Mapping of fully interacting stochastic TDSE to stochastic TDKS equations

N 1. avn .
0 (r,t) = | HS(t) — giVTVJr WOV | y(r,)
——
damping

——
fluctuations
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Stochastic Time-Dependent Current-Density-Functional Theory
Can prove: For fixed bath operators V and fixed initial states ®o and ¥,
1:1

j(r,t) A(r,t)

M. Di Ventra and R. D'Agosta, Phys. Rev. Lett. 98, 226403 (2007).

Mapping of fully interacting stochastic TDSE to stochastic TDKS equations

05(r,0) = |HSS(@) = VTV 4 107 | s

—— VT
damping fluctuations

I(t) : stochastic process

Assumes

» Markovian approximation: no bath memory

» Weak coupling to the bath (second order in Hgg)
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Choice of bath operators: a simple model

Order-N scheme and bath operators which obey Fermi statistics
Vi (1) = 815 (1 = S )/ 7 (1) fo (€x) [ 45 (x) ) {(owe (x) |
Yu. V. Pershin, Y. Dubi, and M. Di Ventra, Phys. Rev. B 78, 054302 (2008).

Fermi-Dirac distribution

Foler) = [1 +exp (EZB_T“)] -

Vi (£) =[x (r) )y0(wr (r)

Local relaxation rates
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Quantum jump algorithm

to t t to  ta tz  t3 ty 1y

wgitipg—t@me
d(to) = ¥(to) o) = Vib(ty) distribution

. T . [T

auxilary state

physical state [T « — « [ - — « (1] - — - [ - —- ]
¥(to) O(h) Vip(ty)

1) Draw uniform random number n; € [0, 1]
2) Propagate auxilary state under non-Hermitian Hamiltonian
101 = Hop — iV Ve
3) Propagate physical state under norm-conserving Hamiltonian
i0:1) = Hoth — VIV + i \\7'1,'\ \Qu
4) If norm of auxilary wave function drops below 7;, act with bath operator
NG <myy () = V(ty), é(t;) = ¥(t;)
5) Go to step 1)

— Leads to piecewise deterministic evolution
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Application: Laser excitation of Neon dimer with clamped nuclei

0.25
Laser pulse, 50 fs pulse duration
E() 0.00 peak intensity 2.2 x 10> W/cm?
025

0.30F
d(t) 0.00

-0.301

dtt) o

d(t) 0.00 b

100 150 200 250 300
time [fs]

o
[
=3
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Application: Laser excitation of Neon dimer with clamped nuclei

0.25
Laser pulse, 50 fs pulse duration
E() 0.00 peak intensity 2.2 x 10> W/cm?
025

0.30F
dit) 0.00 closed quantum system

-0.301

dtt) o

d(t) 0.00 b

. \ . .
100 150 200 250 300
time [fs]

o
[
=3
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Application: Laser excitation of Neon dimer with clamped nuclei

0.25
Laser pulse, 50 fs pulse duration
E() 0.00 peak intensity 2.2 x 10> W/cm?
025

0.30F
dit) 0.00 closed quantum system

-0.301

open quantum system
relaxation rate 7 = 150 fs

dtt) o

d(t) 0.00 b

100 150 200 250 300
time [fs]

o
[
=3
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Application: Laser excitation of Neon dimer with clamped nuclei

0.25
Laser pulse, 50 fs pulse duration
E() 0.00 peak intensity 2.2 x 10> W/cm?
025

0.30F
dit) 0.00 closed quantum system

-0.301

open quantum system

d(t) o.
relaxation rate 7 = 150 fs
open quantum system
d(t) 0.00 b .
relaxation rate 7 = 15 fs
-0.30
o] 5‘0 1 60 1 I50 260 2‘50 300

time [fs]

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods July 19, 2011 55 / 62



Molecular Dynamics for Open Systems

Standard approaches like Car-Parinello MD, Born-Oppenheimer MD, Ehrenfest MD:

> Electronic degrees of freedom are treated with closed system approach
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Molecular Dynamics for Open Systems

Standard approaches like Car-Parinello MD, Born-Oppenheimer MD, Ehrenfest MD:
> Electronic degrees of freedom are treated with closed system approach

» Damping is added only to nuclear EOM (Langevin terms, velocity dep. forces)
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Molecular Dynamics for Open Systems

Standard approaches like Car-Parinello MD, Born-Oppenheimer MD, Ehrenfest MD:

> Electronic degrees of freedom are treated with closed system approach

» Damping is added only to nuclear EOM (Langevin terms, velocity dep. forces)

However:

Electrons are the first to experience energy transfer to a bath
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Molecular Dynamics for Open Systems

Standard approaches like Car-Parinello MD, Born-Oppenheimer MD, Ehrenfest MD:

> Electronic degrees of freedom are treated with closed system approach

» Damping is added only to nuclear EOM (Langevin terms, velocity dep. forces)

However:

Electrons are the first to experience energy transfer to a bath

Nuclei feel bath directly but also through electron-ion interaction
= different forces on nuclei

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods July 19, 2011

56 / 62



Molecular Dynamics for Open Systems

Standard approaches like Car-Parinello MD, Born-Oppenheimer MD, Ehrenfest MD:

> Electronic degrees of freedom are treated with closed system approach

» Damping is added only to nuclear EOM (Langevin terms, velocity dep. forces)

However:

Electrons are the first to experience energy transfer to a bath

Nuclei feel bath directly but also through electron-ion interaction
= different forces on nuclei

Need open quantum theory for both electrons and nuclei
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Stochastic Quantum Molecular Dynamics

Extension of stochastic TDCDFT to include nuclear degrees of freedom
10,V = H(t)¥ — %iVTV\I/ +1E)VE

H(t) =Tu(r, t) + Wee(r) + Uexe,e(r, t)+

To(R, ) + Wan(R) + Uexen (R, 1)+
Wen (L B)

Total current

(J(,t)) = (i(r 1)) +(J(R, 1)),  ==(rR)

For given initial state U(z,¢ = 0) and bath operators V,(x, t)

(J(z, 1)) &5 A, )

Heiko Appel, Massimiliano Di Ventra, Phys. Rev. B 80, 212303 (2009). Heiko Appel, Massimiliano Di Ventra,

http://dx.doi.org/10.1016 /j.chemphys.2011.05.001 (2011).
Intro to real-space, linear-response, and TD methods July 19, 2011
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Stochastic Quantum Molecular Dynamics: practical scheme

Extension of stochastic TDCDFT to include nuclear degrees of freedom
000 (1) = H(L)U (1) — %iVTV\II(:c,t) V()

In practice: resort as approximation to classical nuclei

Bath operators

Vil (r, R(1);8) = 81 (1 = 8 ) v/~(r, R(8); 1) [ (en) |95 (r, R(1)58) ){ows (1, R(L); 1) |

Ehrenfest forces as approximation for classical nuclei
MR (t) = —/W*Vaaﬁerg

Note:

Wavefunctions are stochastic = stochastic force on the nuclei

Heiko Appel, Massimiliano Di Ventra, Phys. Rev. B 80, 212303 (2009).
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Vibronic excitation of Neon dimer, moving nuclei

15
[ =
2 00 closed quantum system
2 . . .. .
g stretched initial condition
15

0.0 0.2 0.4 0.6 0.8 1.0
time [ps]
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Vibronic excitation of Neon dimer, moving nuclei

% 0.0 closed qua.n'.afm syste'n'1
g stretched initial condition
.1.5/\/\/\/\/V\MAM/\/
00 02 04 06 08 10
time [ps]
15 ‘ - open quantum system
relaxation rate 7 = 300 fs
<
% 0.0 Maxwell-Boltzmann velocity distribution at
g jumps
3/2 mi?
-1.5/\/\/\/\/\/\W ) :( . ) na
1O = Gt P\ 2kr

0.0 0.2 0.4 0.6 0.8 1.0
time [ps]

Average over 15 stochastic realizations
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Stochastic Quantum MD simulation for
4-(N,N-Dimethylamino)benzonitrile

44
1

Electron Localization Function

Rotated dimethyl group as
initial condition
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Stochastic Quantum MD simulation for
4-(N,N-Dimethylamino)benzonitrile

=c— ’ N/CH3

30 =
— 200 7N : :
N EEALD : -
g 18 \\\ ~ ,: \p-'-—-
© : D Sk oS
S -10f- - closedsystem @OK | '\ : ,
& -20l|— opensystem @ 0K \: J
3oll= open system @ 300K N 7 o
6. 100 - 200 300 _ 400 500 : 600
- time- [fs] :
@a g0l T s Fi=273fs ] t=550fs 130
g lT:—oofﬁ P T=0K P T=0K 1 T=0K 120
g 20 H Jﬂ 1 110
o 2 I o S e e
2 400 asts 1 T=300K b T=300K 1 T=300K 120
g 2o i 1 110
0 0o

250 25 25025 25025 250 25
angle[deg] angle[deg] angle[deg] angle[deg]

Heiko Appel, Massimiliano Di Ventra, Phys. Rev. B 80, 212303 (2009).
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Thanks to the people over at tddft.org

and
Thank you for your attention!
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