Practical session 5: Ab initio Molecular
Dynamics and Thermodynamic Properties

Prepared by Christian Carbogno, Luca M. Ghiringhelli, and Mariana Rossi

July 20, 2011

o

Figure 1: The C2Hg (ethane) molecule.

All the useful files for this tutorial (together with solutions) are located in:
/pub/tutorialb

All the scripts for this tutorial are located, as usual, in:
/pub/tutorialb/scripts

The microcanonical ensemble

Exercise 1: The importance of the SC convergence criteria

To start our first Molecular Dynamics (MD) simulation, we will use a very simple molecule, which
is ethane (C2Hg), and we will investigate the importance of the self-consistency convergence criteria
when simulating the microcanonical ensemble.

A geometry for CoHg is already provided in the folder exercise_1 (all files for exercise z are
located in the folder named exercise_z). You will notice that this file also contains specific
velocities for each atom, so that the Molecular Dynamics run will not use a random initialization.
These velocities come from a previous equilibration of the molecule at ~300K. You will see how
such a thermalization is done in exercise 3.

e First, build an input file for FHI-aims using the LDA (pw-1da) functional, no spin polar-
ization (spin none), and using the “light” standards for the species. Please refer to the
manual for the exact syntax of these flags.

IMPORTANT: Add the following flag to your control.in file:

wf_extrapolation none



This flag will be explained in a moment.

Do not add any flags that we do not mention. They are not needed and might hinder the
performance of the calculation.

e Start a 0.15ps MD run in the microcanonical ensemble, using a 0.0005ps (At = 0.5fs) time
step (flags MD_run and MD_time_step respectively), with the following “loose” self consistency
convergence criteria:

MD_run 0.15 NVE
MD_time_step 0.0005
sc_accuracy_rho 1E-2
sc_accuracy_eev 1E-1
sc_accuracy_etot 1E-3

sc_accuracy_forces 5E-2

In order to start the run type:
mpirun -np 4 "FHI-aims binary" > "output file" &

— The & puts the run in the background, so that the output file is created, but the
terminal is free for other use.

— If you anyway would like to have a dynamic view of what happens in your output,
after starting the simulation you can type:
tail -f "output file"

— ATTENTION: do not start another FHI-aims run simultaneously.
That would slow down BOTH calculations considerably.

e When the previous calculation is over, run another simulation, keeping all parameters men-
tioned above but changing the name of the output and also changing to the “accurate”
self-consistency criteria:

sc_accuracy_rho 1E-5
sc_accuracy_eev 1E-4
sc_accuracy_etot 1E-6

sc_accuracy_forces 5E-4

When it is done, use the “aims_ MD_ eval.pl” script to analyze your run by typing in the
terminal:

perl aims_MD_eval.pl "FHI-aims-output-file" > "script-output-file"

Do this for both outputs. Now plot the total energy (fifth column of the script output file)
vs. the simulation time (first column of the script output file) in xmgrace. For a short guide
on how to plot files with multiple columns in xmgrace see the Appendix to this tutorial.

Can you see how the energy drifts with the “light” settings?

e Now do an extra simulation, also of 0.15ps in total, using the same loose accuracy settings
of the first simulation, but set the flag:

wf_extrapolation polynomial 3 1

When it is done, use the “aims_MD_eval.pl” script to analyze your run again. Compare
the total energy of this simulation (fifth column of the script output file) vs. the time of
simulation (first column of the script output file) with the other two from above.

Do you see that the energy drift is diminished?



Ideally, there should be no energy drift whatsoever, since the energy is conserved in the micro-
canonical ensemble. The reason for this drift is that we leave the true Born-Oppenheimer surface
if we don’t converge well our electronic structure; this leads to an unphysical (and undesirable)
energy drift.

The flag wf_extrapolation specifies which type of wave-function extrapolation is being used,
which in this case is just a polynomial extrapolation. A pictorial representation of several polyno-
mial extrapolations can be seen in Figure 2. The numbers “3 1” means that 3 points are considered,
the polynomial is exact up to first order (1) and the higher odd orders (3, in this case), are used
to enhance the time reversibility of the algorithm [1, 2].
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Figure 2: Various types of extrapolations of a model function, with the respective formulas

The extrapolation reduces a possible energy drift in the MD runs, even for moderate accuracy
settings, and additionally (depending on the settings) can lower the number of SCF cycles per
time step. This makes your simulation faster. However, if the force accuracy is low, dynamical
quantities like the ones that will be calculated in Exercise 4 (auto-correlation functions) will not
be accurate, even if no energy drift is seen.

Timing: ~8 minutes per simulation, ~20 minutes total



Exercise 2: The importance of the time step size

In the second exercise, we will investigate the effects of the time step size in a microcanonical
simulation. For a better illustration, we will not only consider the CoHg molecule, but also its
heavier, deuterated counterpart CoDg'. In order to speed up the exercise, each group will simulate
either CoHg or CoDg. Geometry files, containing both Cy;Hg or CoDg are already provided in the
folder exercise_2. The species default for deuterium, that you should put in your control.in
file, is provided in this exercise’s folder. The suggested choice of the molecule will be made clear
(announced) by the tutors at hand.

e Copy the geometry file corresponding to the molecule you will calculate to geometry.in.
If you are doing the deuterated molecule, append to your control.in file from the last
exercise the deuterium species default, found in this exercise’s folder. Take few moments to
understand the differences between the hydrogen and the deuterium species default. With
respect to exercise 1, the following modifications should be made in your control.in:

— Increase the time step (At) of the MD simulation to 0.001ps
— Switch off the wave-function extrapolation (wf_extrapolation none)

— Keep the accurate settings for the self-consistency convergence parameters

Then run FHI-aims (total of 0.15ps) and keep the output.

e Now increase the time step to 0.003ps and run the simulation again, redirecting the output
to another file.

e As done in Exercise 1, plot the total energy vs. simulation time in xmgrace for:

— The result you obtained in exercise 1 for At = 0.0005ps (Only if you are doing CoHg!)
— The run you just obtained with At = 0.001ps
— The run you just obtained with At = 0.003ps

How do the energy fluctuations develop? Do you notice something strange happening for the
At = 0.003ps run?

From a numerical point of view, a larger time step is desirable, since it allows to assess longer
trajectories in shorter computational times. Notice, however, that the At = 0.003ps simulation
diverges for CoHg. In fact, the molecule dissociates. You can inspect the dynamics of the molecule
by running

create_xyz_movie.pl "FHI-aims-output-file" > "script-output-file".xyz

on your output and opening it in VMD (or Jmol, or Molden, whichever you prefer). The reason for
the dissociation is that the integrator is unable to deal with these “big” time steps. This integrator
uses a simple Verlet algorithm [3], where the error in the trajectory goes with At. If you are
simulating CoDg, the At = 0.003ps simulation does not diverge, although the energy fluctuations
become very large. You can also look at the dynamics of this molecule in VMD.

Although such large energy fluctuations would be already not accurate enough for a production
run with this molecule, the fact that it does not explode illustrates an important point: the largest
At that can be used in a particular integration algorithm depends on the highest vibrational
frequency of the system. Since the D atoms, being heavier, have a larger vibrational period (do
you understand why this is obvious?), the used At can also be larger.

Timing: ~20 minutes total

1The deuterium atom has one proton and one neutron in its nucleus, being nearly twice as heavy as hydrogen.



The canonical ensemble

Exercise 3: Testing thermostats

Most “real-life” experiments cannot be done in a situation where the energy is explicitly kept con-
stant, but where other quantities like the average temperature for instance. In order to simulate
such a canonical ensemble, the system has to be coupled to a heat bath. From a statistical mechan-
ics point of view, the average kinetic energy in the canonical ensemble follows the equipartition
theorem, which says that it is equally distributed on the various degrees of freedom of the system.
Therefore, the momenta 7= M7 follow the Maxwell-Boltzmann (MB) distribution:
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The instantaneous temperature is given by the relation T' = %, where M is the mass of the

system and N is the number atoms. This means that the temperature is not constant but can

(and should) fluctuate around the average value. The theoretical standard deviation is o2 = 23%2

Here we apply three schemes which simulate a thermostat in MD. Below is a short summary of
the thermostats we will use in this tutorial:

1. Stochastic / velocity-resetting thermostat: the Andersen thermostat [3, 4].
This thermostat tries to apply the concept of “coupling with a heat bath” almost literally.
In practice, occasionally a particle is randomly selected and its velocity is drawn from the
MB distribution at the target temperature. The algorithm requires the specification of the
temperature and of the coupling parameter v, so that the probability that a particle is selected
in a time step At is vAt.

2. Velocity rescaling: the Berendsen temperature coupling (not sampling the canonical ensem-
ble!) [3, 7]
According to the Berendsen algorithm, a small deviation of the instantaneous kinetic energy
K from the target kinetic energy K is corrected as follows:

— dt
dK = (K — K(t)) — (2)
T
which describes an exponential decay of a kinetic energy perturbation. In practice, the
velocities are rescaled at each time step by a factor A:
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where T is the target temperature, T is the actual one, At is the time step and 7 is a
parameter that controls the strength of the coupling. If 7 = At the scheme brings back
the actual temperature to the target one exactly at each time step. With increasing 7 the
rescaling becomes milder and milder.

3. Stochastic / velocity-rescaling thermostat: the Bussi-Donadio-Parrinello thermostat[5].
In this algorithm, a deviation of the instantaneous kinetic energy is corrected in the following
way:
— dt K(t)K dW (t
dK = (K - K(t)) — +2 KK AW () (4)
T Nf \/F
where K is the target kinetic energy, K(t) is the instantaneous kinetic energy, 7 is the
relaxation time of the thermostat, Ny is the number of degrees of freedom, and dW is a
Wiener noise 2.
In practice the trajectory is first propagated for one time step with e.g. a velocity-verlet

2An example of a Wiener process W (t) is the Brownian motion (you might have heard about it...). W (t) has the
following characteristics: W (0) = 0; W (t) is continuous; the increments are independent and W (t2) — W(t1) is
a Gaussian with average 0 and o = tg — t;



integrator and the new velocities are calculated as usual. Then, the new kinetic energy K is
evaluated and the velocities are rescaled by a factor « such that:

— Ny
K
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where the R;’s are independent random numbers from a Gaussian distribution with unitary
variance (Note that Z R? can be drawn directly from a suitable Gamma distribution).

For this thermostat a conserved pseudo-Hamiltonian H can be defined:

ﬁ(t)zH(t)_/Ot(K Kt 7_2/ Fdw

where H(t) is the total energy of the atomic system.

The Bussi-Donadio-Parrinello thermostat yields the correct distribution of K, does not have
ergodicity problems, does not perturb the dynamics, and its accuracy and efficiency is rather
independent of 7.

4. Extended Lagrangian approach: the Nosé-Hoover thermostat [3, 6].
Equations of motion derived from the Lagrangian of the system conserve the total energy of
the system. One can write an extended Lagrangian, by adding fictitious degrees of freedom,
such that the overall total energy is conserved but the atomic subsystem can span ensembles
other than microcanonical. With the Nosé-Hoover Lagrangian, the atomic subsystem samples
the canonical ensemble. The equations of motion of the Nose-Hoover thermostat are:
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where ¢ is the number of degrees of freedom of the system, % is the potential energy, @ the
“thermostat mass”, and p; and m; the momenta and masses of the ith particle of the system,
respectively. The conjugated momentum II of the extra coordinate 7 acts as a fluctuating
drag parameter to the atomic subsystem. The conserved energy associated to the equations

of motion is:
11> p
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e Use the same control.in (tight convergence settings) and geometry.in for CoHg (including
the velocities that are in there) that you used in exercise 1. You will only have to change the
MD related flags, as explained below.

e Each group will run only one of the four different thermostats discussed above, and the
division will be made clear by the tutors at hand. The runs will be 0.5 ps in total, using a
0.001ps time step. Use the scheduler to set the temperature to 300 and 800 K, respectively.
The key words you should use are shown below, and the MD_run flag should be erased from
your input. The general syntax of the thermostat flags is:

<MD command> <time> <NVT_thermostat name> <temperature> <thermostat parameter>



You should provide an educated guess for the value of each thermostat’s parameter, following
the explanations given above and the hints below. If you have time, try to play with these
thermostat parameters afterwards.

1. Nosé-hoover
MD_schedule
MD_segment 0.15 NVT_nose-hoover 300 @)
MD_segment 0.35 NVT_nose-hoover 800 ()

Hint: For the mass @) of the thermostat degree of freedom, consider it as an oscil-
lator whose proper frequency should be in the range of global vibrational frequencies
(phonons) of the atomic system. Considering CyHg has such modes (see next exer-
cise) between 400 and 1500 cm~! | derive an expression that links @ with its fre-
quency f and estimate (). Alternatively, and much more straightforwardly, the flag

MD_thermostat_units cm™-1 can be used to input the thermostat mass directly in
1

em™t. (A control file control.nose-hoover_programmed.in with a reasonable value
of Q is provided in exercise_3/solution/scheduler)
2. Andersen
MD_schedule
MD_segment 0.15 NVT_andersen 300 v
MD_segment 0.35 NVT_andersen 800 v

Hint: v (the unit is ps~!) should have a value such that every few (< 10) time steps
there is a fair chance (20-40%) the system interacts with the bath.

3. Berendsen
MD_schedule
MD_segment 0.15 NVT_berendsen 300 7
MD_segment 0.35 NVT_berendsen 800 T
Hint: Use 7 (the unit is ps) equal to few time steps.
4. Bussi-Donadio-Parrinello (BDP)
MD_schedule
MD_segment 0.15 NVT_parrinello 300 T
MD_segment 0.35 NVT_parrinello 800 7T

Hint: Use 7 (the unit is ps) equal to ~ 20-50 time steps. Unless 7 is too small with
respect to the time step (1-5 time steps), the actual value of 7 does not affect the
performance of this thermostat; with a milder coupling, one observes a slower response
to the imposed change of temperature, though.

e While waiting for the simulations to complete, you are challenged to demonstrate Eq. 1.

e Analyse the output by running the “aims_MD_ eval.pl” script again and by plotting tem-
perature (column 2) vs. time steps (column 1). Do you see the change in temperature after
0.15 ps? Is the molecule already equilibrated at the new temperature when the simulation
ends?

e Compare the temperatures of “your” thermostat with the reference outputs for the other
thermostats that you can find in exercise_3/solution/scheduler.

e Plot total energy (column 5) vs time step (column 1). Did you expect such a behavior? Now,
for the Nose-Hoover and the BDP case, use the script “aims_ NH-BDP.pl” (works analogously
to “aims_MD__eval.pl”) to extract the respective conserved quantity from the trajectory and
plot it (sixth column) vs. the time steps (first column). What do you observe?

Time estimation: ~40 min



Applications

Exercise 4: Harmonic vs. anharmonic vibrations - the C;Dg molecule.

Note: Before reading all the introduction of this exercise, we invite you to read and set to run the
“task 27 (anharmonic vibrations), because this run takes about 40 minutes, so that you will have
time to read and understand everything while it runs. If you find yourself waiting yet for this run
to finish, read the introduction of Ezercise 5, and if you still have time left, we challenge you to
derive equation 18 from equation 15.

Vibrational spectroscopy is, nowadays, a very important tool for the characterization of molecules.
Usually, the frequencies measured experimentally are compared to theoretical calculations in order
to determine the geometry and electronic structure of the molecule. For this purpose, the most
common approach is to relax the geometry of a molecule on the Born-Oppenheimer potential
energy surface (PES) and then to perform a vibrational analysis in the the rigid-rotor/harmonic-
oscillator approximation. There are a few problems in this approach: the inability to probe all
representative conformations of the molecule and the inability to include anharmonic effects for
particularly floppy vibrational modes. Furthermore, rotations along certain axis of symmetry in
the molecule cannot be considered rigid rotors. This is important for the molecule studied here,
which vibrates while it rotates and thus changes its moment of inertia.

It is possible to go beyond the harmonic approximation by “brute-force”, but calculating the shape
of the potential energy surface even for very few degrees of freedom is an amazingly demanding
task.

One can overcome some of these drawbacks by performing a Molecular Dynamics simulation of
the system in question. In the framework of Linear Response Theory, one can rewrite the Fermi
Golden rule by means of the Fourier transform of the dipole moment time correlation function [8]:

1) = Fw) [ a0 - 510, (10)
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In this formula, I(w) is the intensity of the vibrations and F(w) is a quantum corrector factor which
must be multiplied with the classical line shape in order to reproduce the measured amplitudes
[9, 10]. The angular brackets denote a statistical time average for the auto-correlation of the
dipole moment of the molecule. Formula 10 will give all frequencies that are active in the IR
range. Therefore, the whole IR spectrum of the molecule can be calculated within one MD run,
since one can choose various t=0 to average the dipole auto-correlation over.

A similar relation can be found for the time average of the velocity auto correlation function:

VDOS() = Y [ dre 50 5.0, (11)
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In this case, N is the number of atoms in the molecule and the quantities that are computed are all
vibrational frequencies of the molecule, not only the ones active in the IR range (due to selection
rules). The advantage is that this function allows to assign the frequencies to the displacements of
the individual atoms [8].

For this exercise we will use our heavier molecule, CyDg, since it allows a larger time-step and
hence a longer simulation (in time). The instructions follow:

1. Harmonic vibrations

e The harmonic vibrational frequencies of the molecule are given in:
exercise_4/harmonic_vibs.

such that they can be compared to the anharmonic vibrations later on. They were
obtained just like you did for NH3 in the first practical section (Tutorial 1) of this
workshop.



2. Calculating the anharmonic vibrations

e We will simulate eight (8) temperatures, namely: 100K, 200K, 300K, 400K, 500K,
600K, 700K, and 800K. Due to the time this simulation takes, each group will only
inspect one temperature. A geometry file called geometry.in."your temperature",
which includes a thermalized geometry for the respective temperature is provided in the
exercise’s folder.

e Copy geometry.in."your temperature" to geometry.in

e Use the control.in file provided in this folder. There are some settings for the inte-
gration grids that are different, so that the simulation is computationally lighter.

e We will now run a 4ps MD simulation in the canonical ensemble with the BDP thermo-
stat. As has been discussed above, this specific thermostat does not perturb strongly
the dynamics of the system. The dynamic quantities are preserved, and thus the auto-
correlation functions can be reliably calculated. Note that this is not the case for other
thermostats. The “traditional” way of performing this simulation would be to first
thermalize the molecule at the desired temperature and then start an MD run in the
microcanonical ensemble, where the dynamical quantities would be computed. In the
case of few degrees of freedom, though, the microcanonical sampling would be wrong,
because the distribution of velocities is rather different from a Maxwell-Boltzmann one.
With increasing number of degrees of freedom (more than = 50), the distribution of
velocities in the microcanonical and canonical ensembles become indistinguishable.

Your MD block should read:

MD_run 4.0 NVT_parrinello "your temperature" 0.1
MD_time_step 0.002

This run takes ~35 minutes.

e Dipole-dipole correlation function: IR spectrum. For the analysis of this simu-
lation, we will use the script auto-correlate.py in order to see the evolution of the
auto correlation function and of the spectrum with the time of the run. Besides doing
this analysis at the end of the simulation, you can do it after approximately 1ps, 2ps,
and 3ps of simulation (or more often if you want). To check interactively how far the
simulation is, you may write:

grep "Updated atomic structure" "Output-File" | wc -1
which gives the number of completed time steps.

In order to run auto-correlate.py, you need to prepare an input file called
‘control.autocorr.in’ The flags are the following:

— path string
‘string’ is the name of the FHI-aims output
— choice string

‘string’ is the type of autocorrelation you want to calculate. Accepts either velocity’
or ’dipole’

— sampling_interval integer
‘integer’ is an integer number that defines the sampling interval (each t=0) to
calculate the autocorrelation. Recommended value is 1.

— cutoff_ratio float

‘float’ is a float number in the interval [0, 1] that defines the ratio of the tail of
the autocorrelation function you wish to leave out in order to make the fourier
transform. Recommended value is 0.1.



— broadening float

‘float’ is a float number in units of wavenumbers (cm~!) that defines the broadening
of the Gaussian to be convoluted with the Fourier transform. Recommended value
is 3.

An example of input file for this script is provided in the folder exercise_4/anharmonic_vibs/.
Copy also the executable "home_made_ft.x" to the folder where you are performing this
exercise. You can then run the script by typing:

python auto-correlate.py
Three files will be generated, namely:

— autocorr.dat contains 3 columns, the first being time in ps, the second being the
autocorrelation function, and the third being the autocorrelation function times a
window function that makes it go to zero on the edges. The window function is
essential for reducing the noise in the Fourier transform.

— raw__fourier__transform.dat contains 2 columns, the first being wavenumbers in
cm~! and the second the intensities in arbitrary units

— convoluted__fourier__transform.dat contains 2 columns, the first being wavenum-
bers in cm ™! and the second the intensities in arbitrary units convoluted with a
gaussian curve (width given in the input).

Run first the python script with the ‘dipole’ option in the dipole-autocorr folder.
Remember to rename the outputs of the script so that they don’t get overwritten.
Visualize them in xmgrace and see how the autocorrelation function and the peaks of
the Fourier transform evolve with time. What does the “long” time (average) correlation
indicate? Did you expect the curve not to go to zero?

Watch the movie. After extracting the xyz movie of the MD run, via the script
create_xyz_movie.pl, you may also want to visualize the trajectory, e.g., with VMD.
Checking the visualized trajectory, together with the plot of the total(-should-be-conserved)-
energy, is generally an unmatched test to see whether something (and what, if the case)
went wrong.

Now that you have the anharmonic and the harmonic vibrational frequencies, try to plot
them on top of one another to see the differences. The outputs are in arbitrary units,
therefore you should scale one of the two spectra in order to compare them. Higher
temperatures should show more anharmonic effects, while low temperatures should be
closer to the harmonic result. Which peak shows more anharmonicity?

Velocity auto correlation function and projection onto normal modes. After
the whole FHI-aims run is finished, run also the python script with the ‘velocity’
option, in a new folder that you can call “velocity-autocorr”, for example.

Copy the “basic.xyz” output from the harmonic analysis into the velocity-autocorr
folder. Copy the script project_vacf.pl and project_vacf_autocorrelate_one.py
script into the same folder. The full contents of your folder should be:

— control.autocorr.in with the velocity option.

— basic.xyz file containing the harmonic vibrational modes of CD3-CD3
— project_vacf.pl script

— project_vacf_autocorrelate_one.py script

— home_made_ft.x executable

— The output of you MD run.

The project_vacf.pl projects the velocity autocorrelations onto the harmonic normal
modes. The parameters of this script are:

1) the xyz containing the normal modes (i.e. basic.xyz)

2) the name of the MD output

A typical call will look like:

10



project_vacf.pl basic.xyz "fhi-aims output"

You will get as output one intensity file for each stable frequency (i.e. without the 6
rigid body modes at 0 frequency) of the molecule. The outputs are named:
convoluted_fourier_transform."fhi-aims-out".mode."id-mode"_"mode-freq".vact
where "id-mode" is just a counter that orders the modes.

Plot them all together, e.g. using

xmgrace convoluted_fourier_transform."fhi-aims-out".mode.*

Are the normal modes still vibrating with a localized frequency? Attention: at high
temperatures, if your molecule changes conformation, this projection will break down.

Which mode(s) is/are present in the spectrum of the velocity auto correlation function
but not in the spectrum of the dipole auto correlation function?

Can you assign the modes to a particular vibration, for instance by visualizing the
eigenvectors related to each mode that were calculated for the harmonic case (visualize
the harmonic modes in Molden or Jmol, like in Tutorial 1)? Attention: if your molecule
changes conformation such an analysis will be meaningless.

Timing: 40min for the simulations , 1h total
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Exercise 5: Free energy estimation via Thermodynamic Integration - the
C,Dgs molecule.

While the potential energy surface is shaped by the 3N coordinates (degrees of freedom) that
describe a molecule, the free energy surface, which is the quantity actually measured in experiments,
is a function of thermodynamical variables (temperature, pressure, entropy, volume, etc.). This is
the quantity of fundamental interest for comparison with experiments and the one that rules all
dynamics of the system. Obtaining free energies always involves averaging out degrees of freedom
for specific thermodynamic conditions. In order to perform this task, it is necessary to define the
partition function Z(T') of the system of interest. With respect to the canonical partition function
Z(T), the Helmholtz free energy can be written as[11]:

F(T) = —kzTn[Z(T)], (12)

where kg is the Boltzmann constant and T is the temperature.

In the rigid-rotor/harmonic-oscillator approximation, the vibrational partition function can be
written as a product of the several vibrational energy levels, weighted according to the Bose-
Einstein statistics to take into account the quantum nature of the nuclei:

B hw;
BN-6 i

Zm'b(T): H T hwg (13)

i=1 1 —¢e *BT

where w; are the normal modes of vibration of the molecule and the product runs over all modes
except the ones corresponding to translations and rotations. Substituting 13 in 12, we get the
following expression for the vibrational contributions to the harmonic free energy:

3N—6 e -
Fun(T) = > 2’ +kpTIn (1 - exp‘w) (14)
i=1 ~~

Zero Point Energy

There are limitations to the use of the harmonic approximation. It is not expected to be valid at
high temperatures, due to its harmonic nature - when the atoms start to explore higher regions of
the potential well, it cannot be approximated as a parabola. 2

A way to obtain an approximation for the anharmonic corrections to the free-energy will be the
subject of this exercise.

From elementary thermodynamics, one can write for a system in the canonical (NVT) ensemble:

0 (BF)
op

where 8 is 1/kgT, F is the Helmholtz free energy, and U is the potential energy of the system and
the brackets (...) vy still denote the canonical average.

= <U>NVT (15)

We can then evaluate the free energy at a temperature T by integrating Eq. 15:
F(T) Fo(To) /B ,
= dp’ (U) g 16
kT kT + ) B U (16)

where Fy(Tp) is the free energy at a reference temperature, which is low enough in order to consider
the system as harmonic.

In practice, the integral is evaluated numerically by sampling (U), for a discrete set of MD runs
at thermostatted temperatures from 7y to the desired 1. Then, a numerical integration can be
performed.

3The “real” anharmonic modes are more closely spaced than what is estimated by the harmonic picture.
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The anharmonic contribution to the average internal energy, <AU ‘mh‘"m'> P (T), can be written as:
<AUanharm.>5 (T) — <AUJMD>ﬁ (T) _ Uharm.(T), (17)

where (AUMP) 5 (T) is taken from the MD simulations * and U"*™:(T') is the harmonic reference
internal energy. Since the MD simulations treat the nuclei as classical, the reference internal energy
must be the harmonic classic energy, given by the equipartition theorem U"e™™(T) = %kBT.
We here make an approximation, where we consider the anharmonic contributions in a classical
framework, but add their effect to the “quantum” harmonic free energy of equation 14.

The expression used for computing the correction is:

B
F(T) = Fuip(T) + kT /ﬁ dg (AUharmy (), (18)

where F,;;(T) is given by equation 14.

e Compute the average internal energy <AU MD > (T') for the simulation you did in the previous

B
exercise. A script to calculate this average from the FHI-aims output is available. The syntax

is:
get_average.pl "output_file" cutoff

where cutoff should be given in order to specify how much of the beginning of the simulation
you wish to disregard, i.e. cutoff=0.1 means you disregard the initial 10% of your simulation.
In the present case, you have been provided in your geometry.in with a pre-thermalized
structure. This means that you can use all the data for your average (i.e. cutoff = 0).

The output of the script will give you the temperature 7' in the first column, the average
internal energy U in the second column, and the standard deviation oy in the third column.
Provide this data to the tutors. Detailed instructions will be given on the projected screen.

e After the data from all groups are processed by us, you will find in /pub/tutorial5 a file
with the data for all the temperatures given in the following format:

Ti (AUMP).  ou(Ty)
T2 <AUJWD>ﬁ2 oy (Tg)

Name the file as you like, e.g. average_u.dat.

e Use the harmonic vibrations for CoDg provided in the previous exercise and copy the file
basic.vib.out to this folder.

e Now perform the integration by using another script. The syntax is the following:
integrate_fe.pl average_u.dat basic.vib.out Ngioms

where Ngtoms i the number of atoms of your system, i.e. 6.

The output of this script is the temperature in the first column, the total free energy F(T')
(Eq. 18) in the second column, and the harmonic (quantum) free energy F,;(T") in the third
column.

e Plot F(T) and F,;;(T) as a function of temperature (in xmgrace, for example).

What are the differences? Can you estimate up to which temperature the harmonic approx-
imation should be a good approximation?

Timing: ~30min total

4This quantity is the instantaneous electronic energy of the system along the MD run, minus the electronic energy
of the optimized molecule. This resets the zero of the energy for commodity of plotting.
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Exercise 6: Heat conduction of a one-dimensional chain - the CD, chain.

In continuum mechanics, the heat diffusion equation

AT (7, t)

o o) VET( 1) =0 (19)

describes how heat —and hence energy— is transported in macroscopic systems. The heat diffu-
siwity a(T') that appears in this equation is an intrinsic, temperature dependent property of each
material that quantifies how efficient (or inefficient) heat transport is. As discussed in the morning
lecture, there are various techniques to assess a(7T) from first-principles simulations; in the follow-
ing, we will discuss one of these techniques, the so called laser-flash method [12]. In this approach,
a longish supercell is specifically prepared in thermodynamic non-equilibrium, so that one small
slice of the supercell is hotter than the rest of the system (see Fig. 3). By using ab initio MD, we
will observe how equilibrium (7" = 25 K) is re-established in the system and we will characterize
this process by monitoring the temperature T'(¢) in the central part of the previously cold cell
(green slice in Fig. 3). To determine o, we will then fit this temperature profile T'(z,t) with the
analytic solution of the heat diffusion equation (19), which is given by

T(x,t) = Teora + AT Z(—l)” exp (—n27r2at/m2) . (20)

As you will see during this exercise, the finite size of our system leads to large temperature fluc-
tuations that do not allow to accurately determine a from a single trajectory. We can however
achieve convergence by averaging over multiple trajectories with different initial conditions.

Preparation of the supercell in non-equilibrium

The cardinal point in this type of simulations is the accurate preparation of the supercell in non-
equilibrium. To achieve this goal, we exploit the fact that in the harmonic approximation (see
Tutorial 1 — Vibrations) the positions 7; and the velocities #; of the single atoms can be written
as a superposition of harmonic oscillations [13]:

cos (Ps + wst)

N €y (21)

. sin (P, + wst .
V; — Z AS(T) (\/ﬁz) cWg * €s . (22)

o= AT = Y A(T)

Hereby, 7; denotes the equilibrium position of atom ¢ with mass M;, As(T) denotes the amplitude
of mode s, ®; is its phase, and its eigen-frequency and -vector are given by w, and €y, respectively.
It is straightforward to see that in this case the average kinetic energy of each mode is given by

70 K 10 K

Figure 3: CgD1 supercell for the linear one-dimensional CD» chain: Initially, the red slice of the supercell
is prepared at 70 K, the remaining blue part of the supercell at 10 K. During the MD run, heat
will diffuse through the system to re-establish equilibrium. We will characterize this process by
monitoring the temperature in the central part of the previously cold cell (green).
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0.25w2A%(T). On the basis of this relationship, we can easily generate non-equilibrium supercells
by (a) assigning a random phase ® to each mode and by (b) choosing random amplitudes Age'd/et
that fulfill a Maxwell-Boltzmann distribution for the desired temperatures T.,, and Ti.,.

A: Running the calculation

All the configuration files required for this exercise
(geometry.in, control.in and eigenfreq-and-vectors.dat)
are located in:
/pub/tutorialb/exercise_6

For the success of this exercise it is essential that you do not modify these files.

FHI-aims provides convenient routines to automatically generate non-equilibrium supercells ac-
cording to the equations (21) and (22) discussed in the previous paragraph. For this purpose, we
have to supply information about the eigenmodes of this system, which is done via the ASCII-file
eigenfreq-and-vectors.dat. In the first section of this file, the equilibrium positions 7; of the
atoms are listed with a similar syntax to the one used in geometry.in:

# Equilibrium geometry

lattice_vector 50.00000 0.00000 0.000000
lattice_vector 0.00000 50.00000 0.000000
lattice_vector 0.00000 0.00000 10.101755

atom 0.00000 0.00000 0.000000 C 1
atom 0.67134 0.88230 0.000000 H
atom 48.50412 49.11762 8.839036 H 24

Additionally, an integer index i,,.,, is assigned to each atom in the last column. In the next part
of the file, the eigenfrequencies of the system are given in ascending order:

# Eigenfrequencies in meV

n_acoustic 4

frequency 0.0000000000 1
frequency 0.0000000000 2
frequency 0.0000000000 3
frequency 0.0000000000 4
frequency 8.2962255208 5

frequency 273.1260576050 71
frequency 273.5062375662 72

Again, each mode is assigned an index i.,, whereby the tag n_acoustic allows to specify the
number of acoustic modes.

Question: Why are there 4 acoustic modes in this system?

Last but not least, the components of the normalized eigenvectors are listed

eigenvector igp.q laem E-COMponent y-component z-component

for all eigenmodes iy, and all atoms %,...,. Please note that such a file can be easily generated in
phonon calculations, a topic that is not covered by this tutorial. For the sake of simplicity, please
use the provided eigenfreq-and-vectors.dat file and do not modify it.

To tell FHI-aims which part of the supercell shall be set up at which temperature, the tag
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MD_QH_init Z.iom start %atomena 1 eigenfreq-and-vectors.dat

is used in control.in. Thereby, f.iom stare ANA Gopom ona are used to define a range of atoms that
shall be set up at a specific temperature T' (Kelvin) using the eigenmode data provided in the file
eigenfreq-and-vectors.dat. In our case (see Fig. 3), we hence need to specify two segments, a
small hot one at 70 K and a large cold one at 10 K:

MD_QH_init 1 6 70.0 eigenfreq-and-vectors.dat
MD_QH_init 7 24 10.0 eigenfregq-and-vectors.dat

Again, the provided control.in file already contains all relevant lines and should not be modi-
fied.

Please copy these three input files (geometry.in, control.in and eigenfreq-and-vectors.dat)
from /pub/tutorialb/exercise_6 into a directory of your choice. For the success of this exercise,
it is crucial that you do not modify these files. Then, you should start F'HI-aims in the usual fashion
and redirect the ouput to your home directory:

mpirun -np 4 FHI-AIMS-BINARY > $HOME/MD.out

Please check that the calculation is indeed running on 4 CPUs and that your output is redirected to
$HOME/MD. out. Furthermore, please terminate all other CPU-consuming applications (e.g. Firefox,
Acrobat Reader,...) that are running on your computer so that FHI-aims can access all available
resources.

Timing: 15 minutes for starting the simulation, 16h CPU time (overnight)

B: Evaluating the calculation(s)

All the scripts required for the evaluation of the calculations
(extract_temperature_central_cell.pl and fitting.grace)
can be found in:
/pub/tutorialb/scripts

Fitting a single trajectory

1. Copy the output of the FHI-aims run ($HOME/MD.out) to the directory in which you have
started your MD run.

2. Copy the scripts extract_temperature_central_cell.pl and fitting.grace from
/pub/tutorialb/scripts
to the directory in which you have started your MD run.

3. Execute
./extract_temperature_central_cell.pl MD.out
to compute the temperature of the central cell as function of time. The script will save the
computed temperatures in MD.temperature.out.

4. Execute
xmgrace -batch fitting.grace MD.temperature.out
to plot the temperature over time.

5. Use Xmgrace’s fitting procedure (Data — Transformations — Non-linear curve fitting) to fit
the plotted temperature to the analytic solution (20) of the heat diffusion equation, as shown
in Fig. 4. Thereby, A0 corresponds to an?/z2, Al to AT and A2 to T,,q. Are the resulting
parameters consistent with the chosen initial conditions?

Averaging over multiple trajectories

1. For your convenience, we have already collected all trajectories that you have computed over

night and we have stored them in your home directories $HOME/results/tutorialb/exercise_6/.
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Graph
and set
that is
fitted!

Figure 4: Non-linear curve fitting interface of Xmgrace, accessible through (Data — Transformations —
Non-linear curve fitting). Please make sure that you pick the right source graph and source set
(i.e. data that is fitted) and the right destination graph and destination set (i.e. where the fit is
written to). In the shown image, set SO in graph GO is fitted and the resulting function is written

000 [\ Grace: Non-linear curve fitting
File Edit View

— Source

+) GO (2 sets)

Main | Advanced |

Formula: |§y=a2*a1 *(1-2*exp(-a0"x)+2" exp(-4 a0 "x)-2*exp(-3*a0"x)+2 exp(-11

Parameters: 3 | Tolerance: |0.05 terations: || 5 j:]
A -

Graph and
set to
which the
fit is
written!

Click here to
start fitting!

Close | ﬂ
4

into a new set in graph GO.

2. Execute the provided script
./summarize_and_average.sh

to compute the temperature of the central cell as function of time for all trajectories.
Furthermore, the script will average over multiple (1/5/10/20/40) runs and directly pro-
duce an Xmgrace file AverageTemperatures.agr containing this information (in 5 different
graphs G0 — G4).

3. Execute xmgrace -batch fitting.grace AverageTemperatures.agr to open this file.

4. Again, use Xmgrace’s fitting procedure (Data — Transformations — Non-linear curve fitting)
to fit the plotted temperature to the analytic solution (20) of the heat diffusion equation, as

shown in Fig. 4. Thereby, A0 corresponds to an?/z2, Al to AT and A2 to Teea-

5. How do the resulting parameters change for the different graphs? Can you judge the quality

of the calculation from the resulting AT and Teo14?

Timing: 16h for the simulations, overnight
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A. Plotting files in xmgrace

In order to plot files containing multiple Y columns, follow these steps:

1. Open xmgrace and click on Data — Import — ASCII (Figure 5).

2. Find the file that you want to plot and choose “Load as Block Data” in the dialogue box
that will open (Figure 6).

3. Set X from column 1 and Y from whatever other column you want to plot in the new dialogue
box that will open (Figure 7).

4. Press Apply and then press Close on all dialogues.

In order to plot bars, useful when you want to plot for example the harmonic frequencies as sticks,
in step 3 above, instead of leaving “Set type XY”, change for “Set type BAR” (Figure 8).

Properties of the plots can be changed by double clicking on the data or on the axis.

CracenunTTes B

Help
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[ 1 N 12
EXERCN7A
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04— —

02— —

0.2 0.4 0.6 0.8

mariana-work-laptop, :0.0, Uniitied

Figure 5: Step 1 - Open xmgrace and click on Data — Import — ASCIIT
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Figure 6: Step 2 - Find the file that you want to plot and choose “Load as Block Data” in the dialogue box
that will open.
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Figure 7: Step 3 - Set X from column 1 and Y from whatever other column you want to plot in the new
dialogue box that will open.
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Figure 8: Useful to plot harmonic frequencies as sticks.
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