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Practical Session VI - Theoretical Spectroscopy and Electronic
Excitations

This tutorial is divided into two parts. The first part is concerned with the description of charged electronic
excitations. In the second part we turn our attention to real-time propagations of electronic wavefunctions
and the description of neutral electronic excitations.

Charged electronic excitations

The fist part of this tutorial is intended to show the adequacy and accuracy of Density-Functional Theory
(DFT), Hartree-Fock (HF), and Many-Body Perturbation Theory (MBPT) in the GW approximation
for the calculation of electronic excitations. In this tutorial, most of the calculation will be performed
on the same system, the nitrogen dimer N2, with the purpose of comparing the performance of different
theoretical approaches with experimental references. Hence we invite you to organize the results of each
exercise in a text file, composing a table similar to the following one:

N2 Experiment DFT (PBE) Hartree-Fock ∆-SCF G0W0@PBE G0W0@HF scGW

HOMO 15.580 eV

HOMO-1 16.926 eV ***

HOMO-3 18.751 eV ***

Optional:

H2O Experiment DFT (PBE) Hartree-Fock ∆-SCF G0W0@PBE G0W0@HF scGW

HOMO 12.615 eV

HOMO-1 14.729 eV ***

HOMO-2 18.550 eV ***

A list of experimental ionization energies for N2 and H2O can be found for instance in reference [1]. Note
that since the HOMO-1 and HOMO-2 levels are degenerate in N2, the third experimental ionization energy
has to be compared with the HOMO-3.

Exercise 1: inadequacy of DFT eigenvalues for describing charged
electronic excitations

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute.]

In this first exercise, you will perform a Kohn-Sham DFT calculation with the PBE exchange-correlation
functional and Tier 2 basis (tight settings) set for the nitrogen dimer N2. The quantities of interest in this
case are the Kohn-Sham eigenvalues. You can proceed as follows:
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• Create the directory ∼/exercise1

• Create the geometry.in file with the experimental geometry of N2:

atom 0.00000 0.00000 0.00000 N
atom 0.00000 0.00000 1.098 N

• Following the template for the control.in file available in the path /pub/tutorial6/exercise_1_DFT_eigenvalues/N2,
run a spin-unpolarized DFT calculation using a pbe exchange correlation functional (flag: xc pbe).

• Compare the first three non-degenerate KS eigenvalues – corresponding to the highest occupied
molecular orbital (HOMO), HOMO-1 and HOMO-3 – with the first three experimental ionization
energies in [1].

Exercise 2: Electron removal energies from Hartree-Fock.

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute.]

Modifying the input files of exercise 1, set up a Hartree-Fock calculation by using the flag

xc hf

in the control.in file and compare the Hartree-Fock eigenvalues with the experimental ionization energies
and with previous results from PBE and delta-SCF. Note that already for a small molecules such as N2,
the different treatment of exchange and correlation (the latter absent in HF) may lead to differences in
the orbital energy ordering between DFT and HF.

Exercise 3: Electron removal energies from delta-SCF

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute.]

In this exercise, the ionization energies (I) of N2 will be evaluated with the delta-SCF approach [2]. This
means that the ionization energy is obtained from two separate DFT PBE and HF calculation through
total energy differences between the neutral and positively charged species using the formula:

I = EPBEtot (N − 1)− EPBEtot (N),

and similarly for Hartree-Fock, where N is number of electrons of the neutral molecule, EPBEtot (N) is the
PBE total energy of the neutral molecule and EPBEtot (N − 1) is the PBE total energy of the molecule with
a removed electron. Analogously, one can use the delta-SCF method to evaluate the electron affinity (A)
as:

A = EPBEtot (N)− EPBEtot (N + 1).

To evaluate Eq.(1), EPBEtot (N) can be extracted from the output file of exercise 1; in addition we need to
compute EPBEtot (N − 1), which requires an additional DFT calculation. You can proceed according to the
following guidelines:

• Create the directory ∼/exercise3 and copy the input files from Exercise 1.

• Modify the control.in file and set the flag for performing a spin-polarized calculation. Specify the
initial spin of the calculation and the charge of the molecule:

xc pbe
spin collinear
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default_initial_moment 1
charge +1

Compute the ionization energy and the electron affinity of N2 using Eq.1.

• How does this values compare to the bare PBE eigenvalue and to experiments?

• What is the origin of the difference between the Hartree-Fock eigenvalue and ∆-SCF value for the
ionization energy?

Exercise 4: perturbative G0W0 and the quasi-particle correction

An improved description of charged electronic excitations is obtained by perturbative inclusion of many-
body effects through the many-body self-energy Σ. In the GW approximation [2] the self-energy is calcu-
lated as:

ΣGW (r, r′, ω) = i

2π

∫
dω′G(r, r′, ω′)W (r, r′, ω′ + ω), (1)

where G(r, r′, ω) is the one-particle Green’s function and W (r, r′, ω) is the screened Coulomb interaction
(see e.g. [3] for details). The GW self-energy can be used to perturbatively correct the DFT or HF
eigenvalues by means of the linearized quasi-particle equation:

εQPi = εKSi −
〈
ψKSi

∣∣ V̂ KSxc − Σ̂GW (εQPi )
∣∣ψKSi 〉

. (2)

This approximation is known as G0W0 or one-shot GW , because the self-energy is calculated only once,
whereas a more rigorous approach would require a fully self-consistent evaluation of Σ. Since the quasi-
particle energies in Eq.(2) are evaluated perturbatively on top of a preliminary single-particle calculation
(generally DFT or Hartree-Fock),the G0W0 approach strongly depends on the starting point. In the
following we refer to PBE and Hartree-Fock based G0W0 as G0W0@PBE and G0W0@HF respectively to
distinguish between the different starting points. In numerical implementations, the treatment of the full
frequency dependence of the self-energy Σ(r, r′, ω) is faced by introducing an additional discrete grid for
the frequency ω. Although the default parameters in FHI-aims are safe in most cases, the frequency grid
can be adjusted by explicitly setting the number of frequency points Nω (flag: frequency_points) and
the extension of the frequency grid ωmax (flag: maximum_frequency) to check the appropriate convergence
of the calculation1.

Exercise 4.1: G0W0 @PBE quasiparticle energies

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute. ]

The purpose of this exercise is to perform a G0W0 calculation for the quasi-particle energies of the nitrogen
dimer.

For this exercise, proceed according to the following steps:

• Create the directory ∼/tutorial6/exercise4/N2 ;

• Copy input files from exercise 1;

• Modify the control.in file including the following flags:

xc pbe
qpe_calc gw
KS_method lapack

1We refer to the FHI-aims manual for additional information.
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Figure 1: Sample output of G0W0 quasiparticle calculation in FHI-aims. The different colors relate terms in the
output file to the corresponding quantities in the linearized quasi-particle equation (2).

...

3 Exercise 2: removal energies from delta-SCF

Total time for this exercise: 15 minutes

In this exercise, the ionization energy (IE) of H2O (N2) will be evaluated with the delta-SCF approach.

This means that the ionization energy is obtained from KS-DFT (PBE in the present case) through total

energy difference between the neutral and positively charged system using the formula:

IE = EPBE
tot (N) − EPBE

tot (N − 1) (1)

where N is number of electron of the neutral molecule. Analogously, one can use the delta-SCF method

to evaluate the electronic affinity (EA) as:

EA = EPBE
tot (N) − EPBE

tot (N + 1) (2)

In order to evaluate Eq.1, one can extract EPBE
tot (N) from the output file of Exercise 1; in addition, one

need to compute EPBE
tot (N−1), i.e. the total energy of the molecule without one electron. You can proceed

according to the following guidelines:

• Create the directory ∼/tutorial6/exercise2/H2O and copy in it the input files of Exercise 1.

• Modify the control.in file settings by the flag for performing a spin-polarized calculation, and speci-

fying the initial spin of the calculation (spin none; default initial moment 1)

4 Exercise 3: removal energies from Hartree-Fock

Total time for this exercise: 10 minutes

As seen in exercise 1, the interpretation of DFT eigenvalues as removal energies may not reproduce

accurately experimental results. On the other hand, the interpretation of Hartree-Fock (HF) eigenvalues

as single particle excitation is formally justified by Koopman’s theorem, whereas the analogous Janak’s

theorem for DFT holds only for the HOMO. The purpose of this exercise is to compare HF eigenvalues

with the method previously tested.

Modifying the input files of previous exercises, set up an HF calculation by using the flag “xc hf” and

compare the HF eigenvalues with the experimental ionization energies and with previous results from PBE

and delta-SCF.

5 Exercise 4: perturbative G0W0 and the quasi-particle correction

An improved description of electronic excitations is obtained by perturbative inclusion of many-body

effects through the many-body self-energy Σ. in the GW approximation [2] the self-energy is calculated

as:

ΣGW (r, r�, ω) =
i

2π

�
dω�G(r, r�, ω�)W (r, r�, ω� + ω) (3)

where W (r, r�, ω) is the screened Coulomb interaction (see e.g. [3] for details). The GW self-energy, once

calculated, can be used to perturbatively correct the DFT or HF eigenvalues by mean of the linearized

quasi-particle equation:

�QP
i = �KS

i −
�
ψKS

i

�� V̂ KS
xc − Σ̂GW (�QP

i )
��ψKS

i

�
(4)

This approximation is know as G0W0 or one-shot GW , because the self-energy is calculated only once

(whereas a more rigorous approach would require a fully self-consistent evaluation of Σ).

3

...

Friday, June 10, 2011
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In the species settings at the end of the control.in file modify the following flags:

cut_pot 6.0 2.0 1.0
basis_dep_cutoff 0

In addition to the output of the DFT PBE calculation, the output file will contain a table – similar to that
in Fig.1 – with the quasi-particle corrections to the single-particle eigenvalues. Extract the quasi-particle
energies for the HOMO, HOMO-1 and HOMO-3 levels and compare them with previous results.

Exercise 4.2: G0W0 basis set convergence

[Total time for this exercise: 15 minutes. Total CPU time: ∼ 6 minutes.]

Plot the convergence of the first G0W0@PBE quasi-particle energy (i.e. the G0W0@PBE HOMO level)
for the nitrogen dimer using the Tier 1, Tier 2, Tier 3 and Tier 4 basis sets. Calculations with the Tier 4
basis set will require the following additional settings in the control.in file to overcome ill-conditioning
of the overlap matrix between basis functions due to the large basis set:

basis_threshold 1.e-4
override_illconditioning .true.

• How does the G0W0@PBE ionization energy convergence compare to the PBE HOMO level?

• What is the origin of the qualitative differences between the PBE and G0W0@PBE convergence
trends?

• Optional: plot the convergence of the first ionization energy of N2 for cup_pot= 1.0, 2.0, . . . , 6.0
with a Tier 2 basis set2.

Exercise 4.3: G0W0@HF and G0W0@PBE0: Dependence on the starting point

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute. ]

The purpose of this exercise is to show one of the limitations of the perturbative G0W0 method, i.e. the
dependence on the starting point. Following the steps given in the previous part of this exercise, perform a
G0W0 calculation using a Hartree-Fock and a PBE0 starting point (i.e. set xc hf and xc pbe0 respectively
in the control.in file), and compare the HOMO, HOMO-1 and HOMO-3 quasi-particle energy of the N2
dimer with G0W0@PBE.

Exercise 5: Self-consistent GW

In this exercise, you will perform a fully self-consistent GW calculation. Differently from G0W0, the
Green’s function is calculated by solving the Dyson’s equation self-consistently:

G = G0 +G0ΣG (3)

where G0 is the Green’s function of a non-interacting reference system (e.g. DFT, HF, etc.) and G is the
Green’s function of the interacting system, see e.g. ref.[4] for an introduction.

2 Note, that in FHI-aims the default settings for basis sets and integration grids are tuned to optimize the performance
of LDA and GGA density functional calculations. Calculations beyond plain DFT, may require an additional tuning of
such settings.
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Figure 2: Example of the spectral function calculated from a self-consistent GW Green’s function for the Benzene
molecule. Since the Green’s function has poles at the addition/removal energies of electrons, the position
of each peak in the spectral function can be associated with these addition and removal energies.

Exercise 5.1: Spectral function from the self-consistent Green’s function

[Total time for this exercise: 15 minutes. Total CPU time: ∼ 3 minutes.]

To perform a self-consistent GW calculation for N2, create a new directory and copy the input files from
exercise 1. Modify the first part of the control.in file including the flags:

xc pbe
sc_self_energy scgw
spin none
KS_method lapack

output cube total_density
cube origin 0.0 0.0 0.55
cube edge 1 0.01 0.0 0.0
cube edge 400 0.0 0.005 0.0
cube edge 500 0.0 0.0 0.005

and choose Tier 1 settings at the bottom of the control.in file. The last 5 lines will enable the total
density plot which will be used in the next part of the exercise.

After running FHI-aims, in addition to the usual output file, the file spectrum_sc.dat will be created 3.
The file spectrum_sc.dat contains the spectral function calculated from the self-consistent GW Green’s
function according to the formula:

A(ω) = − 1
π

∫
lim

r′→r
ImG(r, r′, ω)dr. (4)

where G has been determined self-consistently from Eq.3. Fig.2 reports an example of a self-consistent GW
spectral function. You can visualize the spectral function using xmgrace, gnuplot or any other available
plotting tool4. The first three ionization energies of N2 must be extract directly from the position of the
peaks in the spectral function.

3 Note, that the choice of a spin polarized calculation will produce spin-resolved spectral function –identical for closed shell
systems, such as N2 and H2O – named spectrum_sc_up.dat and spectrum_sc_do.dat for the each component of the spin
moment.

4 The gnuplot script /pub/tutorial6/exercise_5_scGW/N2/plot.plt (run the command gnuplot plot.plt after copying
the script in your working directory) permits to automatically generate a plot of the spectral function.
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Exercise 5.2: GW density vs PBE density

[Total time for this exercise: 20 minutes. Total CPU time: ∼ 3 minutes.]
In addition to the spectral function, the self-consistent GW calculation of the previous exercise has pro-
duced a file named cube_001_total_density.cube. This file contains the total density of the system
calculated from the self-consistent Green’s function using the relation:

ρ(r) = −
∫ µ

−∞

dω

π
lim

r′→r
ImG(r, r′, ω), (5)

where µ is the chemical potential. To compare the density at the self-consistent GW level with the PBE
density, perform an additional calculation following these steps:

• Rename the file cube_001_total_density.cube to scGW_dens.cube to avoid to overwrite it.

• Comment the flag sc_self_energy scgw in the control.in and run FHI-aims.

• Rename the file cube_001_total_density.cube to PBE_dens.cube

• Copy the script /pub/tutorial6/exercise_5_scGW/N2/subtract_cubes.py to your working direc-
tory

• Run the command:

python subtract_cubes.py scGW_dens.cube PBE_dens.cube scGW-PBE_dens.cube

At this point, the file scGW-PBE_dens.cube contains the difference between the self-consistent GW density
and the PBE density. Following the prescription of Tutorial 1 visualize scGW-PBE_dens.cube cube file, or
in alternative use the script /pub/tutorial6/exercise_5_scGW/N2/plot-density.sh (run the command
./plot-density.sh <filename.cube>) to generate automatically a plot of the density difference between
sc-GW and PBE.

• What is the effect of self-consistent GW on the electronic density?

Optional

• Visualization: Using the data collected in the previous exercises for the three highest occupied states
(HOMO, HOMO-1 and HOMO-3) of N2, visualize in a plot the deviation from the experimental
ionization energy for DFT, delta-SCF, Hartree-Fock, G0W0@PBE and self-consistent GW .

• Independence on the starting point at self-consistency: in a different folder, perform a second self-
consistent GW calculation for N2 choosing Hartree-Fock as starting point of the calculation and
compare the spectral functions obtained in the previous exercise, in which a PBE starting point was
used.

Bonus exercise: GW and the self-interaction error

Several pathologies of (semi-)local functionals, such as LDA and PBE, arise from an approximate treatment
of the Fock (or exact exchange) operator in the exchange-correlation functional, which leads to the so called
self-interaction error. The self-interaction error is particularly large in localized states, whereas it plays a
minor effect in delocalized states. Molecules presenting both localized and delocalized state energetically
close (as for instance aromatic molecules), are particularly problematic for LDA and PBE. In such systems,
the self-interaction error affects differently the localized and delocalized states, leading to a wrong energetic
ordering of the single particle orbitals. In this exercise we want to show how G0W0 is able to establish the
correct energetic ordering by mean of a proper treatment of the Fock operator in the GW self-energy in
Eq.(1).

Perform a G0W0 calculation based on an LDA calculation for the Naphtalene molecule (C10H8) molecule
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Figure 3: The Naphtalene molecule.

using the geometry.in and control.in available in the directory /pub/tutorial6/bonus_exercise_Naphtalene/.

• Compare the energetic ordering of DFT orbitals and the G0W0 quasi-particle energies of Naphtalene.

• Plot the orbitals 27 and 28 using the following settings in the control.in file:

output cube eigenstate 27
output cube eigenstate 28

then run the script /pub/tutorial6/bonus_exercise_Naphtalene/plot-eigenstate.sh in your
working directory to produce png images of the Kohn-Sham eigenstates.

• How many orbitals are energetically swapped in G0W0@LDA compared to LDA?

• Which orbital is more localized: the 27 or the 28?

• Is the different localization of orbitals 27 and 28 consistent with the removal of the self-interaction
error and the new energetic ordering?
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Real-time evolution and optical absorption spectroscopy

This part of the tutorial is covering neutral electronic excitations which arise when a system under con-
sideration is exposed to e.g. a time-dependent external electromagnetic field. The tutorial consists of two
parts: the first part introduces several real-time evolution algorithms which allow to propagate electronic
wave packets in real-time. The purpose of the first exercise is to familiarize you with wavepacket prop-
agations in real-time and to compare the stability and efficiency of different propagation algorithms. To
that end we employ a few Matlab/Octave5 scripts which easily allow to investigate the structure of the
propagation algorithms. Once we are familiar with real-time propagations we move to the second part
of the exercise where we propagate the time-dependent Kohn-Sham equations in real-time in order to
compute the density response of the test molecules from the previous sections (N2 and H2O).

Comparison of algorithms for electronic real-time evolution

[Total time for this exercise: 50 minutes. Total CPU time: ∼ 30 minutes.]

The time evolution of a quantum mechanical state vector |Ψ(t)〉 can be expressed in terms of the time-
ordered evolution operator

Û(t+ ∆t, t) = T̂ exp
(
−i
∫ t+∆t

t

Ĥ(τ)dτ
)
, (6)

where Ĥ(t) denotes the (possibly) time-dependent Hamiltonian of the system. With help of Û(t + ∆t, t)
the state |Ψ(t)〉 can be propagated forward in time according to

|Ψ(t+ ∆t)〉 = Û(t+ ∆t, t)|Ψ(t)〉. (7)

Practical propagation schemes are therefore concerned with approximate representations of Û(t + ∆t, t),
or to be more precise, with approximate ways to compute the action of Û(t+∆t, t) on a state vector (with
or without explicitly constructing the operator Û(t+ ∆t, t)).

Magnus expansion

The first complication that arises in approximating Û(t + ∆t, t) is the time-ordering operator T̂ in Eq.
(6). The Magnus series [6,7] provides an exact expression for the time-evolution operator Eq. (6) as a
time-unordered exponential of so called Magnus operators Ωj in the form

Û(t+ ∆t, t) = exp
(

Ω̂
)

= exp
(

Ω̂1 + Ω̂2 + Ω̂3 + · · ·
)
, Ω̂ =

∞∑
j=1

Ω̂j , (8)

where the Ω̂j are given in terms of time-integrals over nested commutators of the Hamiltonian at different
points in time

Ω̂1 =− i
∫ t+∆t

t

Ĥ(τ)dτ

Ω̂2 =
∫ t+∆t

t

∫ τ1

t

[Ĥ(τ1), Ĥ(τ2)]dτ2dτ1

...

(9)

The time-integrals can be evaluated numerically with e.g., a Gauss-Legendre quadrature. In the simplest
case, which is accurate up to second order in the time-step ∆t, one arrives at the exponential midpoint

5Matlab is a powerful commerical package tailored for numerical computations. The package uses a own scripting language
which has similarities to Fortran and C. GNU Octave is a open source implementation that can be used to execute Matlab
codes

10



rule

Û (2)(t+ ∆t, t) = exp
(

Ω̂1

)
+O(∆t3)

Ω̂1 = −iĤ(t+ ∆t/2)∆t+O(∆t3).
(10)

Higher order truncations of the Magnus series can easily be taken into account but require the computation
of additional commutators of the Hamiltonian at different points in time. For example, the fourth order
Magnus propagator takes the form

Û (4)(t+ ∆t, t) = exp
(

Ω̂1 + Ω2

)
+O(∆t5)

Ω̂1 = −i(Ĥ(τ1) + Ĥ(τ2))∆t
2 +O(∆t5).

Ω̂2 = −i[Ĥ(τ1), Ĥ(τ2)]
√

3∆t2

12 +O(∆t5).

τ1,2 = t+ (1
2 ±
√

3
6 )∆t

(11)

Exponential of a matrix

When a discretized representation of the state vectors and the Hamiltonian is introduced (e.g. basis set, or
finite difference approximation) the propagation step, Eq. (7) in combination with the Magnus expansion,
Eq. (8), amounts to compute the action of a matrix exponential on a vector. In the following we discuss
different ways to compute this operation.

• Taylor expansion. The simplest approach is to perform a Taylor expansion of the exponential

exp(Ω̂) = 1 + Ω̂ + Ω̂2/2 + Ω̂3/6 + Ω̂4/24 +O(Ω̂5). (12)

Acting with this approximation on a state vector involves only matrix vector products which can be
computed efficiently. From a stability analysis, it turns out that an expansion up to fourth order
gives the best compromise of computational cost and stability.

• Matrix diagonalization. If we have all eigenvalues of the matrix representation of Ω̂ at hand, we can
simply take the exponential of the eigenvalues and transform back to the original non-diagonal frame
of the matrix. This approach gives the most accurate way to compute the matrix exponential. The
price to pay is the large computational cost for the dense matrix diagonalization and the required
matrix-matrix products.

• Padé approximation. The lowest order approximation of the exponential by rational functions takes
the form

exp(Ω̂) ≈ 1 + Ω̂/2
1− Ω̂/2

. (13)

This leaves us with an operator (or in discretized form with a matrix) in the denominator. However,
since we are only interested in the action of the approximated exponential on a state vector this can
be written as

(1− Ω̂/2)|Ψ(t+ ∆t)〉 = (1 + Ω̂/2)|Ψ(t)〉. (14)

For a given point in time t, we can explicitly construct the right hand side of Eq. (14). The state
vector at time t+ ∆t can then be found by solving a linear system of equations. This scheme is also
known as Crank Nicholson or Cayley approximation.
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Standard ODE solver

In case we only consider a discretization of the state vectors and the Hamiltonian, we can regard the
time-dependent Schrödinger equation as set of coupled first order ordinary differential equations in time

d

dt
Ψp(t) =

∑
q

−iHp,q(t)Ψq(t). (15)

For each given index p this corresponds to one ordinary differential equation (ODE) which is coupled to
the other ODEs through the matrix elements Hp,q(t) of the Hamiltonian. In this form standard ODE
solver can be employed. Particularly simple ODE time-stepping schemes are Runge-Kutta methods. A
frequently employed discretization is the Runge-Kutta method of fourth order

y′ = f(t, y), y(t0) = y0 (16)
k1 = hf(tn, yn) (17)

k2 = hf(tn + 1
2h, yn + 1

2k1) (18)

k3 = hf(tn + 1
2h, yn + 1

2k2) (19)

k4 = hf(tn + h, yn + k3) (20)

yn+1 = yn + 1
6[k1 + 2k2 + 2k3 + k4] (21)

tn+1 = tn + h (22)

which in terms of our TDSE notation can be written as

Φ(1)
p =

∑
q

−i∆tHp,q(tn)Ψ(n)
q (23)

Φ(2)
p =

∑
q

−i∆tHp,q(tn + 1
2∆t)[Ψ(n)

q + 1
2Φ(1)

q ] (24)

Φ(3)
p =

∑
q

−i∆tHp,q(tn + 1
2∆t)[Ψ(n)

q + 1
2Φ(2)

q ] (25)

Φ(4)
p =

∑
q

−i∆tHp,q(tn + ∆t)[Ψ(n)
q + Φ(3)

q ] (26)

Ψ(n+1)
p = Ψ(n)

p + 1
6[Φ(1)

p + 2Φ(2)
p + 2Φ(3)

p + Φ(4)
p ] (27)

tn+1 = tn + ∆t (28)

Although such a Runge-Kutta algorithm is easy to implement it does not numerically exhibit the time-
reversal symmetry which is a property of the exact solution of the TDSE (provided magnetic fields are
absent).

Autocorrelation function

One possibility to compute the spectrum of the Hamiltonian Ĥ via real-time propagation relies on the
autocorrelation function of the propagated state vector. The free time-evolution (without external field)
of a state vector is given as

|Ψ(t)〉 =
∑
q

aq|Ψq〉 exp(−iEqt), (29)

where |Ψq〉 and Eq are the solutions of the static Schrödinger equation

Ĥ|Ψq〉 = Eq|Ψq〉 (30)
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and aq are time-independent expansion coefficients. Next, let us consider the time-dependent correlation
function

P (t) = 〈Ψ(t = 0)|Ψ(t)〉. (31)

Using Eq. (29) this can be written as

P (t) =
∑
q

|aq|2 exp(−iEqt). (32)

By computing the Fourier Transform of the correlation function P (t) we arrive at a spectrum which has
peaks at the eigenenergies of the system

P (E) =
∑
q

|aq|2δ(E − Eq). (33)

The peaks in the spectrum appear infinitely sharp since we assumed a infinite-length time-record of the
autocorrelation function P (t). If only a finite-length time-record is available, then a broadening of the
peaks occurs.

Exercise 6: comparison of different real-time propagation algorithms

In this exercise we compare the efficiency and accuracy of the different propagation schemes that have
been introduced in the previous section.

In the folder

/pub/tutorial6/exercise_6_propagation_algorithms

you can find a few Matlab/Octave 6 scripts which contain a simple implementation of the discussed
algorithms. Copy these files to your current working directory

> cp -a /pub/tutorial6/exercise_6_propagation_algorithms/*.m .
> ls -1 *.m
autocorrelation_spectrum.m
double_well_hamiltonian.m
matrix_exponential_taylor.m
oscillator_hamiltonian.m
propagation_algorithms.m
real_space_grid.m
td_hamiltonian.m

For simplicity, the implementation of our example is using a one-dimensional finite-difference representation
of Hamiltonians and state vectors. The main program is contained in the file propagation_algorithms.m.
The files double_well_hamiltonian.m and oscillator_hamiltonian.m contain different definitions of
the system Hamiltonian (asymmetric double well and harmonic oscillator), the file real_space_grid.m
contains the definition of the employed real-space grid and td_hamiltonian.m allows to construct explic-
itly time-dependent Hamiltonians. Take a look at all files to familiarize yourself with the propagation
algorithms.

To start the program you have to execute

> octave propagation_algorithms.m

or alternatively you can use the octave shell
6 Matlab is a powerful numerical computing environment. The package allows for easy matrix and vector manipulations
and provides extensive plotting routines for numerical data. GNU Octave is an open source implementation of the Matlab
computing environment and programming language.
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> octave
octave:1> propagation_algorithms

The numerical settings can be adapted by editing the script propagation_algorithms.m. In the file you
can find the parameters for the grid spacing, number of time steps, etc.

max_time_steps = 4096; % maximum number of time steps
dt = 0.024; % time step
nx = 100; % number of grid points
dx = 0.16; % grid spacing

You can switch between different propagation schemes by adjusting the flags for the propagators

% propagation algorithms
rti_cn = true; % Crank-Nicholson/Cayley propagator
rti_rk4 = false; % Runge-Kutta 4th order
rti_taylor = false; % Taylor expansion of exponential
rti_expm = false; % Exact matrix expoential
rti_etrs = false; % Enforced time-reversal symmetric propagator
rti_magnus2 = false; % Second order Magnus expansion with exact matrix expoential
rti_magnus2_taylor = false; % Second order Magnus expansion with Taylor expansion of exponential

Only one rti_* variable should be set to true for a given run.

In the following steps we compare two different propagation schemes (Crank-Nicholson/Cayley and Runge-
Kutta 4th order). The initial Hamiltonian corresponds to a finite-difference discretization of a one-
dimensional harmonic oscillator.

1. Run the script propagation_algorithms.m with the default parameters. Once the run finished,
inspect the generated PNG files by typing in the shell

> qiv *.png

Press the space bar to switch to the next image. You will see among others the spectrum, Eq. (33),
of the autocorrelation function, Eq. (31), the lowest four eigenstates of the Hamiltonian plotted
together with the potential, also the sparsity pattern of the Hamiltonian matrix (zero elements are
white, non-zero elements are blue) and the sparsity pattern of the exponential of the Hamiltonian.

2. Compute the autocorrelation function for a different initial condition. For example, change the
parameter xmin in line 106 of the file propagation_algorithms.m from 1.0 to a value of 4.0. How
many spectral lines can be resolved in both cases? What is causing the difference?

3. Following the formulas of Eqs. (23) - (28), try to add the fourth-order Runge-Kutta time-stepping
to the provided file propagation_algorithms.m. As a hint you can find Eq. (23) and Eq. (24) as
example in the script

rk1 = -sqrt(-1) * dt * Hm_t * (psi);
rk2 = -sqrt(-1) * dt * Hm_t_dt2 * (psi + rk1/2);

% >>>>>>>> Add missing lines
% rk3 =
% rk4 =
% <<<<<<<< Add missing lines

psi = psi + (rk1 + 2*rk2 + 2*rk3 + rk4)/6;

Run the Runge-Kutta time-stepping by adjusting the corresponding flags:

% propagation algorithms
rti_cn = false; % Crank-Nicholson/Cayley propagator
rti_rk4 = true; % Runge-Kutta 4th order
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Can you still reproduce the same spectrum for the autocorrelation function? Which algorithm runs
faster, Runge-Kutta, or Crank-Nicholson/Cayley? Is the norm of the wavefunction still preserved
when you increase the time-step for Runge-Kutta from dt = 0.027 to dt = 0.028? What can you
say about the stability of the Runge-Kutta and Crank-Nicholson/Cayley schemes for larger time
steps with dt > 0.027?

4. By changing the parameters dt for the time-step and nx for the grid-spacing, try to investigate for
the Crank-Nicholson/Cayley and the Runge-Kutta propagation scheme the following questions:

• Which method allows for the largest time step?

• Which method allows for the fastest time stepping?

• How is the grid spacing related to the time step?

The stability of a given propagator can be monitored by plotting the energy and norm of the state
as function of time. If the norm is not approximately unity (e.g. starts to blow up and eventually
shows NaN (not a number)), the numerical propagation is not usable anymore.

5. Optional: If time permits also compare to other propagation schemes, e.g. the exact matrix expo-
nential (Option rti_expm).

6. Enable the frame output by setting

td_frame_output = true; % output frames for wave packet movie

If this is enabled, the script propagation_algorithms.m also generates a movie of the computed
wavepacket propagation. Also set

tdmod = 8;
xmin = 1.0;

and run the script. You can display the time-evolving wavefunction by typing in the shell e.g.

> mplayer wave_packet.avi

Modify the initial condition of the time-propagation by changing the center and the "squeezing"
parameter of the Gaussian initial state.

% initial state ((shifted and squeezed) Gaussian at minimum of potential)
% coherent state (xmin != 0.0, squeeze = 1.0)
% squeezed state (xmin != 0.0, squeeze != 1.0)
xmin = 0.5;
squeeze = 2.0;
psi = sqrt(dx)*(mass*(omega/squeeze) / pi)^(1/4)*exp(-0.5*mass*(omega/squeeze)*(x+xmin).^2);

How does the observed wave-packet propagation compare to a classical oscillator?

7. Switch to a Hamiltonian for an asymmetric double well by commenting the line containing oscillator_hamiltonian
and uncommenting the line containing double_well_hamiltonian

[Hm, vpot] = double_well_hamiltonian(nx, dx, x, B, w0, beta);
%[Hm, vpot] = oscillator_hamiltonian(nx, dx, x, mass, omega);

Run the script and inspect again the spectrum of the autocorrelation function and the movie of the
wavepacket propagation.

Exercise 7: Optical absorption spectra from TDDFT real-time propagations

[Total time for this exercise: 40 minutes. Total CPU time: ∼ 30 minutes. ]

In this exercise we compute optical absorption spectra for H2O (and optional N2) using a real-time
propagation of the time-dependent Kohn-Sham equations.
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To enable the real-time propagation in FHI-aims, you have to add the keyword TDDFT_run to the input
file. This keyword takes as argument the total propagation time, the time step and two further parameters
which determine the amount of information that is printed on the screen (write info) and the output
frequency (output every). Setting output every to zero disables file output whereas a value of ten would
result in file output after every ten time steps.

#
# Time propagation
#
# mode total time dt write info output every

TDDFT_run 2000 0.05 1 0

Besides the modification of the control.in file, there is also a modification of the geometry.in file
required:

atom -1.551007 -0.114520 0.000000 O
atom -1.934259 0.762503 0.000000 H
atom -0.599677 0.040712 0.000000 H
homogeneous_field 0.000000 0.100000 0.000000

By adding a homogeneous field to the coordinate file, FHI-aims computes a ground state in the pres-
ence of a static electric field. The Kohn-Sham orbitals of this perturbed ground-state are then prop-
agated in time with a Kohn-Sham Hamiltonian that does not contain the static electric field anymore
(homogeneous_field is set to zero during TDDFT_run). In other words, we propagate a perturbed initial
state with a free Hamiltonian (free in the sense of no applied external fields). Since the initial state is
perturbed this propagation exhibits density fluctuations. Fourier transforming the time-dependent dipole
of these density oscillations allows then to compute the frequency-dependent polarizability of the system

αij(ω) = − 2
E

∫
ρ

(i)
1 (r, ω)rj d3r i, j = x, y, z, (34)

or likewise the photoabsorption cross section

σij = 4πω
c
=αij(ω). (35)

In this notation the component (i) denotes the direction in which the homogeneous field has been applied
and (j) denotes the component of the dipole moment which is monitored in the propagation. By performing
three independent propagations with perturbations (i) along the x, y, and z coordinates respectively, we
can compute the full tensor of the frequency-dependent polarizability.

Run FHI-aims for this input by executing

> mpirun -np 4 aims.hands-on-2011.scalapack.mpi.x > optical_absorption_H2O.out &
> tail -f optical_absorption_H2O.out

After the run finished sucessfully, the dipole moments and the energy of the system can be extracted from
the output of FHI-aims via e.g.

> grep ’Electronic dipole moment’ optical_absorption_H2O.out \
| awk ’{print NR" "$3" "$10" "$11" "$12" "$5}’ \
| head -n 16384 > multipoles.out

To compute the photoabsorption cross section you can perform the following steps
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> cat multipoles.header multipoles.out > multipoles
> cross-section

This will create a file cross_section_vector which contains the different components of the cross section
vector for the chosen perturbation direction.
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