

Towards a First-Principles Chemical Engineering

Karsten Reuter

Chemistry Department and Catalysis Research Center Technische Universität München

Challenges across the scales

Multiscale modeling

Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions K. Reuter, C. Stampfl, and M. Scheffler, in: Handbook of Materials Modeling Vol. 1, (Ed.) S. Yip, Springer (Berlin, 2005). http://www.fhi-berlin.mpg.de/th/paper.html I. "Bottom up best practice": Multiscale modeling approach to in-situ CO oxidation at RuO₂(110)

Electronic regime: Energetics of elementary processes

K. Reuter and M. Scheffler, Phys. Rev. B 68, 045407 (2003)

Mesoscopic regime: Tackling rare-event time scales

First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status and frontiers K. Reuter, in "Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System", (Ed.) O. Deutschmann, Wiley-VCH, Weinheim (2011). http://www.fhi-berlin.mpg.de/th/paper.html Kinetic Monte Carlo: essentially ,,coarse-grained MD"

Molecular Dynamics: the whole trajectory

ab initio MD: up to 50 ps

Kinetic Monte Carlo: coarse-grained hops

ab initio kMC: up to minutes

Building a first-principles kinetic Monte Carlo model

CO oxidation @ RuO₂(110)

26 elementary processes (site-specific):

- O₂ adsorption/desorption (dissociative/associative)
- CO adsorption/desorption (unimolecular)
- O and CO diffusion
- CO + O reaction

K. Reuter, Oil&Gas Sci. Technol. 61, 471 (2006) K. Reuter and M. Scheffler, Phys. Rev. B 73, 045433 (2006) Surface structure and composition in the reactive environment

CO oxidation at RuO₂(110)

K. Reuter, D. Frenkel and M. Scheffler, Phys. Rev. Lett. 93, 116105 (2004)

M. Rieger, J. Rogal, and K. Reuter, Phys. Rev. Lett. 100, 016105 (2008)

Macroscopic regime: Heat and mass transfer

II. Towards error-controlled first-principles microkinetic models

Key ingredients to ,,predictive-quality" microkinetic modeling

Accurate rate constants:

$$k_{i \to j} = \Gamma_{o} \exp\left(\frac{-\Delta E_{i \to j}}{k_{\rm B}T}\right)$$

Transition state theory and beyond DFT functionals: "self-interaction" van der Waals interactions

Reaction mechanism:

Process identification Lattice mapping / spatial distributions "Hot chemistry" beyond Markov

$$\begin{array}{ccc} CO + * & \leftrightarrow & CO * \\ O_2 + 2 * & \leftrightarrow & O * + O * \\ CO * + O * \leftrightarrow & CO_2 \\ \cdots \end{array}$$

Mean-field approximation: Phenomenological rate equations

$$\frac{dP_i(t)}{dt} = -\sum_j k_{i \to j} P_i(t) + \sum_j k_{j \to i} P_j(t)$$

$$\frac{d\theta(O^{cus},t)}{dt} = f_1 \Big\{ k_{i \to j}, \theta(O^{cus},t), \theta(O^{br},t), \theta(CO^{cus},t), \theta(CO^{br},t) \Big\}$$
$$\frac{d\theta(O^{br},t)}{dt} = f_2 \Big\{ k_{i \to j}, \theta(O^{cus},t), \theta(O^{br},t), \theta(CO^{cus},t), \theta(CO^{br},t) \Big\}$$

The "power" of fitting

Fitted rate constants deviate from "real" rate constants by up to two orders in magnitude for dominant processes

Effective parameters without microscopic meaning

B. Temel *et al.*, J. Chem. Phys. 126, 204711 (2007)

Diffusion at metal surfaces: surprises...

Automatized process identification

Accelerated molecular dynamics:

Other approaches:

metadynamicsdimer method

...

Extending the Time Scale in Atomistic Simulation of Materials, A.F. Voter, F. Montalenti and T.C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002)

Error propagation through rate-determining steps

Source for ,,rough" rate constants: Hybrid UBI-QEP ?!

Unity Bond-Index Quadratic Exponential Potential

$$\Delta E_{AB\to A+B}^{\text{UBI-QEP}} = \phi \left[E_{AB\to A+B}^{\text{TS}} - \min_{x_{AB}} \left(E_{AB}^{\text{MEP}} \right) \right] = \phi \left[\frac{\left(P - D_{AB} \right)^2}{\left(P + D_{AB} \right)} \right]$$

E. Shustorovich and H. Sellers, Surf. Sci. Rep. 31, 5 (1998)

M. Maestri and K. Reuter, Angew. Chemie 123, 1226 (2011)

C1 microkinetic model for methane conversion to syngas on Rh/Al₂O₃

	No.	Reaction	A (unitless or s ⁻¹)	beta	Bond index	Activation Energy [kcal/mol]
· · · ·	1	$H_2 + 2^* \rightarrow 2H^*$	7.73E-01	0.9387	0.50	0.0
	2	$2H^* \rightarrow H_2 + 2^*$	5.56E+11	-0.4347	0.50	20.5+f(T)
	3	$O_2 + 2^* \rightarrow 2O^*$	4.81E-02	1.9965	0.50	0.0
	4	$20^* \rightarrow O_2 + 2^*$	4.31E+12	1.1995	0.50	$81.0 - 52.0 \theta_0 + f(T)$
	5	$OH^* + * \rightarrow H^* + O^*$	5.20E+12	-0.2659	0.30	24.2 + f(Bo, BH BCO, BH20 T)
	6	$H^* + O^* \rightarrow OH^* + *$	4.69E+12	-0.8196	0.30	$14.2 + f(\theta_0, \theta_H, \theta_{CO}, \theta_{H2O}, T)$
TT	7	$H_2O^* + * \rightarrow H^* + OH^*$	5.74E+11	0.0281	0.55	24.6 + f(Bo, Boh, OH, BCO, OH10, T)
\mathbf{n}_2	8	$H^* + OH^* \rightarrow H_2O^* + *$	1.80E+09	1.2972	0.55	$26.8 + f(\theta_0, \theta_{0H}, \theta_H, \theta_{00}, \theta_{H20}, T)$
	9	$H_2O^* + O^* \rightarrow 2OH^*$	2.08E+13	-2.1130	0.30	$11.4 + f(\theta_0, \theta_{OH}, \theta_{H20}, T)$
oxidation	10	$2OH^* \rightarrow H_2O^* + O^*$	7.22E+10	-0.2902	0.30	23.6 + f(Bo, BoH, BH20, T)
	11	$OH + * \rightarrow OH^*$	2.66E-01	-0.2891	0.50	0.0
	12	$OH^* \rightarrow OH + *$	1.14E+13	-0.9500	0.50	$70.0 - 33.0\theta_0 - 25.0\theta_{H20} + f(T)$
	13	$H_2O + * \rightarrow H_2O^*$	7.72E-02	1.4067	0.50	0.0
	14	$H_2O^* \rightarrow H_2O + *$	2.06E+13	-1.8613	0.50	$10.8 - 25.0\theta_{OH} - 4.5\theta_{H2O} + f(T)$
	15	$H^+ \rightarrow H^+$	1.93E-01	1.5313	0.50	0.0
	16	$H^* \rightarrow H + *$	2.40E+12	1.3208	0.50	$62.3 - 2.5\theta_H - 3.7\theta_{CO} + f(T)$
	17	0 + * → 0*	4.46E-02	-1.9236	0.50	0.0
	18	0* → 0 + *	9.74E+12	-1.9701	0.50	$100.0 - 26.0 \theta_0 + f(T)$
	19	$CO + * \rightarrow CO^*$	5.00E-01	-2.0000	0.50	0.0
CO	20	$CO^* \rightarrow CO + *$	5.65E+12	1.9879	0.50	$38.5 - 3.7\theta_H - 15.0 \theta_{CO} + f(T)$
CO	21	$CO_2 + * \rightarrow CO_2^*$	3.67E-01	-2.3294	0.50	0.0
vidation	22	$CO_2^* \rightarrow CO_2 + *$	7.54E+10	2.1831	0.50	5.2 + f(T)
xiuation	23	$CO_2^* + * \rightarrow CO^* + O^*$	4.12E+09	1.9698	0.90	$19.5 + f(\theta_0, \theta_H, \theta_{CO}, T)$
	24	$CO^* + O^* \rightarrow CO_2^* + *$	3.27E+09	1.3560	0.90	$25.6 + f(\theta_{O}, \theta_{H}, \theta_{CO}, T)$
	25	$COOH + * \rightarrow COOH^*$	5.34E-01	-1.0767	0.50	0.0
ounling	26	$COOH^* \rightarrow COOH + *$	1.12E+11	1.6803	0.50	62.2+f(T)
Juping	27	$HCOO + 2^* \rightarrow HCOO^{**}$	1.89E-02	-0.5548	0.50	0.0
	28	$HCOO^{**} \rightarrow HCOO + 2^{*}$	3.74E+13	0.5548	0.50	69.2 + f(T)
$1_2 \propto CO$	29	$CO_2^* + H^* \rightarrow CO^* + OH^*$	1.60E+13	0.0301	0.70	$6.1 + f(\theta_0, \theta_H, \theta_{CO}, \theta_{H2O}, T)$
	30	$CO^* + OH^* \rightarrow CO_*^* + H^*$	1.40E+13	-0.0301	0.70	22.2 + fron By Bra Burn T)

M. Maestri et al., AIChE J. 55, 993 (2009)

C1 microkinetic model for methane conversion to syngas on Rh/Al₂O₃

	No.	Reaction	A (unitless	beta	Bond	Activation Energy [kcal/mol]
			OT 5")		maex	
	31	$COOH^{*+*} \rightarrow CO^{*+OH^{*}}$	1.07E+12	-0.4123	0.50	$6.2 + f(\theta_0, \theta_H, \theta_{CO}, \theta_{H2O}, T)$
	32	$CO^{+OH^{+}} \rightarrow COOH^{++*}$	9.37E+11	0.4123	0.50	$18.6 + f(\theta_0, \theta_H, \theta_{CO}, \theta_{H_{2O}}, T)$
$\overline{\mathbf{O}}$	33	$COOH^{*+*} \rightarrow CO_2^{*+H^*}$	1.00E+10	-0.4424	0.80	$6.8 + f(\theta_{H}, \theta_{CO}, T)$
	34	$CO_2^*+H^* \rightarrow COOH^*+^*$	9.99E+09	0.4424	0.80	$3.1 + f(\theta_H, \theta_{CO}, T)$
	35	$CO^* + H_2O^* \rightarrow COOH^* + H^*$	3.34E+11	-0.2222	0.80	33.1+ f(вон, вн. всо, внго, T)
	36	$COOH^* + H^* \rightarrow CO^* + H_2O^*$	1.20E+09	0.2223	0.80	$22.9 + f(\theta_{OH}, \theta_{H}, \theta_{CO}, \theta_{H2O}, T)$
7	37	$CO_2^* + OH^* \rightarrow COOH^* + O^*$	1.05E+11	0.7192	0.50	$22.3 + f(\theta_0, \theta_{H20}, T)$
	38	$COOH^* + O^* \rightarrow CO_2^* + OH^*$	9.51E+10	-0.7192	0.50	$16.0 + f(\theta_{O_1}, \theta_{HOO_2}, T)$
60	39	$CO_2^* + H_2O^* \rightarrow COOH^* + OH^*$	1.78E+12	-0.1922	0.50	$13.5 + f(\theta_0, \theta_{0H}, \theta_{HNO}, T)$
E I	40	$COOH^* + OH^* \rightarrow CO_3^* + H_3O^*$	5.60E+09	0.1922	0.50	$19.4 + f(\theta_{12}, \theta_{134}, \theta_{1342}, T)$
·	41	$CO_2^*+H^* \rightarrow HCOO^{**}$	1.04E+09	1.1254	0.50	$4.3 + f(\theta_{H}, \theta_{DO}, T)$
	42	$HCOO^{**} \rightarrow CO_2^{*+}H^{*}$	3.86E+13	-1.1253	0.50	$0.0 + f(\theta_{\mu}, \theta_{CQ}, T)$
3	43	$CO_2^* + OH^* + * \rightarrow HCOO^{**} + O^*$	1.09E+09	1.4022	0.50	$27.6 + f(\theta_0, \theta_{H20}, T)$
$\overline{\mathbf{o}}$	44	$HCOO^{**} + O^* \rightarrow CO_2^* + OH^* + *$	3.67E+13	-1.4022	0.50	$13.4 + f(\theta_{0}, \theta_{HNO}, T)$
ပ	45	$CO_3 + H_2O + + \rightarrow HCOO + + OH +$	9.24E+09	0.4908	0.50	$18.4 + f(\theta_0, \theta_{0H}, \theta_{HNO}, T)$
	46	$HCOO^{**} + OH^* \rightarrow CO_2^* + H_2O^* + *$	1.08E+12	-0.4908	0.50	$16.4 + f(\theta_{O}, \theta_{OH}, \theta_{H2O}, T)$
	*/	1	# WAR-917	-1.0012	0.50	
CII	48	$C^* \rightarrow C^{+*}$	3.54E+04	1.8618	0.50	159.0+f(T)
	49	$CH + * \rightarrow CH^*$	2.29E-02	-1.0798	0.50	0.0
	50	$CH^* \rightarrow CH + *$	3.08E+13	1.0798	0.50	151.2+f(T)
pyro-	51	$CH_2 + * \rightarrow CH_2*$	4.09E-02	-0.4265	0.50	0.0
1	52	$CH_2^* \rightarrow CH_2 + *$	1.73E+13	0.4265	0.50	109.3+f(T)
IISIS						

C1 microkinetic model for methane conversion to syngas on Rh/Al₂O₃

	No.	Reaction	A (unitless or s ⁻¹)	beta	Bond index	Activation Energy [kcal/mol]
S	53	$CH_3 + * \rightarrow CH_3^*$	1.35E-01	0.0326	0.50	0.0
Ĩ.	54	$CH_3^* \rightarrow CH_3^+ *$	5.22E+12	-0.0325	0.50	42.4+f(T)
	55	$CH_4 + 2^* \rightarrow CH_3^* + H^*$	5.72E-01	0.7883	0.50	$9.7 + f(\theta_{H}, \theta_{CO}, T)$
2	56	$CH_3^* + H^* \rightarrow CH_4 + 2^*$	7.72E+10	-0.7883	0.50	$9.5 + f(\theta_{H}, \theta_{CO}, T)$
	57	$CH_3^* + * \rightarrow CH_2^* + H^*$	2.49E+10	0.0862	0.50	$10.6 + f(\theta_{H}, \theta_{CO}, T)$
	58	$CH_2^* + H^* \rightarrow CH_3^* + *$	2.57E+09	-0.0862	0.50	$29.1 + f(\theta_{H}, \theta_{CO}, T)$
	59	$CH_2^* + * \rightarrow CH^* + H^*$	5.50E+10	-0.1312	0.50	$20.5 + f(\theta_{H}, \theta_{CO}, T)$
	60	$CH^* + H^* \rightarrow CH_2^* + *$	7.27E+09	0.1312	0.50	$23.6 + f(\theta_{H}, \theta_{CO}, T)$
	61	$CH^* + * \rightarrow C^* + H^*$	4.58E+12	-0.2464	0.50	$27.6 + f(\theta_{H}, \theta_{CO}, T)$
\mathbf{C}	62	$C^* + H^* \rightarrow CH^* + *$	2.18E+11	0.2464	0.50	$17.1 + f(\theta_{H^{\circ}}, \theta_{CO^{\circ}}, T)$
	63	$CH_* + O^* \rightarrow CH_* + OH^*$	2.96E+11	-0 1906	0.70	10.0 + 1(Ro Amo D
	64	$CH_2^* + OH^* \rightarrow CH_3^* + O^*$	3.38E+10	0.1906	0.70	$38.4 + f(\theta_0, \theta_{H20}, T)$
	65	$CH^* + OH^* \rightarrow CH_2^* + O^*$	3.83E+10	0.4081	0.70	$45.7 + f(\theta_0, \theta_{H20}, T)$
	66	$CH_2^* + O^* \rightarrow CH^* + OH^*$	2.61E+11	-0.4081	0.70	$32.6 + f(\theta_0, \theta_{H20}, T)$
	67	$C^* + OH^* \rightarrow CH^* + O^*$	2.30E+10	0.5232	0.50	$29.8 + f(\theta_0, \theta_{H20}, T)$
	68	$CH^* + O^* \rightarrow C^* + OH^*$	4.35E+11	-0.5232	0.50	$30.4 + f(\theta_0, \theta_{H20}, T)$
• H	69	$CH_2^* + H_2O^* \rightarrow CH_3^* + OH^*$	5.73E+10	-0.7208	0.70	$29.9 + f(\theta_0, \theta_{0H}, \theta_{H20}, T)$
	70	$CH_3^* + OH^* \rightarrow CH_2^* + H_2O^*$	1.74E+09	0.7208	0.70	$13.6 + f(\theta_0, \theta_{0H}, \theta_{H20}, T)$
	71	$CH^* + H_2O^* \rightarrow CH_2^* + OH^*$	6.49E+11	-0.5033	0.70	$21.8 + f(\theta_{O}, \theta_{OH}, \theta_{H2O}, T)$
	72	$CH_2^* + OH^* \rightarrow CH^* + H_2O^*$	1.54E+10	0.5033	0.70	$20.9 + f(\theta_0, \theta_{0H}, \theta_{H20}, T)$
X	73	$C^* + H_2O^* \rightarrow CH^* + OH^*$	9.74E+11	-0.3882	0.50	$10.5 + f(\theta_O, \theta_{OH}, \theta_{H2O}, T)$
•	74	$CH^* + OH^* \rightarrow C^* + H_2O^*$	6.41E+10	0.3882	0.50	23.3 + f(Bo, BoH, BH20, T)
4	75	$CO^* + * \rightarrow C^* + O^*$	1.25E+09	0.5712	0.50	$49.1 + f(\theta_0, \theta_H, \theta_{CO}, T)$
	76	$C^* + O^* \rightarrow CO^* + *$	7.22E+09	-0.5712	0.50	$12.3 + f(\theta_0, \theta_H, \theta_{CO}, T)$
ζ <u>ζ</u>	77	$CO^* + H^* \rightarrow CH^* + O^*$	9.07E+09	0.8176	0.80	$69.1 + f(\theta_{O_{\mu}}, \theta_{\mu}, \theta_{CO_{\mu}}, T)$
-	78	$CH^* + O^* \rightarrow CO^* + H^*$	1.10E+12	-0.8176	0.80	$42.9 + f(\theta_0, \theta_H, \theta_{CO}, T)$
	79	$CO^* + H^* \rightarrow C^* + OH^*$	1.18E+12	0.2944	0.15	$26.8 + f(\theta_{O}, \theta_{H}, \theta_{CO}, \theta_{H2O}, T)$
	80	$C^* + OH^* \rightarrow CO^* + H^*$	7.60E+12	-0.2944	0.15	$0.0 + f(\theta_0, \theta_H, \theta_{00}, \theta_{H20}, T)$
	81	$2CO^* \rightarrow C^* + CO_2^*$	1.11E+09	0.2644	0.50	$42.9 + f(\theta_{H}, \theta_{CO}, T)$
	82	$C^* + CO_2^* \rightarrow 2CO^*$	8.10E+09	-0.2644	0.50	$0.0 + f(\theta_{H}, \theta_{TO}, T)$

Identified key issues: Water-gas shift and r-WGS

Same RDS for WGS/r-WGS inconsistent with experimental data

M. Maestri et al., Topics Catal. 52, 1983 (2009)

First-principles refinement: When an ,,elementary step" is not elementary...

Multiscale catalysis modeling: From hype to reality

State-of-the-art in catalysis modeling:

- Prevalence of highly coarse-grained models based on effective parameters without true microscopic meaning

rate equation theory based on empirical rate constants - Emergence of ad-hoc dual-scale modeling first-principles kinetic Monte Carlo

simulations for heterogeneous catalysis

Steps towards a predictive character multiscale catalysis modeling: - Replace effective parameters by first-principles data

fitted vs. DFT-based rate constants

- Refined modeling at each individual level

necessity to resolve spatial arrangement at surface integrate first-principles surface chemistry into reactor models - Robust links between theories that enable reverse-mapping sensitivity analysis to control flow of error across scales

www.th4.ch.tum.de

