Density Functional Theory and Beyond with Numeric Atom-Centered Orbitals

Hands on tutorial:

Accurate scanning of potential energy surface of small metal oxide clusters: An application of *Cascade* Genetic Algorithm

Saswata Bhattacharya Fritz-Haber-Institut der MPG, Berlin bhattacharya@fhi-berlin.mpg.de

FHI-aims Developers' and Users' Meeting - August 19-22, 2014

OUTLINE

Motivation: This tutorial aims to solve the problem of accurate scanning of potential energy surface by first principles based global-optimization technique, viz. a massive-parallel cascade genetic algorithm (GA) as available within fhi-aims package.

Task-I: How to find the global minimum of Mg_4O_4 cluster using GA? In this part of the tutorial the conventional GA will be used to find low energy isomers including the global minimum (GM) of Mg_4O_4 cluster. Here we will introduce the basic input files, keywords needed to run GA and analysis of the output files after GA.

Task-2: Why to switch on cascade?

Here we will introduce the "cascade" feature of the code. The term cascade means a multistepped algorithm where successive steps employ higher level of theory and each of the next level takes information obtained at the immediate lower level. In this part of the tutorial we will show if local/semi-local functional yields wrong energetics for a specific system, how a conventional GA scheme fails miserably to address the low energy structures (e.g. GM) of that system. The main objective of this part is to teach how to overcome such functional related issues by introducing "cascade" feature of the code.

Task-I: How to find the global minimum of Mg4O4 cluster using GA?

```
Directory \rightarrow AIMS-workshop/Mg4O4
```

Before a GA-run, the working directory should have all the following files & directories:

```
bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404$ ls
child.dat geom1 index.dat initial_pool jobs Math plot.py run
control geom2 indicator.dat input_settings.dat master.plx out plotting user_input.in
bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404$
```

The next step is to prepare the input files to run GA.
 Focus on the following important file/directories located in the working directory.

```
bhattacharya@theobook81:~/Codes/CA/AIMS-workshop/Mg404$ ls
child.dat geom1 index.dat initial_pool jobs Math plot.py run
control geom2 indicator.dat input_settings.dat master.plx out plotting user_input.in
bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404$
```

- * user_input.in \rightarrow control file of GA
- * initial_pool \rightarrow directory where to keep random initial structures to start GA
- * control \rightarrow directory where to keep settings and basis sets to prepare control.in to run fhi-aims

Task-I: How to find the global minimum of Mg4O4 cluster using GA?

An optimised user_input.in is provided. The first part of it is to provide "USER SPECIFIC SETTINGS", where the user needs to specify some "values / keywords" for a specific GA-run. For meaning of all the "values / keywords", please consult the user manual of GA.

bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404\$ cat user_input.in USER SPECIFIC SETTINGS General Settings: surface/cluster: cluster number_of_children 1 number_of_structures 100 aims.out:keep/delete keep initial_moment:hund/custom hund control.in_species:default/custom custom minimum_bond_length 0.8 existance_minimum 0.05 "/home/bhattacharya/Codes/bin" BIN_DIRECTORY "aims.052014.mpi.x" aims_file -----Cascade Settings: cascade_start Θ cascade_num_of_steps Θ energy_structure none search_pattern Θ cascade_window Θ bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404\$

Task-I: How to find the global minimum of Mg4O4 cluster using GA?

- * Apart from "USER SPECIFIC SETTINGS" in user_input.in, there are some technical "keywords" that are also essential to be inside user_input.in.
- * A file named as "input_settings.dat" is provided with all such technical "keywords". Paste it after "USER SPECIFIC SETTINGS" in user_input.in.

bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404\$ cat input_settings.dat >> user_input.in

NOTE: Those "keywords" as in "input_settings.dat" are optimised after several testing & benchmarking results. Thus it's highly recommended to keep them unchanged, unless the user is really confident enough about such changes.

* user_input.in \rightarrow control file of GA

- * initial_pool \rightarrow directory where to keep random initial structures to start GA
- * control \rightarrow directory where to keep settings and basis sets to prepare control.in to run fhi-aims

initial_pool is the directory where the user needs to keep random structures in geometry.in format. We have already provided two random structures here named as geom I and geom2.
 For bigger systems, the higher is the number of distinct random structures provided in this directory, the faster will be the GA-convergence.

```
bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404$ ls initial_pool/
geom1 geom2
bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404$
```


* user_input.in → control file of GA
 * initial_pool → directory where to keep random initial structures to start GA
 * control → directory where to keep settings and basis sets to prepare control.in to run fhi-aims

- * control is the directory where settings and basis sets are provided for generating a control.in to perform local optimisation using fhi-aims.
- * settings_main.dat is the settings for control.in and Mg_main and O_main are the basis sets (light settings) of Mg and O atoms respectively.

```
bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404$ ls control/
Mg_main O_main settings_main.dat
bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404$ cat control/settings_main.dat
 хс
                  pbe
 spin
                  none
 relativistic
                  atomic_zora scalar 1e-9
 occupation_type gaussian 0.03
 vdw_correction_hirshfeld
 KS_method
                  scalapack_fast
 mixer
                  pulay
 ini_linear_mixing 0
 charge_mix_param 0.4
 spin_mix_param 0.6
 sc_accuracy_rho 1E-2
 sc_accuracy_eev 1E-2
 sc_accuracy_etot 1E-1
 sc_iter_limit
                  100
 empty_states
                  5
  relax_geometry trm 5E-2
  sc_accuracy_forces 1e-2
bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404$
```

w user_input.in → control file of GA
 w initial_pool → directory where to keep random initial structures to start GA
 w control → directory where to keep settings and basis sets to prepare control.in to run fhi-aims

We are all set to run GA. We will submit a job in the local machine as follows:
 ./run/start_GA.plx > out & (Ignore the warnings that are coming from perl).

* Wait for at most two hours to get the global minimum structure of this system.

Analysis of Data:

- * Once the start_GA.plx starts running a few important directories viz. "progress", "structures", "structure_temp", etc. will be formed.
- In "progress" directory, there will be a file named as getot.datxxxxxx [xxxxxxx is some six digit random number] will give us all the details of hierarchy of different isomers.
- * "structures" will store all the new generated structures in "structures/structures_i" directories. This will contain the final geometry.in, aims.out (fhi-aims output file), energy.dat (total energy), etc.
- * "structure_temp" will be used for performing temporary local fhi-aims optimisation.

bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404\$ ls							
child.dat	geom1	indicator.dat	jobs	out	progress	structures	user_structures
control	geom2	initial_pool	master.plx	plot.py	run	<pre>structures_temp</pre>	
copy_initial_pool	index.dat	input_settings.dat	Math _	plotting	stoichiometry	user_input.in	
bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/Mg404\$							

Analysis of Data:

bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre-run-results/Mg404\$ cat progress/getot.dat189947 **#STRUCTURE NAME** ENERGY STOICHIOMETRY GM structure structure_5 -30020.47798083880_4:Mg_4 0_4:Mg_4 structure 2 -30019.6765551307structure 1 -30019.1803159682Mg_4:0_4 0_4:Mg_4 structure_7 -30019.1189970758structure 6 -30016.4166684199Mg 4:0 4 0 4:Mg 4 structure_8 -30016.3118193129 structure 3 0_4:Mg_4 -30016.2831888422 structure_4 0_4:Mg_4 -30016.0981433278Max_Energy = -30016.0981433278 Min Energy = -30020.4779808388 Avg Energy = -30017.9454586145 bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre<u>-run-result</u>s/Mg404\$ ls structures structure_1 structure_2 structure_3 structure_4 structure_5 structure_6 structure_7 structure_8 bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre-run-results/Mg404\$ Hierarchy of isomers from cascade-GA run 4.0 * To plot the hierarchy of isomers keeping GM 3.5 2.5 2.5 2.5 2.0 2.5 as 0 run the script ploy.py * ./ plot.py progress/getot.datxxxxx 1.5 1.0 0.5 0.0

Different isomers

- It's well known the limitation of local/semi-local functional of DFT. There are many systems (e.g. highly oxidised clusters of MgO), where PBE energetics are wrong w. r. t more advanced functionals (e.g. PBE0). Therefore, calculating fitness function using PBE energetics (that we do in conventional GA), becomes very wrong as this gives selection priority to those isomers that are favoured by PBE but totally unfavoured by more advanced functionals. This affects the PES-scanning to get the correct results in determining the GM, and an accurate hierarchy of different isomers.
- ** In this tutorial, we show one such example and how to circumvent such issues by introducing "cascade" feature of the code. With switching on the "cascade" feature, a local optimisation is done still at the PBE-light level, but that energy is never used to calculate the fitness function. A further step is performed (as requested in the "cascade" keyword as in user_input.in) that takes care of the accurate energetics to be given to calculate the fitness function. For more details we refer to see the manual and our recent publications. [1,2]
- * Note: These calculations are expensive and can not be done in the local machines. Thus we recommend to analyse only the pre-run-results using the experience from previous tutorial.
- Directory → AIMS-workshop/pre-run-results/Mg2O8

We have three directories to compare:

- # GA \rightarrow performed normal GA but no cascade
- * cascade1 \rightarrow performed cascade GA with PBE-tight
- * cascade2 \rightarrow performed cascade GA with PBE0-tight

[1] "Efficient and accurate *ab initio* schemes for finding thermodynamically stable and metastable atomic structures: Benchmark of cascade genetic algorithms": S. Bhattacharya *et. al.* [to be published 2014] [2] "Stability and Metastability of Clusters in a Reactive Atmosphere: Theoretical Evidence for Unexpected Stoichiometries of Mg_MO_x ": S. Bhattacharya *et. al.* PRL **111**, 135501 (2013)

Directory → AIMS-workshop/pre-run-results/Mg2O8/GA

bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre-run-results/Mg208/GA\$ cat progress/getot.dat864378 | more #STRUCTURE NAME ENERGY STOICHIOMETRY

structure_15	-27289.6928732087	Mg_2:0_8
structure_4	-27289.6871927603	Mg_2:0_8
structure_22	27289.637395995	Mg_2:0_8
structure_36	-27289.6171771897	Mg_2:0_8
structure_19	-27289.003605041	Mg_2:0_8
structure_5	-27289.5268002086	Mg_2:0_8
structure_42	-27289.4857457319	Mg_2:0_8
structure_33	-27289.4448552399	Mg_2:0_8
structure_11	-27289.4372975139	Mg_2:0_8
structure_39	-27289.4333105013	Mg_2:0_8
structure_49	-27289.3580379523	Mg_2:0_8
structure_32	-27289.3545390086	Mg_2:0_8
structure_14	-27289.3540606194	Mg_2:0_8
structure_59	-27289.3524092934	Mg_2:0_8
structure_28	-27289.3500823892	Mg_2:0_8
structure_40	-27289.3429699239	Mg_2:0_8
structure_12	-27289.3416842073	Mg_2:0_8
structure_25	-27289.3328255649	Mg_2:0_8
structure_10	-27289.2882737957	Mg_2:0_8
structure_43	-27289.2691165608	Mg_2:0_8
structure_18	-27289.2684792269	Mg_2:0_8
structure_56	-27289.2631147956	Mg_2:0_8
structure_46	-27289.254886303	Mg_2:0_8
structure_61	-27289.2485801047	Mg_2:0_8
structure_23	-27289.2295444077	Mg_2:0_8
structure_2	-27289.2069619175	Mg_2:0_8
structure_47	-27289.1935920688	Mg_2:0_8
structure_29	-27289.159796125	Mg_2:0_8
structure_45	-27289.039755102	Mg_2:0_8
structure_50	-27288.954190863	Mg_2:0_8

Directory \rightarrow AIMS-workshop/pre-run-results/Mg2O8/cascade1

* Here we dont use the PBE-light energetics to calculate fitness function and we ask the code to perform one additional single point energy calculation at PBE-tight settings (after finishing the local optimisation at the PBE-light level). And the later energy (i.e., PBE-tight) is used to calculate the fitness function.

bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre-run-results/Mg2O8/cascade1\$ ls -t progress/getot.dat* progress/getot.dat189964 progress/getot.dat825111 bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre-run-results/Mg2O8/cascade1\$ more user_input.in USER SPECIFIC SETTINGS

"/u/saswata/fhi-aims/bin"

cluster

2

100

keep

hund

0.8

0.05

custom

General Settings: surface/cluster: number_of_children number_of_structures aims.out:keep/delete initial_moment:hund/custom control.in_species:default/custom minimum_bond_length existance_minimum

BIN_DIRECTORY aims_file

aims_file	"aims.0207	14.scalapack.mpi.x"
Cascade Settings: cascade_start cascade_num_of_steps energy_structure	1 1 tight	Cas Not
search_pattern	0	"Mσ
cascade_window	0	1 18

This calculation is more expensive than the previous example without cascade. Thus we have employed parallel run by introducing one more replica.

Cascade settings are switched on. Note: Some extra files for settings & basis sets named as "settings_tight.dat", "Mg_tight", "O_tight" are also provided in the "control" directory.

Directory \rightarrow AIMS-workshop/pre-run-results/Mg2O8/cascade1

bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre-run-results/Mg2O8/cascade1\$ cat progress/getot.dat189964 | more #STRUCTURE NAME ENERGY STOICHIOMETRY

structure_4	-27290.7872608886	Mg_2:0_8	GM structure (PBE-tight)
structure_3	-27290.7719859084	Mg_2:0_8	
structure_8	6 -27290.701895717	Mg_2:0_8	
structure_1	2 -27290.6790161373	Mg_2:0_8	
structure_2	0 27290.6781484207	Mg_2:0_8	
structure_4	3 -27239.6411244382	Mg_2:0_8	
structure_3	0 -27290.5617763104	Mg_2:0_8	•
structure_5	8 -27290.5520313366	Mg_2:0_8	
structure_2	8 -27290.5367426399	Mg_2:0_8	
structure_2	3 -27290.4544108814	Mg_2:0_8	
structure_9	0 -27290.4503146455	Mg_2:0_8	
structure_9	-27290.4500264413	Mg_2:0_8	
structure_2	1 -27290.4487119794	Mg_2:0_8	
structure_2	7 -27290.433796813	Mg_2:0_8	
structure_7	6 -27290.4304135242	Mg_2:0_8	
structure_3	8 -27290.4286252536	Mg_2:0_8	
structure_5	2 -27290.420805745	Mg_2:0_8	
structure_6	2 -27290.4182489515	Mg_2:0_8	
structure_3	4 -27290.4029591525	Mg_2:0_8	
structure_1	4 -27290.4006834899	Mg_2:0_8	
structure_1	1 -27290.3741692208	Mg_2:0_8	
structure_7	-27290.368975194	Mg_2:0_8	
structure_7	3 -27290.3593021062	Mg_2:0_8	L
structure_1	6 -27290.3431920166	Mg_2:0_8	
structure_5	1 -27290.3327083886	Mg_2:0_8	
structure_3	1 -27290.3295145264	Mg_2:0_8	Hierarchy is reversed after introducing
structure_6	7 -27290.3177372789	Mg_2:0_8	Coccodo et DDE ticht esttingel
structure_1	5 -27290.2985217248	Mg_2:0_8	Cascade at PBE-tight settings!
structure_7	0 -27290.2886310843	Mg_2:0_8	What happens if we introduce hybrid
structure_1	9 -27290.2828546073	Mg_2:0_8	
structure_3	6 -27290.2592258211	Mg_2:0_8	functional (e.g PBEU-tight) instead of
structure_5	9 -27290.2498177306	Mg_2:0_8	PRE-tight at the cascade level?
structure_7	9 -27290.2476679924	Mg_2:0_8	I DE-light at the castaut level :

Directory \rightarrow AIMS-workshop/pre-run-results/Mg2O8/cascade2

Here we will introduce hybrid functional's energetics (e.g PBE0-tight) to calculate the fitness function. Therefore, in the cascade level, we have to ask single point total energy calculations using PBE0-tight settings. This is the most expensive run out of these three examples. But since we know PBE0-tight energetics are in very good agreement with higher level DFT beyond methods (e.g. rPT2@PBE), this is expected to be the most accurate scanning of this PES.

bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre-run-results/Mg2O8/cascade2\$ ls -t progress/getot.dat* progress/getot.dat445698 progress/getot.dat919573 progress/getot.dat556122 progress/getot.dat203307 bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre-run-results/Mg2O8/cascade2\$ more user_input.in USER SPECIFIC SETTINGS

Directory \rightarrow AIMS-workshop/pre-run-results/Mg2O8/cascade2

bhattacharya@theobook81:~/Codes/GA/AIMS-workshop/pre-run-results/Mg2O8/cascade2\$ cat progress/getot.dat445698 | more #STRUCTURE NAME ENERGY STOICHIOMETRY

structure_63	-27289.328608731	Mg_2:0_8	GM structure (PBF0-tight)
structure_3	-27289.30853679	Mg_2:0_8	
structure_4	-27289.2823122641	Mg_2:0_8	
structure_57	-27289.256600264	Mg_2:0_8	
structure_99	-27289.2289164582	Mg_2:0_8	
structure_14	-27289.1935686891	Mg_2:0_8	
structure_100	-27289.1484384294	Mg_2:0_8	
structure_39	-27289.1375961549	Mg_2:0_8	
structure_40	-27289.1319882991	Mg_2:0_8	
structure_50	-27289.1232258254	Mg_2:0_8	
structure_102	-27289.1216921172	Mg_2:0_8	
structure_65	-27289.1171926929	Mg_2:0_8	
structure_91	-27289.1085283347	Mg_2:0_8	
structure_62	-27289.1067789682	Mg_2:0_8	
structure_9	-27289.0944667451	Mg_2:0_8	
structure_80	-27289.0773383517	Mg_2:0_8	CM is totally changed with t
structure_88	-27289.0549053147	Mg_2:0_8	Given is totally changed w. r. t
structure_93	-27289.0462879908	Mg_2:0_8	PBE (light/tight).
structure_21	-27289.0294757398	Mg_2:0_8	
structure_77	-27289.0285119502	Mg_2:0_8	
structure_96	-27289.0229372898	Mg_2:0_8	
structure_92	-27289.0077980291	Mg_2:0_8	
structure_19	-27288.9969184036	Mg_2:0_8	This structure was 18" and 15" in the
structure_68	-27288.9586228338	Mg_2:0_8	energy hierarchy of the previous two
structure_94	-27288.9409678739	Mg_2:0_8	
structure_64	-27288.9386256536	Mg_2:0_8	GA runs (i.e. the one with and the one
structure_38	-27288.9259921522	Mg_2:0_8	without cascade respectively)
structure_97	-27288.9171551086	Mg_2:0_8	without castaut respectively).
structure_24	-27288.9026145908	Mg_2:0_8	
structure_20	-27288.8996315037	Mg_2:0_8	
structure_23	-27288.8859786706	Mg_2:0_8	
structure_15	-27288.8039014115	Mg_2:0_8	
structure_31	-27288.7776579972	Mg_2:0_8	
structure_12	-27288.7295621244	Mg_2:0_8	

