
an introduction to the power of ”the stupid content tracker”

Arvid Conrad Ihrig

Fritz-Haber-Institut der Max-Planck-Gesellschaft

August 19th 2014, Berlin



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



The Concept of Distributed Version Control

master

feature2

feature1

prerelease

release

master

feature2

feature1

prerelease

release

our initial commitbranching of a complex featurea small fixbranching of another featurenormal development commitsfeature freeze before the releasenormal development commitsfixing the last bugsmerge back a finished featuremerge from master to keep feature up-to-datetime for a release!merge back the small bugfixesfinal changes to complex featuremerge complex feature into mainline

Advantages of (Distributed) Version Control
I simplifies parallel workflows
I feature isolation simplifies development
I project history is simple to track
I half-finished code does not postpone release



DVCS in git

A few general remarks about git:
I each commit is immutable and uniquely identified by a checksum

I commit ”modifying” operations create a new commit and discard
the old one

I do not modify already pushed commits
I git knows local and remote branches

I branches are just pointers to specific commits
I local branches are those you work on
I remote branches indicate the state of the remote repository

I git can interact with more than one remote repository
I for simplicity, we consider only one in this tutorial



Basic git usage
recording changes, inspecting commits and remote

repositories



Cloning an existing git repository

Local Repository

A

B master HEADorigin/master

local branch tipremote branch tipstate of your
working directory

Remote Repository

A

B master

server branch tip

, git@test: git clone user@server:path/to/repo

git clone <source> [<target>]
make a copy of the specified git repository

source any git repository, either from a local network or the web
target the (non-existing) folder into which the clone will be copied

git show <revision>
show the given commit and the contained changes

revision the commit you want to inspect



Cloning an existing git repository

Local Repository

A

B master HEADorigin/master

local branch tipremote branch tipstate of your
working directory

Remote Repository

A

B master

server branch tip

, git@test: git clone user@server:path/to/repo

git clone <source> [<target>]
make a copy of the specified git repository

source any git repository, either from a local network or the web
target the (non-existing) folder into which the clone will be copied

git show <revision>
show the given commit and the contained changes

revision the commit you want to inspect



Cloning an existing git repository

Local Repository

A

B master HEADorigin/master

local branch tipremote branch tipstate of your
working directory

Remote Repository

A

B master

server branch tip

, git@test: git clone user@server:path/to/repo

git clone <source> [<target>]
make a copy of the specified git repository

source any git repository, either from a local network or the web
target the (non-existing) folder into which the clone will be copied

git show <revision>
show the given commit and the contained changes

revision the commit you want to inspect



Cloning an existing git repository

Local Repository

A

B master HEADorigin/master

local branch tipremote branch tipstate of your
working directory

Remote Repository

A

B master

server branch tip

, git@test: git clone user@server:path/to/repo

git clone <source> [<target>]
make a copy of the specified git repository

source any git repository, either from a local network or the web
target the (non-existing) folder into which the clone will be copied

git show <revision>
show the given commit and the contained changes

revision the commit you want to inspect



Cloning an existing git repository

Local Repository

A

B master HEADorigin/master

local branch tipremote branch tipstate of your
working directory

Remote Repository

A

B master

server branch tip

, git@test: git clone user@server:path/to/repo

git clone <source> [<target>]
make a copy of the specified git repository

source any git repository, either from a local network or the web
target the (non-existing) folder into which the clone will be copied

git show <revision>
show the given commit and the contained changes

revision the commit you want to inspect



Cloning an existing git repository

Local Repository

A

B master HEADorigin/master

local branch tipremote branch tipstate of your
working directory

Remote Repository

A

B master

server branch tip

, git@test: git clone user@server:path/to/repo

git clone <source> [<target>]
make a copy of the specified git repository

source any git repository, either from a local network or the web
target the (non-existing) folder into which the clone will be copied

git show <revision>
show the given commit and the contained changes

revision the commit you want to inspect



Cloning an existing git repository

Local Repository

A

B master HEADorigin/master

local branch tipremote branch tipstate of your
working directory

Remote Repository

A

B master

server branch tip

, git@test: git clone user@server:path/to/repo

git clone <source> [<target>]
make a copy of the specified git repository

source any git repository, either from a local network or the web
target the (non-existing) folder into which the clone will be copied

git show <revision>
show the given commit and the contained changes

revision the commit you want to inspect



Cloning an existing git repository

Local Repository

A

B master HEADorigin/master

local branch tipremote branch tipstate of your
working directory

Remote Repository

A

B master

server branch tip

, git@test: git clone user@server:path/to/repo

git clone <source> [<target>]
make a copy of the specified git repository

source any git repository, either from a local network or the web
target the (non-existing) folder into which the clone will be copied

git show <revision>
show the given commit and the contained changes

revision the commit you want to inspect



Committing your changes locally

Local Repository

A

B master HEADorigin/master

stageC master HEAD

the changed file
is now staged for
the next commit

only the local branch
has changed

Remote Repository

A

B master

git commit changes
nothing on the server

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git status
, git@test: git add newfile.txt
, git@test: git commit

git status [<path>]
show what changed compared to the current HEAD revision

path restrict output to files and folders matching this shell pattern

git add [-p] <path>
mark the changes in the specified file(s) as part of the next commit

path path specification for the file(s) to include
-p start an interactive session, where you can decide for each

change in a file individually if it should be committed

git commit [--amend]
save the previously staged changes as a new
commit after entering a commit message

--amend instead of making a new commit, correct the current
HEAD, e.g. to fix typos or include forgotten files (use
only for not pushed commits!)

git diff [--cached | <revision1>]
[<revision2>] <path>

show a diff for a file between two different revisions,
with no arguments diffs working directory vs. HEAD

revision1 the first revision to compare, defaults to working copy
revision2 the second revision to compare, defaults to HEAD

path shell pattern for file(s) to diff
--cached use the staged content as revision1



Committing your changes locally

Local Repository

A

B master HEADorigin/master

stageC master HEAD

the changed file
is now staged for
the next commit

only the local branch
has changed

Remote Repository

A

B master

git commit changes
nothing on the server

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git status
, git@test: git add newfile.txt
, git@test: git commit

git status [<path>]
show what changed compared to the current HEAD revision

path restrict output to files and folders matching this shell pattern

git add [-p] <path>
mark the changes in the specified file(s) as part of the next commit

path path specification for the file(s) to include
-p start an interactive session, where you can decide for each

change in a file individually if it should be committed

git commit [--amend]
save the previously staged changes as a new
commit after entering a commit message

--amend instead of making a new commit, correct the current
HEAD, e.g. to fix typos or include forgotten files (use
only for not pushed commits!)

git diff [--cached | <revision1>]
[<revision2>] <path>

show a diff for a file between two different revisions,
with no arguments diffs working directory vs. HEAD

revision1 the first revision to compare, defaults to working copy
revision2 the second revision to compare, defaults to HEAD

path shell pattern for file(s) to diff
--cached use the staged content as revision1



Committing your changes locally

Local Repository

A

B master HEADorigin/master

stageC master HEAD

the changed file
is now staged for
the next commit

only the local branch
has changed

Remote Repository

A

B master

git commit changes
nothing on the server

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git status
, git@test: git add newfile.txt
, git@test: git commit

git status [<path>]
show what changed compared to the current HEAD revision

path restrict output to files and folders matching this shell pattern

git add [-p] <path>
mark the changes in the specified file(s) as part of the next commit

path path specification for the file(s) to include
-p start an interactive session, where you can decide for each

change in a file individually if it should be committed

git commit [--amend]
save the previously staged changes as a new
commit after entering a commit message

--amend instead of making a new commit, correct the current
HEAD, e.g. to fix typos or include forgotten files (use
only for not pushed commits!)

git diff [--cached | <revision1>]
[<revision2>] <path>

show a diff for a file between two different revisions,
with no arguments diffs working directory vs. HEAD

revision1 the first revision to compare, defaults to working copy
revision2 the second revision to compare, defaults to HEAD

path shell pattern for file(s) to diff
--cached use the staged content as revision1



Committing your changes locally

Local Repository

A

B master HEADorigin/master

stageC master HEAD

the changed file
is now staged for
the next commit

only the local branch
has changed

Remote Repository

A

B master

git commit changes
nothing on the server

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git status
, git@test: git add newfile.txt
, git@test: git commit

git status [<path>]
show what changed compared to the current HEAD revision

path restrict output to files and folders matching this shell pattern

git add [-p] <path>
mark the changes in the specified file(s) as part of the next commit

path path specification for the file(s) to include
-p start an interactive session, where you can decide for each

change in a file individually if it should be committed

git commit [--amend]
save the previously staged changes as a new
commit after entering a commit message

--amend instead of making a new commit, correct the current
HEAD, e.g. to fix typos or include forgotten files (use
only for not pushed commits!)

git diff [--cached | <revision1>]
[<revision2>] <path>

show a diff for a file between two different revisions,
with no arguments diffs working directory vs. HEAD

revision1 the first revision to compare, defaults to working copy
revision2 the second revision to compare, defaults to HEAD

path shell pattern for file(s) to diff
--cached use the staged content as revision1



Committing your changes locally

Local Repository

A

B master HEADorigin/master

stageC master HEAD

the changed file
is now staged for
the next commit

only the local branch
has changed

Remote Repository

A

B master

git commit changes
nothing on the server

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git status
, git@test: git add newfile.txt
, git@test: git commit

git status [<path>]
show what changed compared to the current HEAD revision

path restrict output to files and folders matching this shell pattern

git add [-p] <path>
mark the changes in the specified file(s) as part of the next commit

path path specification for the file(s) to include
-p start an interactive session, where you can decide for each

change in a file individually if it should be committed

git commit [--amend]
save the previously staged changes as a new
commit after entering a commit message

--amend instead of making a new commit, correct the current
HEAD, e.g. to fix typos or include forgotten files (use
only for not pushed commits!)

git diff [--cached | <revision1>]
[<revision2>] <path>

show a diff for a file between two different revisions,
with no arguments diffs working directory vs. HEAD

revision1 the first revision to compare, defaults to working copy
revision2 the second revision to compare, defaults to HEAD

path shell pattern for file(s) to diff
--cached use the staged content as revision1



Committing your changes locally

Local Repository

A

B master HEADorigin/master

stageC master HEAD

the changed file
is now staged for
the next commit

only the local branch
has changed

Remote Repository

A

B master

git commit changes
nothing on the server

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git status
, git@test: git add newfile.txt
, git@test: git commit

git status [<path>]
show what changed compared to the current HEAD revision

path restrict output to files and folders matching this shell pattern

git add [-p] <path>
mark the changes in the specified file(s) as part of the next commit

path path specification for the file(s) to include
-p start an interactive session, where you can decide for each

change in a file individually if it should be committed

git commit [--amend]
save the previously staged changes as a new
commit after entering a commit message

--amend instead of making a new commit, correct the current
HEAD, e.g. to fix typos or include forgotten files (use
only for not pushed commits!)

git diff [--cached | <revision1>]
[<revision2>] <path>

show a diff for a file between two different revisions,
with no arguments diffs working directory vs. HEAD

revision1 the first revision to compare, defaults to working copy
revision2 the second revision to compare, defaults to HEAD

path shell pattern for file(s) to diff
--cached use the staged content as revision1



Committing your changes locally

Local Repository

A

B master HEADorigin/master

stageC master HEAD

the changed file
is now staged for
the next commit

only the local branch
has changed

Remote Repository

A

B master

git commit changes
nothing on the server

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git status
, git@test: git add newfile.txt
, git@test: git commit

git status [<path>]
show what changed compared to the current HEAD revision

path restrict output to files and folders matching this shell pattern

git add [-p] <path>
mark the changes in the specified file(s) as part of the next commit

path path specification for the file(s) to include
-p start an interactive session, where you can decide for each

change in a file individually if it should be committed

git commit [--amend]
save the previously staged changes as a new
commit after entering a commit message

--amend instead of making a new commit, correct the current
HEAD, e.g. to fix typos or include forgotten files (use
only for not pushed commits!)

git diff [--cached | <revision1>]
[<revision2>] <path>

show a diff for a file between two different revisions,
with no arguments diffs working directory vs. HEAD

revision1 the first revision to compare, defaults to working copy
revision2 the second revision to compare, defaults to HEAD

path shell pattern for file(s) to diff
--cached use the staged content as revision1



Uploading your changes I - no conflicts

Local Repository

A

Borigin/master

C master HEADorigin/master

remote branch
stays the same
linear history connection
”fast forward” possible
the remote branch
is updated

Remote Repository

A

B master

C master

scenario I: nothing
new on the server
your commit is now
known to the server

, git@test: git fetch origin
, git@test: git push origin master

git fetch <remote> [<branch>]
update all remote branches from the specified remote repository

remote the remote repository to fetch from
branch limit the fetch operation to the specified branch

git push <remote> <branch>
push the specified branch to the given remote,
i.e. upload all new commits in this branch

remote the remote repository to push to
branch the branch you want to update on the remote



Uploading your changes I - no conflicts

Local Repository

A

Borigin/master

C master HEADorigin/master

remote branch
stays the same
linear history connection
”fast forward” possible
the remote branch
is updated

Remote Repository

A

B master

C master

scenario I: nothing
new on the server
your commit is now
known to the server

, git@test: git fetch origin
, git@test: git push origin master

git fetch <remote> [<branch>]
update all remote branches from the specified remote repository

remote the remote repository to fetch from
branch limit the fetch operation to the specified branch

git push <remote> <branch>
push the specified branch to the given remote,
i.e. upload all new commits in this branch

remote the remote repository to push to
branch the branch you want to update on the remote



Uploading your changes I - no conflicts

Local Repository

A

Borigin/master

C master HEADorigin/master

remote branch
stays the same
linear history connection
”fast forward” possible
the remote branch
is updated

Remote Repository

A

B master

C master

scenario I: nothing
new on the server
your commit is now
known to the server

, git@test: git fetch origin
, git@test: git push origin master

git fetch <remote> [<branch>]
update all remote branches from the specified remote repository

remote the remote repository to fetch from
branch limit the fetch operation to the specified branch

git push <remote> <branch>
push the specified branch to the given remote,
i.e. upload all new commits in this branch

remote the remote repository to push to
branch the branch you want to update on the remote



Uploading your changes I - no conflicts

Local Repository

A

Borigin/master

C master HEADorigin/master

remote branch
stays the same
linear history connection
”fast forward” possible
the remote branch
is updated

Remote Repository

A

B master

C master

scenario I: nothing
new on the server
your commit is now
known to the server

, git@test: git fetch origin
, git@test: git push origin master

git fetch <remote> [<branch>]
update all remote branches from the specified remote repository

remote the remote repository to fetch from
branch limit the fetch operation to the specified branch

git push <remote> <branch>
push the specified branch to the given remote,
i.e. upload all new commits in this branch

remote the remote repository to push to
branch the branch you want to update on the remote



Uploading your changes I - no conflicts

Local Repository

A

Borigin/master

C master HEADorigin/master

remote branch
stays the same
linear history connection
”fast forward” possible
the remote branch
is updated

Remote Repository

A

B master

C master

scenario I: nothing
new on the server
your commit is now
known to the server

, git@test: git fetch origin
, git@test: git push origin master

git fetch <remote> [<branch>]
update all remote branches from the specified remote repository

remote the remote repository to fetch from
branch limit the fetch operation to the specified branch

git push <remote> <branch>
push the specified branch to the given remote,
i.e. upload all new commits in this branch

remote the remote repository to push to
branch the branch you want to update on the remote



Uploading your changes I - no conflicts

Local Repository

A

Borigin/master

C master HEADorigin/master

remote branch
stays the same
linear history connection
”fast forward” possible
the remote branch
is updated

Remote Repository

A

B master

C master

scenario I: nothing
new on the server
your commit is now
known to the server

, git@test: git fetch origin
, git@test: git push origin master

git fetch <remote> [<branch>]
update all remote branches from the specified remote repository

remote the remote repository to fetch from
branch limit the fetch operation to the specified branch

git push <remote> <branch>
push the specified branch to the given remote,
i.e. upload all new commits in this branch

remote the remote repository to push to
branch the branch you want to update on the remote



Uploading your changes II - trivial conflicts

Local Repository

A

Borigin/master

C master HEADDD

E master HEAD

fetch only updates
the remote branch
this fork in the history
must be resolved
”E” contains the same
changes as the deleted ”C”

Remote Repository

A

B

D master

E master

scenario II: a new commit
with trivial conflicts exists

, git@test: git fetch origin
, git@test: git rebase origin/master
, git@test: git push origin master

git rebase <branch>
rewrite your new commits in the current branch

to be based on another parent commit
branch the branch whose tip to use as the new ancestor commit



Uploading your changes II - trivial conflicts

Local Repository

A

Borigin/master

C master HEADDD

E master HEAD

fetch only updates
the remote branch
this fork in the history
must be resolved
”E” contains the same
changes as the deleted ”C”

Remote Repository

A

B

D master

E master

scenario II: a new commit
with trivial conflicts exists

, git@test: git fetch origin
, git@test: git rebase origin/master
, git@test: git push origin master

git rebase <branch>
rewrite your new commits in the current branch

to be based on another parent commit
branch the branch whose tip to use as the new ancestor commit



Uploading your changes II - trivial conflicts

Local Repository

A

Borigin/master

C master HEADDD

E master HEAD

fetch only updates
the remote branch
this fork in the history
must be resolved
”E” contains the same
changes as the deleted ”C”

Remote Repository

A

B

D master

E master

scenario II: a new commit
with trivial conflicts exists

, git@test: git fetch origin
, git@test: git rebase origin/master
, git@test: git push origin master

git rebase <branch>
rewrite your new commits in the current branch

to be based on another parent commit
branch the branch whose tip to use as the new ancestor commit



Uploading your changes II - trivial conflicts

Local Repository

A

Borigin/master

C master HEADDD

E master HEAD

fetch only updates
the remote branch
this fork in the history
must be resolved
”E” contains the same
changes as the deleted ”C”

Remote Repository

A

B

D master

E master

scenario II: a new commit
with trivial conflicts exists

, git@test: git fetch origin
, git@test: git rebase origin/master
, git@test: git push origin master

git rebase <branch>
rewrite your new commits in the current branch

to be based on another parent commit
branch the branch whose tip to use as the new ancestor commit



Uploading your changes II - trivial conflicts

Local Repository

A

Borigin/master

C master HEADDD

E master HEAD

fetch only updates
the remote branch
this fork in the history
must be resolved
”E” contains the same
changes as the deleted ”C”

Remote Repository

A

B

D master

E master

scenario II: a new commit
with trivial conflicts exists

, git@test: git fetch origin
, git@test: git rebase origin/master
, git@test: git push origin master

git rebase <branch>
rewrite your new commits in the current branch

to be based on another parent commit
branch the branch whose tip to use as the new ancestor commit



Uploading your changes II - trivial conflicts

Local Repository

A

Borigin/master

C master HEADDD

E master HEAD

fetch only updates
the remote branch
this fork in the history
must be resolved
”E” contains the same
changes as the deleted ”C”

Remote Repository

A

B

D master

E master

scenario II: a new commit
with trivial conflicts exists

, git@test: git fetch origin
, git@test: git rebase origin/master
, git@test: git push origin master

git rebase <branch>
rewrite your new commits in the current branch

to be based on another parent commit
branch the branch whose tip to use as the new ancestor commit



Uploading your changes II - trivial conflicts

Local Repository

A

Borigin/master

C master HEADDD

E master HEAD

fetch only updates
the remote branch
this fork in the history
must be resolved
”E” contains the same
changes as the deleted ”C”

Remote Repository

A

B

D master

E master

scenario II: a new commit
with trivial conflicts exists

, git@test: git fetch origin
, git@test: git rebase origin/master
, git@test: git push origin master

git rebase <branch>
rewrite your new commits in the current branch

to be based on another parent commit
branch the branch whose tip to use as the new ancestor commit



Uploading your changes II - trivial conflicts

Local Repository

A

Borigin/master

C master HEADDD

E master HEAD

fetch only updates
the remote branch
this fork in the history
must be resolved
”E” contains the same
changes as the deleted ”C”

Remote Repository

A

B

D master

E master

scenario II: a new commit
with trivial conflicts exists

, git@test: git fetch origin
, git@test: git rebase origin/master
, git@test: git push origin master

git rebase <branch>
rewrite your new commits in the current branch

to be based on another parent commit
branch the branch whose tip to use as the new ancestor commit



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



Uploading your changes III - real conflicts

Local Repository

A

Borigin/master

C master HEADDD

stage E master HEADorigin/master

conflicting changes
must be resolved
no commit made, have
to resolve conflict
all conflicts resolved,
time to commit

Remote Repository

A

B

D masterC

E master

scenario III: a new commit
with real conflicts exists

, git@test: git fetch origin
, git@test: git merge origin/master
, git@test: git mergetool nasty_conflict.py
, git@test: git commit
, git@test: git push origin master

git merge [--ff-only] <branch>
merge changes from another branch into the current branch

branch the branch you want to merge with the current one
--ff-only allow fast-forward merge only, useful for updating

unchanged local branches after fetching from a remote

git mergetool [--tool=…] <path>
use the tool of your choice to manually resolve conflicts

for 3-way diff-tools, the BASE version will be staged after resolution
path the file(s) to resolve

--tool specify the tool you want to use, e.g. meld or vimdiff



git branches
organizing and isolating your development



Committing your changes into a new local branch

Local Repository

A

B master HEADorigin/master

featurestage CHEAD

the new branch points
to your current HEAD
HEAD moved to the
new working copy state
the master branch
is unchanged

Remote Repository

A

B master

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git branch feature
, git@test: git checkout feature
, git@test: git add newfile.txt
, git@test: git commit

git branch [-a] [<name> [<start>]]
list all known branches (if no argument is given) or

create a new local branch originating at the chosen starting-point
name a unique label for the new branch

start the starting point of the branch, defaults to HEAD
-a list all branches, both local and remote

git checkout <revision>
changes the working directory to the specified revision

revision the name of the target revision, can be a branch name,
tag or commit-ID



Committing your changes into a new local branch

Local Repository

A

B master HEADorigin/master

featurestage CHEAD

the new branch points
to your current HEAD
HEAD moved to the
new working copy state
the master branch
is unchanged

Remote Repository

A

B master

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git branch feature
, git@test: git checkout feature
, git@test: git add newfile.txt
, git@test: git commit

git branch [-a] [<name> [<start>]]
list all known branches (if no argument is given) or

create a new local branch originating at the chosen starting-point
name a unique label for the new branch

start the starting point of the branch, defaults to HEAD
-a list all branches, both local and remote

git checkout <revision>
changes the working directory to the specified revision

revision the name of the target revision, can be a branch name,
tag or commit-ID



Committing your changes into a new local branch

Local Repository

A

B master HEADorigin/master

featurestage CHEAD

the new branch points
to your current HEAD
HEAD moved to the
new working copy state
the master branch
is unchanged

Remote Repository

A

B master

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git branch feature
, git@test: git checkout feature
, git@test: git add newfile.txt
, git@test: git commit

git branch [-a] [<name> [<start>]]
list all known branches (if no argument is given) or

create a new local branch originating at the chosen starting-point
name a unique label for the new branch

start the starting point of the branch, defaults to HEAD
-a list all branches, both local and remote

git checkout <revision>
changes the working directory to the specified revision

revision the name of the target revision, can be a branch name,
tag or commit-ID



Committing your changes into a new local branch

Local Repository

A

B master HEADorigin/master

featurestage CHEAD

the new branch points
to your current HEAD
HEAD moved to the
new working copy state
the master branch
is unchanged

Remote Repository

A

B master

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git branch feature
, git@test: git checkout feature
, git@test: git add newfile.txt
, git@test: git commit

git branch [-a] [<name> [<start>]]
list all known branches (if no argument is given) or

create a new local branch originating at the chosen starting-point
name a unique label for the new branch

start the starting point of the branch, defaults to HEAD
-a list all branches, both local and remote

git checkout <revision>
changes the working directory to the specified revision

revision the name of the target revision, can be a branch name,
tag or commit-ID



Committing your changes into a new local branch

Local Repository

A

B master HEADorigin/master

featurestage CHEAD

the new branch points
to your current HEAD
HEAD moved to the
new working copy state
the master branch
is unchanged

Remote Repository

A

B master

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git branch feature
, git@test: git checkout feature
, git@test: git add newfile.txt
, git@test: git commit

git branch [-a] [<name> [<start>]]
list all known branches (if no argument is given) or

create a new local branch originating at the chosen starting-point
name a unique label for the new branch

start the starting point of the branch, defaults to HEAD
-a list all branches, both local and remote

git checkout <revision>
changes the working directory to the specified revision

revision the name of the target revision, can be a branch name,
tag or commit-ID



Committing your changes into a new local branch

Local Repository

A

B master HEADorigin/master

featurestage CHEAD

the new branch points
to your current HEAD
HEAD moved to the
new working copy state
the master branch
is unchanged

Remote Repository

A

B master

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git branch feature
, git@test: git checkout feature
, git@test: git add newfile.txt
, git@test: git commit

git branch [-a] [<name> [<start>]]
list all known branches (if no argument is given) or

create a new local branch originating at the chosen starting-point
name a unique label for the new branch

start the starting point of the branch, defaults to HEAD
-a list all branches, both local and remote

git checkout <revision>
changes the working directory to the specified revision

revision the name of the target revision, can be a branch name,
tag or commit-ID



Committing your changes into a new local branch

Local Repository

A

B master HEADorigin/master

featurestage CHEAD

the new branch points
to your current HEAD
HEAD moved to the
new working copy state
the master branch
is unchanged

Remote Repository

A

B master

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git branch feature
, git@test: git checkout feature
, git@test: git add newfile.txt
, git@test: git commit

git branch [-a] [<name> [<start>]]
list all known branches (if no argument is given) or

create a new local branch originating at the chosen starting-point
name a unique label for the new branch

start the starting point of the branch, defaults to HEAD
-a list all branches, both local and remote

git checkout <revision>
changes the working directory to the specified revision

revision the name of the target revision, can be a branch name,
tag or commit-ID



Committing your changes into a new local branch

Local Repository

A

B master HEADorigin/master

featurestage CHEAD

the new branch points
to your current HEAD
HEAD moved to the
new working copy state
the master branch
is unchanged

Remote Repository

A

B master

, git@test: echo "This should be fun!" > newfile.txt
, git@test: git branch feature
, git@test: git checkout feature
, git@test: git add newfile.txt
, git@test: git commit

git branch [-a] [<name> [<start>]]
list all known branches (if no argument is given) or

create a new local branch originating at the chosen starting-point
name a unique label for the new branch

start the starting point of the branch, defaults to HEAD
-a list all branches, both local and remote

git checkout <revision>
changes the working directory to the specified revision

revision the name of the target revision, can be a branch name,
tag or commit-ID



Uploading your changes IV - a new branch

Local Repository

A

B masterorigin/master

featureC HEADorigin/feature

a new remote branch
has been created

Remote Repository

A

B master

featureC

, git@test: git fetch origin
, git@test: git push origin feature



Uploading your changes IV - a new branch

Local Repository

A

B masterorigin/master

featureC HEADorigin/feature

a new remote branch
has been created

Remote Repository

A

B master

featureC

, git@test: git fetch origin
, git@test: git push origin feature



Uploading your changes IV - a new branch

Local Repository

A

B masterorigin/master

featureC HEADorigin/feature

a new remote branch
has been created

Remote Repository

A

B master

featureC

, git@test: git fetch origin
, git@test: git push origin feature



Working with branches - turning remote into local branches

Local Repository

A

B master HEADorigin/master

CC

origin/feature

DDorigin/master

HEAD

feature

a new remote branch
has been created
HEAD has not moved!
working copy unchanged

Remote Repository

A

B

C featureDmaster

, git@test: git fetch origin
, git@test: git merge --ff-only origin/master
, git@test: git branch feature origin/feature
, git@test: git checkout feature



Working with branches - turning remote into local branches

Local Repository

A

B master HEADorigin/master

CC

origin/feature

DDorigin/master

HEAD

feature

a new remote branch
has been created
HEAD has not moved!
working copy unchanged

Remote Repository

A

B

C featureDmaster

, git@test: git fetch origin
, git@test: git merge --ff-only origin/master
, git@test: git branch feature origin/feature
, git@test: git checkout feature



Working with branches - turning remote into local branches

Local Repository

A

B master HEADorigin/master

CC

origin/feature

DDorigin/master

HEAD

feature

a new remote branch
has been created
HEAD has not moved!
working copy unchanged

Remote Repository

A

B

C featureDmaster

, git@test: git fetch origin
, git@test: git merge --ff-only origin/master
, git@test: git branch feature origin/feature
, git@test: git checkout feature



Working with branches - turning remote into local branches

Local Repository

A

B master HEADorigin/master

CC

origin/feature

DDorigin/master

HEAD

feature

a new remote branch
has been created
HEAD has not moved!
working copy unchanged

Remote Repository

A

B

C featureDmaster

, git@test: git fetch origin
, git@test: git merge --ff-only origin/master
, git@test: git branch feature origin/feature
, git@test: git checkout feature



Working with branches - turning remote into local branches

Local Repository

A

B master HEADorigin/master

CC

origin/feature

DDorigin/master

HEAD

feature

a new remote branch
has been created
HEAD has not moved!
working copy unchanged

Remote Repository

A

B

C featureDmaster

, git@test: git fetch origin
, git@test: git merge --ff-only origin/master
, git@test: git branch feature origin/feature
, git@test: git checkout feature



Working with branches - turning remote into local branches

Local Repository

A

B master HEADorigin/master

CC

origin/feature

DDorigin/master

HEAD

feature

a new remote branch
has been created
HEAD has not moved!
working copy unchanged

Remote Repository

A

B

C featureDmaster

, git@test: git fetch origin
, git@test: git merge --ff-only origin/master
, git@test: git branch feature origin/feature
, git@test: git checkout feature



Working with branches - turning remote into local branches

Local Repository

A

B master HEADorigin/master

CC

origin/feature

DDorigin/master

HEAD

feature

a new remote branch
has been created
HEAD has not moved!
working copy unchanged

Remote Repository

A

B

C featureDmaster

, git@test: git fetch origin
, git@test: git merge --ff-only origin/master
, git@test: git branch feature origin/feature
, git@test: git checkout feature



Working with branches I - merging finished branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E master

move HEAD to master
to merge into master
feature branch is no
longer used, remove it

Remote Repository

A

B

C featureDmaster

E master

Scenario I:
feature ready to merge
removing the branch
causes no history loss

, git@test: git checkout master
, git@test: git merge feature
, git@test: git push origin master
, git@test: git push --delete origin feature
, git@test: git branch -d feature



Working with branches I - merging finished branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E master

move HEAD to master
to merge into master
feature branch is no
longer used, remove it

Remote Repository

A

B

C featureDmaster

E master

Scenario I:
feature ready to merge
removing the branch
causes no history loss

, git@test: git checkout master
, git@test: git merge feature
, git@test: git push origin master
, git@test: git push --delete origin feature
, git@test: git branch -d feature



Working with branches I - merging finished branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E master

move HEAD to master
to merge into master
feature branch is no
longer used, remove it

Remote Repository

A

B

C featureDmaster

E master

Scenario I:
feature ready to merge
removing the branch
causes no history loss

, git@test: git checkout master
, git@test: git merge feature
, git@test: git push origin master
, git@test: git push --delete origin feature
, git@test: git branch -d feature



Working with branches I - merging finished branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E master

move HEAD to master
to merge into master
feature branch is no
longer used, remove it

Remote Repository

A

B

C featureDmaster

E master

Scenario I:
feature ready to merge
removing the branch
causes no history loss

, git@test: git checkout master
, git@test: git merge feature
, git@test: git push origin master
, git@test: git push --delete origin feature
, git@test: git branch -d feature



Working with branches I - merging finished branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E master

move HEAD to master
to merge into master
feature branch is no
longer used, remove it

Remote Repository

A

B

C featureDmaster

E master

Scenario I:
feature ready to merge
removing the branch
causes no history loss

, git@test: git checkout master
, git@test: git merge feature
, git@test: git push origin master
, git@test: git push --delete origin feature
, git@test: git branch -d feature



Working with branches I - merging finished branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E master

move HEAD to master
to merge into master
feature branch is no
longer used, remove it

Remote Repository

A

B

C featureDmaster

E master

Scenario I:
feature ready to merge
removing the branch
causes no history loss

, git@test: git checkout master
, git@test: git merge feature
, git@test: git push origin master
, git@test: git push --delete origin feature
, git@test: git branch -d feature



Working with branches I - merging finished branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E master

move HEAD to master
to merge into master
feature branch is no
longer used, remove it

Remote Repository

A

B

C featureDmaster

E master

Scenario I:
feature ready to merge
removing the branch
causes no history loss

, git@test: git checkout master
, git@test: git merge feature
, git@test: git push origin master
, git@test: git push --delete origin feature
, git@test: git branch -d feature



Working with branches I - merging finished branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E master

move HEAD to master
to merge into master
feature branch is no
longer used, remove it

Remote Repository

A

B

C featureDmaster

E master

Scenario I:
feature ready to merge
removing the branch
causes no history loss

, git@test: git checkout master
, git@test: git merge feature
, git@test: git push origin master
, git@test: git push --delete origin feature
, git@test: git branch -d feature



Working with branches I - merging finished branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E master

move HEAD to master
to merge into master
feature branch is no
longer used, remove it

Remote Repository

A

B

C featureDmaster

E master

Scenario I:
feature ready to merge
removing the branch
causes no history loss

, git@test: git checkout master
, git@test: git merge feature
, git@test: git push origin master
, git@test: git push --delete origin feature
, git@test: git branch -d feature



Working with branches II - updating feature branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E featureorigin/feature

master is unchanged
Remote Repository

A

B

C featureDmaster

E feature

Scenario II: feature
needs new content
from master branch

, git@test: git merge master
, git@test: git push origin feature



Working with branches II - updating feature branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E featureorigin/feature

master is unchanged
Remote Repository

A

B

C featureDmaster

E feature

Scenario II: feature
needs new content
from master branch

, git@test: git merge master
, git@test: git push origin feature



Working with branches II - updating feature branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E featureorigin/feature

master is unchanged
Remote Repository

A

B

C featureDmaster

E feature

Scenario II: feature
needs new content
from master branch

, git@test: git merge master
, git@test: git push origin feature



Working with branches II - updating feature branches

Local Repository

A

Bmaster

C

origin/feature

Dorigin/master feature

HEAD E featureorigin/feature

master is unchanged
Remote Repository

A

B

C featureDmaster

E feature

Scenario II: feature
needs new content
from master branch

, git@test: git merge master
, git@test: git push origin feature



disaster recovery
how to clean the mess if you screwed up

As long as you did not commit…

git checkout <revision> <path>
set the content of the specified file(s) in
the working copy to the given revision

revision the revision you want to restore,
usually HEAD

path shell pattern for the files to revert



disaster recovery
how to clean the mess if you screwed up

As long as you did not commit…

git checkout <revision> <path>
set the content of the specified file(s) in
the working copy to the given revision

revision the revision you want to restore,
usually HEAD

path shell pattern for the files to revert



Undoing commits - deleting a local only commit

Local Repository

A

B master HEADorigin/master

C master HEAD

Scenario I: this
local commit is faulty
git reset HEAD~1 moved
back the tip by 1 commit
--hard resets all files
to their state in this commit

Remote Repository

A

B master

, git@test: git reset --hard HEAD~1

git reset [--hard] <revision>
resets the branch tip to the specified revision

(while leaving the working directory unchanged)
revision the revision the tip should be set to, e.g. HEAD~1 to

revert to the previous commit
--hard purge the working directory and reset all files to their

state in the target revision



Undoing commits - deleting a local only commit

Local Repository

A

B master HEADorigin/master

C master HEAD

Scenario I: this
local commit is faulty
git reset HEAD~1 moved
back the tip by 1 commit
--hard resets all files
to their state in this commit

Remote Repository

A

B master

, git@test: git reset --hard HEAD~1

git reset [--hard] <revision>
resets the branch tip to the specified revision

(while leaving the working directory unchanged)
revision the revision the tip should be set to, e.g. HEAD~1 to

revert to the previous commit
--hard purge the working directory and reset all files to their

state in the target revision



Undoing commits - deleting a local only commit

Local Repository

A

B master HEADorigin/master

C master HEAD

Scenario I: this
local commit is faulty
git reset HEAD~1 moved
back the tip by 1 commit
--hard resets all files
to their state in this commit

Remote Repository

A

B master

, git@test: git reset --hard HEAD~1

git reset [--hard] <revision>
resets the branch tip to the specified revision

(while leaving the working directory unchanged)
revision the revision the tip should be set to, e.g. HEAD~1 to

revert to the previous commit
--hard purge the working directory and reset all files to their

state in the target revision



Undoing commits - deleting a local only commit

Local Repository

A

B master HEADorigin/master

C master HEAD

Scenario I: this
local commit is faulty
git reset HEAD~1 moved
back the tip by 1 commit
--hard resets all files
to their state in this commit

Remote Repository

A

B master

, git@test: git reset --hard HEAD~1

git reset [--hard] <revision>
resets the branch tip to the specified revision

(while leaving the working directory unchanged)
revision the revision the tip should be set to, e.g. HEAD~1 to

revert to the previous commit
--hard purge the working directory and reset all files to their

state in the target revision



Undoing commits - deleting a local only commit

Local Repository

A

B master HEADorigin/master

C master HEAD

Scenario I: this
local commit is faulty
git reset HEAD~1 moved
back the tip by 1 commit
--hard resets all files
to their state in this commit

Remote Repository

A

B master

, git@test: git reset --hard HEAD~1

git reset [--hard] <revision>
resets the branch tip to the specified revision

(while leaving the working directory unchanged)
revision the revision the tip should be set to, e.g. HEAD~1 to

revert to the previous commit
--hard purge the working directory and reset all files to their

state in the target revision



Undoing commits - reverting an already pushed commit

Local Repository

A

B

C master HEADorigin/master

D master HEADorigin/master

this new commit undoes
all changes from C

Remote Repository

A

B

C master

D master

Scenario II: this already
pushed commit is faulty

, git@test: git revert HEAD
, git@test: git push origin master

git revert <revision>
create a new commit which reverts the

changes introduced by the specified commit
revision the revision you want to undo

Note: take special care when reverting merges!
(see git help revert)



Undoing commits - reverting an already pushed commit

Local Repository

A

B

C master HEADorigin/master

D master HEADorigin/master

this new commit undoes
all changes from C

Remote Repository

A

B

C master

D master

Scenario II: this already
pushed commit is faulty

, git@test: git revert HEAD
, git@test: git push origin master

git revert <revision>
create a new commit which reverts the

changes introduced by the specified commit
revision the revision you want to undo

Note: take special care when reverting merges!
(see git help revert)



Undoing commits - reverting an already pushed commit

Local Repository

A

B

C master HEADorigin/master

D master HEADorigin/master

this new commit undoes
all changes from C

Remote Repository

A

B

C master

D master

Scenario II: this already
pushed commit is faulty

, git@test: git revert HEAD
, git@test: git push origin master

git revert <revision>
create a new commit which reverts the

changes introduced by the specified commit
revision the revision you want to undo

Note: take special care when reverting merges!
(see git help revert)



Undoing commits - reverting an already pushed commit

Local Repository

A

B

C master HEADorigin/master

D master HEADorigin/master

this new commit undoes
all changes from C

Remote Repository

A

B

C master

D master

Scenario II: this already
pushed commit is faulty

, git@test: git revert HEAD
, git@test: git push origin master

git revert <revision>
create a new commit which reverts the

changes introduced by the specified commit
revision the revision you want to undo

Note: take special care when reverting merges!
(see git help revert)



Undoing commits - reverting an already pushed commit

Local Repository

A

B

C master HEADorigin/master

D master HEADorigin/master

this new commit undoes
all changes from C

Remote Repository

A

B

C master

D master

Scenario II: this already
pushed commit is faulty

, git@test: git revert HEAD
, git@test: git push origin master

git revert <revision>
create a new commit which reverts the

changes introduced by the specified commit
revision the revision you want to undo

Note: take special care when reverting merges!
(see git help revert)



recovering from disaster recovery
how to survive screwing up disaster recovery…

git reflog [<branch>]
show the revision log for the specified

branch, i.e. all movements of the branch tip
HEAD’s reflog also records branch switches

branch the branch for which the reflog should
be shown, defaults to HEAD

git help [<command>]
show the detailed manpage for a command

command the command of interest



recovering from disaster recovery
how to survive screwing up disaster recovery…

git reflog [<branch>]
show the revision log for the specified

branch, i.e. all movements of the branch tip
HEAD’s reflog also records branch switches

branch the branch for which the reflog should
be shown, defaults to HEAD

git help [<command>]
show the detailed manpage for a command

command the command of interest



recovering from disaster recovery
how to survive screwing up disaster recovery…

git reflog [<branch>]
show the revision log for the specified

branch, i.e. all movements of the branch tip
HEAD’s reflog also records branch switches

branch the branch for which the reflog should
be shown, defaults to HEAD

git help [<command>]
show the detailed manpage for a command

command the command of interest



GUI alternatives to the command line

I don’t like the terminal, can I use a GUI?

I Linux: gitg, gitk, qgit
I Mac and Windows: Atlassian Sourcetree



GUI alternatives to the command line

I don’t like the terminal, can I use a GUI?

I Linux: gitg, gitk, qgit

I Mac and Windows: Atlassian Sourcetree



GUI alternatives to the command line

I don’t like the terminal, can I use a GUI?

I Linux: gitg, gitk, qgit
I Mac and Windows: Atlassian Sourcetree



git commit -m "This is the end of the
presentation. Thank you for your attention!"


	The Concept of Distributed Version Control
	DVCS in git
	Cloning an existing git repository
	Committing your changes locally
	Uploading your changes I - no conflicts
	Uploading your changes II - trivial conflicts
	Uploading your changes III - real conflicts
	Committing your changes into a new local branch
	Uploading your changes IV - a new branch
	Working with branches - turning remote into local branches
	Working with branches I - merging finished branches
	Working with branches II - updating feature branches
	Undoing commits - deleting a local only commit
	Undoing commits - reverting an already pushed commit

