Motivation	Theory	Scaling	Accuracy II	Summary

Localized Resolution of Identity

Accurate and efficient evaluation of the Coulomb operator for advanced electronic structure methods

Arvid Conrad Ihrig, Jürgen Wieferink, Igor Ying Zhang, Sergey Levchenko, Matti

Ropo^{*}, Patrick Rinke, Volker Blum[†], and Matthias Scheffler Fritz-Haber Institut der Max-Planck-Gesellschaft *Tampere University of Technology, Department of Physics, FIN-33101 Tampere, Finland [†]Duke University, MEMS Department. 1111 Hudson Hall, Durham, NC 27708, USA

22.08.2014

FHI-aims Developers' and Users' Meeting

Motivation				
XX 71 1	1 (. , .	. 10	

$$(ij|kl) = \iint \frac{\varphi_i(\mathbf{r})\varphi_j(\mathbf{r})\varphi_k(\mathbf{r}')\varphi_l(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}'$$
$$(ij|kl)$$

Motivation				
Why do	we need for	our-center in	ntegrals?	

Motivation				
Why do	we need for	our-center in	ntegrals?	

XX 71	1.0	 ~	

$$\begin{split} \Sigma_{\sigma}^{x}(\mathbf{r},\mathbf{r}') &= -\sum_{m}^{\mathrm{occ}} \frac{\psi_{m\sigma}(\mathbf{r})\psi_{m\sigma}^{*}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \\ E^{x} &= \frac{1}{2}\sum_{n\sigma}^{\mathrm{occ}} \iint \psi_{n\sigma}^{*}(\mathbf{r})\Sigma_{\sigma}^{x}(\mathbf{r},\mathbf{r}')\psi_{n\sigma}(\mathbf{r}')d\mathbf{r}d\mathbf{r}' \end{split}$$

Arvid Conrad Ihrig Localized Resolution of Identity Fritz-Haber Institut der Max-Planck-Gesellschaft

Motivation			

$$\begin{split} \Sigma^x_{\sigma}(\mathbf{r},\mathbf{r}') &= -\sum_m^{\mathrm{occ}} \frac{\psi_{m\sigma}(\mathbf{r})\psi^*_{m\sigma}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \\ E^x &= \frac{1}{2}\sum_{n\sigma}^{\mathrm{occ}} \iint \psi^*_{n\sigma}(\mathbf{r})\Sigma^x_{\sigma}(\mathbf{r},\mathbf{r}')\psi_{n\sigma}(\mathbf{r}')d\mathbf{r}d\mathbf{r}' \\ E^x &= \frac{1}{2}\sum_{n\sigma}^{\mathrm{occ}} \sum_{i,j} c^{i*}_{n\sigma}c^j_{n\sigma} \iint \varphi^*_i(\mathbf{r})\Sigma^x_{\sigma}(\mathbf{r},\mathbf{r}')\varphi_j(\mathbf{r}')d\mathbf{r}d\mathbf{r}' \end{split}$$

Motivation			

$$\begin{split} \Sigma_{\sigma}^{x}(\mathbf{r},\mathbf{r}') &= -\sum_{m}^{\text{occ}} \frac{\psi_{m\sigma}(\mathbf{r})\psi_{m\sigma}^{*}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \\ E^{x} &= \frac{1}{2}\sum_{n\sigma}^{\text{occ}} \iint \psi_{n\sigma}^{*}(\mathbf{r})\Sigma_{\sigma}^{x}(\mathbf{r},\mathbf{r}')\psi_{n\sigma}(\mathbf{r}')d\mathbf{r}d\mathbf{r}' \\ E^{x} &= \frac{1}{2}\sum_{n\sigma}^{\text{occ}} \sum_{i,j} c_{n\sigma}^{i*}c_{n\sigma}^{j} \iint \varphi_{i}^{*}(\mathbf{r})\Sigma_{\sigma}^{x}(\mathbf{r},\mathbf{r}')\varphi_{j}(\mathbf{r}')d\mathbf{r}d\mathbf{r}' \\ \Sigma_{ij\sigma}^{x} &= -\sum_{kl}\sum_{m\sigma}^{\text{occ}} c_{m\sigma}^{k}c_{m\sigma}^{l*} \iint \frac{\varphi_{i}^{*}(\mathbf{r})\varphi_{k}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')\varphi_{j}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}d\mathbf{r}d\mathbf{r}' \\ &= -\sum_{kl} D_{kl\sigma} (ik|lj) \end{split}$$

Motivation				
Why do	we need for	our-center in	ntegrals?	

Motivation			

Arvid Conrad Ihrig Localized Resolution of Identity Fritz-Haber Institut der Max-Planck-Gesellschaft

Motivation				
Why do	we need f	our-center in	ntegrals?	

-strict localization at given radius -can include correct near-nuclear behavior -can include correct asymptotic behavior -no analytic solutions for four-center integrals

(ij|kl) =

Hybrid Functionals

Hartree-Fock

Møller-Plesset Perturbation Theory

ab Initia

 $d\mathbf{r} d\mathbf{r}'$

cular sin

Random Phase Approximation

INNS Wack

Arvid Conrad Ihrig Localized Resolution of Identity Fritz-Haber Institut der Max-Planck-Gesellschaft

	Theory			
Theoret	ical frames	work \mathbf{RLV}^1		

$$\begin{split} (ij|kl) &= \iint \frac{\varphi_i(\mathbf{r})\varphi_j(\mathbf{r})\varphi_k(\mathbf{r}')\varphi_l(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' \\ \rho_{ij}(\mathbf{r}) &= \varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) \end{split}$$

¹ J. L. Whitten, *The Journal of Chemical Physics* 10, (1973)

	Theory			
Theoreti	cal frame	work: $RI-V^{1}$		

$$\begin{split} (ij|kl) &= \iint \quad \frac{\varphi_i(\mathbf{r})\varphi_j(\mathbf{r})\varphi_k(\mathbf{r}')\varphi_l(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' \\ \rho_{ij}(\mathbf{r}) &= \varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) \approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \end{split}$$

¹ J. L. Whitten, *The Journal of Chemical Physics* 10, (1973)

	Theory			
		4		
Theoret	ical framev	work: RI-V ¹		

$$\begin{split} (ij|kl) &= \iint \quad \frac{\varphi_i(\mathbf{r})\varphi_j(\mathbf{r})\varphi_k(\mathbf{r}')\varphi_l(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' \\ \rho_{ij}(\mathbf{r}) &= \varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) \approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \\ \Rightarrow (ij|kl) &= \sum_{\mu,\nu} C^{\mu}_{ij} V_{\mu\nu} C^{\nu}_{kl} \\ V_{\nu\mu} &= (\nu|\mu) \end{split}$$

¹ J. L. Whitten, *The Journal of Chemical Physics* 10, (1973)

	Theory			
		4		
Theoret	ical framev	work: RI-V ¹		

$$\begin{split} (ij|kl) &= \iint \frac{\varphi_i(\mathbf{r})\varphi_j(\mathbf{r})\varphi_k(\mathbf{r}')\varphi_l(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' \\ \rho_{ij}(\mathbf{r}) &= \varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) \approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \\ \Rightarrow (ij|kl) &= \sum_{\mu,\nu} C^{\mu}_{ij} V_{\mu\nu} C^{\nu}_{kl} \\ V_{\nu\mu} &= (\nu|\mu) \\ C^{\mu}_{ij} &= \sum_{\nu} V^{-1}_{\nu\mu} (\nu|ij) \end{split}$$

¹ J. L. Whitten, The Journal of Chemical Physics 10, (1973)

	Theory			
		4		
Theoret	ical framev	work: RI-V ¹		

$$\begin{split} (ij|kl) &= \iint \frac{\varphi_i(\mathbf{r})\varphi_j(\mathbf{r})\varphi_k(\mathbf{r}')\varphi_l(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' \\ \rho_{ij}(\mathbf{r}) &= \varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) \approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \\ \Rightarrow (ij|kl) &= \sum_{\mu,\nu} C^{\mu}_{ij} V_{\mu\nu} C^{\nu}_{kl} \\ V_{\nu\mu} &= (\nu|\mu) \\ C^{\mu}_{ij} &= \sum_{\nu} V^{-1}_{\nu\mu} (\nu|ij) \\ \Rightarrow (ij|kl) \approx \sum_{\mu,\nu} (ij|\mu) V^{-1}_{\mu\nu} (\nu|kl) \end{split}$$

¹J. L. Whitten, *The Journal of Chemical Physics* 10, (1973)

	Theory			
Theoret	ical frames	vork $\cdot RI_V^1$		

¹ J. L. Whitten, *The Journal of Chemical Physics* 10, (1973)

Theory		
. 10	Τ.	

$$\rho_{ij}(\mathbf{r})\approx\sum_{\mu}C^{\mu}_{ij}P_{\mu}(\mathbf{r})$$

¹ Alex Sodt and Martin Head-Gordon, *The Journal of chemical physics* 10, (2008)

² Patrick Merlot et al., Journal of computational chemistry 17, (2013)

Theory		
. 10	Τ.	

$$\rho_{ij}(\mathbf{r})\approx\sum_{\mu}C^{\mu}_{ij}P_{\mu}(\mathbf{r})$$

¹ Alex Sodt and Martin Head-Gordon, *The Journal of chemical physics* 10, (2008)

²Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory			
The	a al frame a	THE DI IV	/T	

Can we exploit the locality of the product density?¹²

$$\rho_{ij}(\mathbf{r}) \approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r})$$

¹ Alex Sodt and Martin Head-Gordon, The Journal of chemical physics 10, (2008)

²Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory			
Theoret	tical frame	work: RI-LV	′L	

$$\rho_{ij}(\mathbf{r}) \approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r})$$

¹ Alex Sodt and Martin Head-Gordon, *The Journal of chemical physics* 10, (2008)

²Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory			
Theoret	tical frame	work: RI-LV	′L	

$$\rho_{ij}(\mathbf{r}) \approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r})$$

¹ Alex Sodt and Martin Head-Gordon, The Journal of chemical physics 10, (2008)

²Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory			
Theoret	tical frame	work: RI-LV	′L	

$$\rho_{ij}(\mathbf{r}) \approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r})$$

¹ Alex Sodt and Martin Head-Gordon, The Journal of chemical physics 10, (2008)

²Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory			
Theoret	tical frame	work: RI-LV	′L	

$$\rho_{ij}(\mathbf{r}) \approx \sum_{\mu} C_{ij}^{\mu} P_{\mu}(\mathbf{r}) \approx \sum_{\mu \in \mathcal{P}(I,J)} C_{ij}^{\mu} P_{\mu}(\mathbf{r})$$

$$I$$

¹ Alex Sodt and Martin Head-Gordon, *The Journal of chemical physics* 10, (2008)

² Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory			
Theoret	tical frame	work: RI-LV	′L	

$$\begin{split} \rho_{ij}(\mathbf{r}) &\approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \approx \sum_{\mu \in \mathcal{P}(I,J)} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \\ L^{IJ}_{\nu\mu} &= (V^{-1}_{IJ})_{\nu\mu} \\ C^{\nu}_{ij} &= \begin{cases} \sum_{\mu \in \mathcal{P}(IJ)} L^{IJ}_{\nu\mu} \left(\mu | ij \right) & \nu \in \mathcal{P}(IJ) \\ 0 & \text{else} \end{cases} \end{split}$$

ŀ

¹ Alex Sodt and Martin Head-Gordon, The Journal of chemical physics 10, (2008)

²Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory			
Theoret	tical frame	work: RI-LV	′L	

$$\begin{split} \rho_{ij}(\mathbf{r}) &\approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \approx \sum_{\mu \in \mathcal{P}(I,J)} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \\ L^{IJ}_{\nu\mu} &= (V^{-1}_{IJ})_{\nu\mu} \\ C^{\nu}_{ij} &= \begin{cases} \sum_{\substack{\mu \in \mathcal{P}(IJ) \\ 0}} L^{IJ}_{\nu\mu} \left(\mu|ij\right) & \nu \in \mathcal{P}(IJ) \\ 0 & \text{else} \end{cases} \\ &\Rightarrow (ij|kl) \approx \sum_{\substack{\mu\nu\lambda\sigma \sigma \\ \in \mathcal{P}(IJ)}} (ij|\lambda) L^{IJ}_{\lambda\mu} V_{\mu\nu} L^{KL}_{\nu\sigma} \left(\sigma|kl\right) \end{split}$$

¹ Alex Sodt and Martin Head-Gordon, The Journal of chemical physics 10, (2008)

²Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory			
Theoret	tical frame	work: RI-LV	′L	

$$\begin{split} \rho_{ij}(\mathbf{r}) &\approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \approx \sum_{\mu \in \mathcal{P}(I,J)} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \\ L^{IJ}_{\nu\mu} &= (V_{IJ}^{-1})_{\nu\mu} \\ C^{\nu}_{ij} &= \left\{ \sum_{\substack{\mu \in \mathcal{P}(IJ) \\ 0}} L^{IJ}_{\nu\mu} (\mu|ij) \quad \nu \in \mathcal{P}(IJ) \\ 0 \quad \text{else} \right. \\ &\Rightarrow (ij|kl) \approx \sum_{\substack{\mu\nu\lambda\sigma \\ \in \mathcal{P}(IJ)}} (ij|\lambda) L^{IJ}_{\lambda\mu} V_{\mu\nu} L^{KL}_{\nu\sigma} (\sigma|kl) \\ \text{RI-V:} (ij|kl) \approx \sum_{\mu,\nu} (ij|\mu) V^{-1}_{\mu\nu} (\nu|kl) \end{split}$$

¹ Alex Sodt and Martin Head-Gordon, The Journal of chemical physics 10, (2008)

²Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory			
Theoret	tical frame	work: RI-LV	′L	

$$\begin{split} \rho_{ij}(\mathbf{r}) &\approx \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \approx \sum_{\mu \in \mathcal{P}(I,J)} C^{\mu}_{ij} P_{\mu}(\mathbf{r}) \\ L^{IJ}_{\nu\mu} &= (V_{IJ}^{-1})_{\nu\mu} \\ C^{\nu}_{ij} &= \left\{ \sum_{\substack{\mu \in \mathcal{P}(IJ) \\ 0}} L^{IJ}_{\nu\mu} (\mu|ij) \quad \nu \in \mathcal{P}(IJ) \\ 0 \quad \text{else} \right. \\ &\Rightarrow (ij|kl) \approx \sum_{\substack{\mu\nu\lambda\sigma \\ \in \mathcal{P}(IJ)}} (ij|\lambda) L^{IJ}_{\lambda\mu} V_{\mu\nu} L^{KL}_{\nu\sigma} (\sigma|kl) \\ \text{RI-V:} (ij|kl) \approx \sum_{\mu,\nu} (ij|\mu) V^{-1}_{\mu\nu} (\nu|kl) \end{split}$$

¹ Alex Sodt and Martin Head-Gordon, The Journal of chemical physics 10, (2008)

²Patrick Merlot et al., Journal of computational chemistry 17, (2013)

	Theory		
These	- 1 f	 T	

Can we exploit the locality of the product density?¹²

¹ Alex Sodt and Martin Head-Gordon, *The Journal of chemical physics* 10, (2008)

² Patrick Merlot et al., Journal of computational chemistry 17, (2013)

Theory		

Theoretical framework: Auxiliary Basis Construction¹

radial basis functions $u_{skl}(r)$ of orbital basis set (OBS)

s: species index

- k: function index
- l: angular momentum

¹ Xinguo Ren et al., New Journal of Physics 5, (2012).

¹Xinguo Ren et al., New Journal of Physics 5, (2012).

linear dependencies

¹ Xinguo Ren et al., New Journal of Physics 5, (2012).

¹Xinguo Ren et al., New Journal of Physics 5, (2012).

¹Xinguo Ren et al., New Journal of Physics 5, (2012).

¹Xinguo Ren et al., New Journal of Physics 5, (2012).

 $|l_1 - l_2| \le l \le |l_1 + l_2|$

	Accuracy I		

Accuracy I - The S22 test set

¹ Petr Jurečka et al., Phys. Chem. Chem. Phys. 17, (2006).

Arvid Conrad Ihrig

Localized Resolution of Identity

	Accuracy I		

Accuracy of RI schemes in FHI-aims with a cc-pVTZ basis

	Accuracy I		

Accuracy of RI schemes in FHI-aims with a cc-pVTZ basis

	Accuracy I		

Accuracy of RI schemes in FHI-aims with a cc-pVTZ basis

Gram-Schmidt orthonormalization to remove linear dependencies

> auxiliary basis set for system (ABS/ABS+)

angular momentum channels $0 \dots 2l_s^{max}$ for each species

 $\begin{array}{l} \mbox{product functions } P_{\mu}(r) \mbox{ with } \\ |l_1-l_2| \ \leq \ l \ \leq \ |l_1+l_2| \end{array}$

Arvid Conrad Ihrig Localized Resolution of Identity

Fritz-Haber Institut der Max-Planck-Gesellschaft

Arvid Conrad Ihrig Localized Resolution of Identity Fritz-Haber Institut der Max-Planck-Gesellschaft

	Accuracy I		

	Accuracy I		

	Accuracy I		

	Accuracy I		

	Accuracy I		

	Accuracy I		

	Accuracy I		

	Accuracy I		

	Scaling	

Fully Extended Polyalanine - A scaling prototype

	Scaling	

Total Computational Time and Exchange Matrix Evaluation

	Scaling	

Total Computational Time and Exchange Matrix Evaluation

	Scaling	

Memory Consumption

	Scaling	

Total Energy Errors

		Accuracy II	

Accuracy II - Heavy Elements

Accuracy Analysis II

Copper and Gold clusters

		Accuracy II	

Accuracy for Copper clusters

		Accuracy II	

Accuracy for Copper clusters

		Accuracy II	

Accuracy for Gold clusters

					Summary
Summary and Conclusions					

- Results
 - RI-LVL in combination with a suitably chosen auxiliary basis gives very accurate results for light elements
 - RI-LVL is very accurate for heavier elements, even without modifications of the auxiliary basis
 - explicit use of the sparsity exhibits superior scaling, as shown for exact exchange
- Outlook
 - implement RI-LVL for RPA and GW

		Summary

Thank you for your attention!