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Chapter 1

What PLUMED is and what it
can do

PLUMED is a series of open source (L-GPL) routines that are now
interfaced to a number of molecular dynamics engines (beyond FHI-
aims: NAMD, GROMACS, LAMMPS, ACEMD, SANDER, CPMD,
G09-ADMP, and more) that enable the code to perform a number of
enhanced sampling calculations. Its core consists in a routine that
takes the position of the atoms at each timestep and introduces forces
according to the specific configuration of the system: this is the core
of many enhanced sampling calculations. Since this is a very tiny link
to the MD code, this can be done in a rather general way and that is
on of the main reasons why many MD codes incorporates it.

The usefulness of these enhanced sampling calculations is that they
allow for calculating free-energy differences associated to conforma-
tional transitions, chemical reaction and phase transitions.

In general, the free energy of a system in a specific point can be
defined as

F (s) = −1

β
logP (s) (1.1)

where F is the Helmoltz’s free energy, s is a descriptor of the system
(a bond distance, angle, or another generic order parameter of some
sort), P (s) is the probability that the system is in the state labelled
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by the descriptor s, β = 1/kBT where kB is the Boltzmann constant
and T is the temperature of the system.

Therefore, building an histogram of the conformations is the easiest
way one can build a free-energy profile as a function of some parameter.

Unfortunately, very often it happens that the exploration via MD
is all but exhaustive. In fact the system may stay trapped in some
minimum inasmuch the kinetic energy provided from the thermostat
(which is 0.5kBT = 0.3 kcal/mol per degree of freedom at 300 K) very
often does not allow for the the overcoming of barriers within the usual
time span of a MD simulations (typically tens to hundreds of ps for
ab initio MD, up to several µs for classical-force-field-based MD). In
this case we say that the system is in a ”metastable state” which is
exemplified in the Fig. 1

In order to illustrate this, let us consider a typical barrier for a
chemical reaction: ∆U ‡ ' 8 kcal/mol. One can estimate the rate of a
reaction by using the Arrhenius equation that reads

ν(T ) = ν0 exp
−∆U‡

kBT . (1.2)

By considering ν0 for a typical covalent bond, ν0 = 5 109s−1, as an up-
per bound, one easily get a rate of 7 103 events per second. Therefore,
each single event can well take up to a millisecond and the observation
of one single event is (very) fortuitous in the typical timescales of a
DFT-based MD. Moreover, since the estimate of the probability re-
quires converged statistics, the converged free-energy calculation can
require even much more time.

What PLUMED can do is to physically displace the system from
where it is so that you can measure the slope of the free-energy land-
scape in various ways and then reconstruct the free energy or simply
make some event happen. In the next we’ll show some basic function-
alities.
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Figure 1.1: Sketch of the typical case where the dynamics is locked in a metastable
state. Upper panel: the real free energy landscape is represented for a model land-
scape. Since the kinetic energy is low compared to the barrier, the crossing is highly
unlikely and the system stays trapped. The observed probability is reported in the
middle panel and in the lower panel is the computed free energy from the histogram.
This is clearly different from the actual one which is reported in the upper panel.
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Chapter 2

Basics: how to enable PLUMED
in FHI-aims

Enabling PLUMED from FHI-aims requires a separate compilation.
A separate

Makefile.meta

is provided (see FHI-aims manual).
The actual use of the plugin is switched on by this single line in

control.in:

plumed .true.

With plumed .false. (default) or nothing, the code would behave
exactly as compiled without this plugin. It is implied that some MD
scheme must be used in control.in, in order to see PLUMED acting.
What PLUMED does, in facts, is to modify the molecular dynamics
forces according to the selected scheme.
All the specific controls of the free-energy calculation are contained in
the file plumed.dat (which must be in the working directory, together
with control.in and geometry.in, if plumed .true. is set).

As a simple example, let’s consider a methyl-chloride molecule and
a chlorine ion. This is a well studied system and computationally
convenient. Additionally, the chlorine anion is able to displace the
second chlorine and give a SN2 (bimolecular nucleophilic substitution)
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Figure 2.1: A sketch of SN2 reaction

type of reaction represented in Fig 2.1. This is a well studied system
(see [1]) and yet computationally convenient.

Concerning FHI-aims setup, all the results reported below are per-
formed with a ”first tier” basis set and an outer grid of 302. Runs of
this size may take almost two hours on 4 proc machine for 5 ps (typical
run time in these calculations). In order to fit into a tutorial time,
pw-lda density functional and an outer grid of 194 could be used.
Here we report a minimal example of plumed.dat that just calculates
a couple of distances between one atom and (the geometric center of)
a group of atoms along the simulation:

#

# Note: distances are reported in bohr

#

DISTANCE LIST 1 <g1>

g1->

3 4 5 6

g1<-

DISTANCE LIST 2 <g1>

PRINT W_STRIDE 2

ENDMETA

The first line tells PLUMED that a distance should be calculated
between the bound chlorine, which is atom number 1 (the first atom
in FHI-aims geometry.in file) and the geometric center of a group
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of three atom represented by the symbol <g1> that correspond to the
methyl group. The notation

g1->

3 4 5 6

g1<-

starts the group, puts the number of the atoms included in it, and
closes the group. The other line DISTANCE LIST 2 <g1> asks for
the calculation of the distance between the unbound chlorine and the
methyl group. The line

PRINT W_STRIDE 2

determines that the distance (and other relevant informations) will be
printed later every 2 timesteps in the COLVAR file. Every time that you
restart a simulation, the old COLVAR file is backed up in COLVAR.old

and a new COLVAR file is written. Beware that if you do this two times
the first COLVAR file will be lost.

PLUMED produces also a PLUMED.OUT file which is very important
for understanding whether PLUMED is really doing what you asked it
to do. We really warmly recommend everyone to give a read to it. You
can find there also useful citations for specific methods implemented.
This file is never backed up and is overwritten every time.

Please note that all the settings and examples reported for this
molecule are meant only to allow you to do some exercise within the
time of the tutorial and are NOT, BY ANY MEANS, similar to a
good production setup which is much more computational intensive.
Therefore, for the same reasons, we do not enter in the details of the
simulations but for one single exception: the calculation is a molecular
dynamics. In our case the input contains a section that looks like:

MD_run 5.0 NVT_parrinello 300 0.1

MD_time_step 0.001

MD_clean_rotations .true.

MD_restart .false.
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output_level MD_light

MD_MB_init 300

MD_RNG_seed 12345

plumed .true.

which denotes a molecular dynamics setup where one specifies the
ensemble NVT parrinello 300 0.1 (a stochastic thermostat [2] at
300K with a coupling parameter τ of value 0.1 ps), with the initial
temperature set to 300 K (MD MB init 300) and a timestep of 1 fs
(MD time step 0.001) which is an upper limit for hydrogen contain-
ing molecules (we would recommend 0.25 fs for production). Addition-
ally the statement plumed .true. denotes the activation of plumed,
therefore a plumed.dat file should be present in the same directory
where geometry.in and control.in are.

When sending the calculation, one obtains a PLUMED.OUT file in
which it is reported, among the other things:

::::::::::::::::: READING PLUMED INPUT :::::::::::::::::

|- GROUP FOUND: g1

|- GROUP MEMBERS: 3 4 5 6

1-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 4 ATOMS); PBC ON

|- DISCARDING DISTANCE COMPONENTS (XYZ): 000

|- 1st SET MEMBERS: 1

|- 2nd SET MEMBERS: 3 4 5 6

2-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 4 ATOMS); PBC ON

|- DISCARDING DISTANCE COMPONENTS (XYZ): 000

|- 1st SET MEMBERS: 2

|- 2nd SET MEMBERS: 3 4 5 6

|-PRINTING ON COLVAR FILE EVERY 2 STEPS

|-INITIAL TIME OFFSET IS 0.000000 TIME UNITS
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|-ANALYSIS: YOU WILL ONLY MONITOR YOUR CVs DYNAMICS

This means that the groups are detected correctly and that the dis-
tances are correctly interpreted along with the PRINT command.

Along with it the COLVAR file is obtained. Its format is typically
like

#! FIELDS time cv1 cv2

0.0020 3.624455684 5.681056610

0.0040 3.645635574 5.666974513

0.0060 3.667778896 5.652366040

0.0080 3.690936439 5.637267098

In the first line is a summary of the fields that one is seeing, namely
the time (in ps, the time units of FHI-aims) and the two CVs (in this
case two distances, reported in bohr which is the natural distance unit
used internally to FHI-aims).

What we observe, by plotting this distance is that the second CV
(the distance between the unbound chlorine and the methyl group)
is oscillating around 5.75 bohr and never reach the distance of the
other C-Cl bond which is around 3.7 bohr. As a matter of fact this
represent a metastability since it never shows the other symmetric
complex. The metastability is due to the fact that the chlorine atom
creates a partial positive charge on the methyl group and the negative
anion feels a Coulombic attraction to it.

It is worth mentioning that, since FHI-aims dumps the coordi-
nate at each timestep, one can do this analysis a posteriori via the
driver utility included in PLUMED distribution and by using the
nice interface of VMD (Extensions-Analysis-Collective Variable ana-
lyis (PLUMED)) created by Toni Giorgino.
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Chapter 3

A simple bias on the system

Now let’s try to apply a simple harmonic bias, often called “harmonic
potential”, that stretches the bond and thus “encourages” the transi-
tion. This is the first example that shows how PLUMED biases the
simulation.

First, in addition to the previous descriptor, we add another one,
namely the difference between the two distances. This is a rather well
known and used descriptor whenever some bond breaking/bond form-
ing reaction is involved since, by moving from one value to its negative
(in the case of such symmetric reaction), it allows to simultaneously
breaking one bond while forming another one.

The plumed.dat file therefore will look like:

#

# monitor the two components

#

g1->

3 4 5 6

g1<-

DISTANCE LIST 1 <g1>

DISTANCE LIST 2 <g1>

PRINT W_STRIDE 1

# the distance between C-Cl’ and C-Cl

DISTANCE LIST 1 <g1> DIFFDIST 2 <g1>

UMBRELLA CV 3 AT 0.0 KAPPA 0.01
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ENDMETA

Note that here we have additionally put the directive:
UMBRELLA CV 1 AT 0.0 KAPPA 0.01

This enables the addition of the harmonic potential that has the form:

Ubias(x) =
k

2
(CV (x)− CV0)2 (3.1)

in which AT determines the CV0, KAPPA determines the k value. In this
case the units of k are hartee/bohr2 so that the energy is in hartree.

The output of PLUMED.OUT in this case shows a line like

|-UMBRELLA SAMPLING OF COLVAR 3 AT 0.00: SPRING=0.010 SLOPE=0.00

which denotes the addition of the harmonic bias.
The output of COLVAR changes in something like:

#! FIELDS time cv1 cv2 cv3 vwall XX XX RST3 WORK3

0.002 3.604 5.694 -2.090 0.021 RST 3 0.000 0.000

0.004 3.668 5.644 -1.975 0.019 RST 3 0.000 0.000

0.006 3.709 5.607 -1.897 0.018 RST 3 0.000 0.000

0.008 3.768 5.555 -1.787 0.015 RST 3 0.000 0.000

0.010 3.834 5.495 -1.661 0.013 RST 3 0.000 0.000

0.012 3.898 5.434 -1.535 0.011 RST 3 0.000 0.000

in which it appears a new field: vwall. This is the potential energy
calculated by the harmonic potential. The other remaining fields on
the right are only relevant with a moving restraint (see below).

Now, in order to compare with the unbiased results, let’s compare
the two bond distances in the plain simulation and in the biased one.
In Fig. 3.1 it is evident that the umbrella potential is biasing the two
distance toward a set of values whose difference is centered on zero
value. Since at the beginning the simulation is starting far from the
zero value imposed by the umbrella potential, initially the simulation
is dominated by this spring and oscillates strongly around the center
of the harmonic potential. Generally this behavior disappeares after
a while, when the system reaches equilibrium. For this reason it is
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Figure 3.1: A plot of time evolution of the distances of the two chlorine atoms to
the central methyl group in case of plain dynamics and biased dynamics.

generally better to use some moving restrain potential that gently
drags the system in the desired position (see below).

Conceptually, this procedure is not only allowing to see a tran-
sition that otherwise will never happen in a system, but has also a
thermodynamic meaning that we can explore here. Let’s start from
the common definition of Helmoltz free energy as function of an order
parameter.

F (s0) = −1

β
lnP (s0) (3.2)

= −1

β
ln

∫
e−βV (x)δ(s(x)− s0)dx

Q
(3.3)

with Q being the canonical partition function:

Q =
∫
e−βV (x)dx . (3.4)

Now we can relate this free energy with the one obtained from a biased
ensemble in which we use a function Vb(s) (in the example was the
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harmonic function). This would read

Fb(s0) = −1

β
lnPb(s0) (3.5)

= −1

β
ln

∫
e−β(V (x)+Vb(s(x)))δ(s(x)− s0)dx

Qb
(3.6)

with

Qb =
∫
e−β(V (x)+Vb(s(x))dx (3.7)

Since all the points selected by the delta function δ(s(x)− s0) present
the same value of Vb(s(x)), the exponential related to the bias can be
pulled out from the integral to give:

Fb(s0) = −1

β
ln e−βVb(s0)

∫
e−βV (x)δ(s(x)− s0)dx

Qb
(3.8)

= Vb(s0)−
1

β
ln

∫
e−βV (x)δ(s(x)− s0)dx

Qb
(3.9)

= Vb(s0)−
1

β
lnP (s)

Q

Qb
(3.10)

= Vb(s0)−
1

β
lnP (s) +

1

β
ln
Q

Qb
(3.11)

= Vb(s0)−
1

β
lnP (s) + C (3.12)

Fb(s0) = Vb(s0) + F (s0) + C (3.13)

from which one has:

F (s0) = Fb(s0)− Vb(s0) + C (3.14)

that means that, from a biased simulation, one can retrieve the cor-
rect free energy just by knowing the bias and the histogram in the
biased ensemble. So, if one can find a function that compensates the
free-energy landscape, then the system is free to travel in the space
of CVs and the histogram can be acquired with accuracy since all the
metastabilities are removed. This is crucial for many enhanced sam-
pling methods, e.g., Metadynamics (MetaD) [3] that relies exactly on
an iterative procedure aimed to produce the compensating potential.
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Figure 3.2: A sketch of the distribution from the umbrella potential for the SN2
reaction.

Let’s try this approach on this case. Please consider that, in order
to obtain a good-quality estimate of the free energy, one should have
a long trajectory and check the convergence, the easiest way being the
comparison of histograms from the first half of the trajectory and the
second half of the trajectory. First we retrieve the probability from
the trajectory. This can be done with the awk script provided.

grep -v FIELDS COLVAR >f1

awk ’{print $1,$4}’ f1 |./distribution.awk >dist

then the free energy can be calculated with one liner in gnuplot

p "dist" u 1:(-(0.597)*log($2)-0.5*0.01*627.51*($1*$1)) w lp

that aim to plot the probability of the biased ensemble -(0.597)*log($2)
where 0.597 is kBT in kcal/mol at 300K and -0.5*0.01*627.51*($1*$1)
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Figure 3.3: A sketch of the unbiasing procedure and the results for the SN2 reaction

is the harmonic bias, converted from hartee into kcal/mol (the results
of this calculation can be exported through set term table; rep

commands in gnuplot).
It is worth noting that the calculation involves a logarithm of a

probability that around +/-2 bohr goes to zero. This number is ac-
tually unreliable and therefore the free energy is trustable only in the
region where most of the probability is concentrated.

For this reason generally one imposes many umbrella potentials
centered on different points along the reaction coordinate and then
combine the probabilities only in the regions where they are reliable.
This is achieved by imposing the minimization of the errors. The
most applied procedure for doing this is called Weighted Histogram
Analysis Method (WHAM) (see [4, 5] and [6]).
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Another necessary word is to be spent on the plausibility of results:
a plot like the one shown in Fig. 3.2 is clearly suspicious since the
reaction should be symmetric while the distribution has some spikes.
This is generally a sign of bad convergence. This is of course inevitable
in the short running time of a tutorial but should be carefully checked
in production runs and its origin should be understood. Very often
it is the character of the descriptor itself that can produce various
aberrations since it may compress the phase space in anisotropic way.
This is not a problem as far as it is understood as an issue different
from the convergence of the calculations.
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Chapter 4

A moving bias on the system

Another possibility that plumed offers is the use of time dependent
biases. The simplest of them has the following form:

Ubias(x, t) =
k

2
(CV (x)− CV0(t))2 (4.1)

where

CV0(t) = CV ′0 + vt (4.2)

which represents a harmonic restraint whose center is displaced lin-
early with time. This might be useful whenever a single umbrella is
very far from a desired target configuration in CV space or, more sim-
ply, to produce nice movies in which a lot happens in a small time
(but at the cost of the real physics).

The plumed.dat file then is:

g1->

3 4 5 6

g1<-

DISTANCE LIST 1 <g1>

DISTANCE LIST 2 <g1>

DISTANCE LIST 1 <g1> DIFFDIST 2 <g1>

STEER CV 3 TO 2.35 VEL 2.50 KAPPA 0.1

PRINT W_STRIDE 1

ENDMETA
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where the added line with the directive STEER is gently dragging the
system to the value of 2.35 bohr with a velocity of 2.5 bohr each 1000
steps. The spring constant is set 0.1 hartree/bohr2 and the initial cen-
ter CV ′0 is taken as the value of the descriptor at the initial step. in
a simulation where there is a time dependent restraint very often, es-
pecially for small systems, a more aggressive thermostatting (reduced
period) is needed to dissipate the thermal energy externally added by
the moving potential. This is true also for metadynamics.

It is important to bear in mind that such ”steered MD” simula-
tions may have very little physical meaning and are here reported
just to let the reader be familiar with PLUMED and its capabili-
ties. The reason behind their limited usefulness is that in most of
the cases these are ”out-of-equilibrium” simulations and they are not
representative of equilibrium ensemble that is generally of interest for
simulations. However, Jarzynski [7] inequality provides a connection
between out-of-equilibrium trajectories and equilibrium free energy
differences. This inequality consists in:

∆F = −β−1 ln < exp(−βW ) > (4.3)

where the average is calculated over the work obtained from a number
of out-of-equilibrium trajectories. The value of W can be obtained via

W =
∫ ts

0
dt
∂Hb(x, t)

∂t
(4.4)

where Hb is a modified hamiltonian which contains an additional term,
namely:

Hb(x, t) = H(x) + Ubias(x, t) (4.5)

From which it comes naturally that the derivative is simply:

∂Hb(x, t)

∂t
= −vk(CV (x)− CV ′0 − vt) (4.6)

= −vk(CV (x)− λ(t)) (4.7)

and therefore the integral W can be obtained simply by quadrature
summing up all the deviation respect to the position of the mobile
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center of the harmonic restraint. In the limit of lots of pulling therefore
meaningful free-energy differences can be retrieved.

The COLVAR output reads

#! FIELDS time cv1 cv2 cv3 XX XX RST3 WORK3

0.0020 3.604 5.694 -2.090 RST 3 -2.090 0.000000000

0.0040 3.642 5.669 -2.026 RST 3 -2.088 -0.000011999

0.0060 3.655 5.662 -2.006 RST 3 -2.085 -0.000029506

0.0080 3.669 5.658 -1.988 RST 3 -2.083 -0.000051119

0.0100 3.680 5.658 -1.978 RST 3 -2.080 -0.000075653

0.0120 3.685 5.665 -1.979 RST 3 -2.078 -0.000100674

where in the RST3 column it is reported the center of the moving
harmonic potential and in the WORK3 the accumulated work up to
that time (in hartree units).

It is rather important to understand that a calculation of such kind
can be very challenging since the exponential average in Eq. 4.3 tends
to give enormous weight to the trajectories that have less work. Ad-
ditionally, slow steering speed and tight spring constant in which the
descriptor follows closely the center of the moving harmonic poten-
tial generally deliver better results but in general, if the descriptor
is wrong or the landscape is dominated by entropy and is degenerate
(presents multiple pathways), generally it is not advisable to use this
technique.

Additionally it is worth mentioning that forward and backward
pulling can be combined via the Crooks’ theorem [8].

The resulting work profile 4.2 is rather plausible if compared with
[1]. The reason for this is that the system presents very few orthogonal
degrees of freedom and is highly symmetrical, therefore the pathways
are not degenerate and the reaction coordinate is well oriented respect
to the real reaction coordinate. This is a rather unique case since in
many other systems the value of work can be as large as 10-fold the
expected free energy.
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Figure 4.1: The instantaneous value of the descriptor follows closely the red line of
the center of the harmonic potential.
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Chapter 5

A metadynamics example

Metadynamics adds an adaptive potential to the simulation that grows
with simulation time. Intuitively its functioning relies on Eq. 3.14
and, in order to find the best possible approximation to the perfectly
compensating bias it adopts a history dependent potential. This bias
potential acts on a restricted number of degrees of freedom of the
system s(x) = (s1(x), ..., sd(x)) often referred to as collective variables
or CVs. The metadynamics potential V (s, t) varies with time t and is
constructed as a sum of Gaussian functions, or hills, deposited during
the simulation:

V (s, t) =
∫ t

0
dt′ω exp

− d∑
i=1

(si(x)− Si(x(t′))2

2σ2i

 , (5.1)

where σi is the Gaussian width corresponding to the i-th CV and ω
the rate at which the bias grows. In the practice, Gaussians of height
equal to W are deposited every τ MD steps, so that ω = W/τ .

The function of these Gaussian potentials is to discourage the sys-
tem to revisit the previously visited points in CV space and reach the
point in which all the points in CV space are equally sampled in time
that delivers a flat histogram which has no contribution on the free
energy. Under this assumption the Helmoltz free energy results to be
the negative of the deposited bias.

In order to perform a metadynamics simulation we have to:

• Choose wisely the set of CVs to address the problem. This is
a long story. To cut it short, CVs a) should clearly distinguish
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between the initial state, the final state and the intermediates, b)
should describe all the slow events that are relevant to the process
of interest, c) their number should not be too large, otherwise it
will take a very long time to fill the free energy surface.

• Choose the Gaussian height W and the deposition stride τ . These
two variables determine the rate of energy added to your simula-
tion. If this is too large, the free-energy surface will be explored at
a fast pace, but the reconstructed profile will be affected by large
errors. If the rate is small, the reconstruction will be accurate,
but it will take a longer time. The error on the reconstructed
FES depends on the ratio W/τ , not on the two parameters alone
[9].

• Choose the Gaussian width σi. This parameter determines the
resolution of the reconstructed FES. The sum of Gaussians re-
produces efficiently (i.e. in a finite simulation time) features of
the FES on a scale larger than σi. A practical rule is to choose
the width as a fraction (half or one third) of the CV fluctuations
in an unbiased simulation. This is not a golden rule, since the
value of the fluctuations is not universal but usually depends on
the position in the CV space (see Fig. 5.1 for the calculation
of the fluctuation on the CVs used for tracking the unbiased dy-
namics). In particular, although intuitively a larger σ could bring
to a faster filling, very often, when the choice is not clear as in
5.1 it is much better to adopt the smaller one since it guarantees
a better resolution and ability to fill up both narrow and large
wells.

To activate a metadynamics calculation in PLUMED you have to use
the directive HILLS. The deposition stride τ is specified in unit of time
steps by the keyword W STRIDE, the height W by HEIGHT in internal
units of energy of the MD code used. The Gaussian width σi must be
specified on the line of each CVs with the keyword SIGMA.
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Figure 5.1: The fluctuation calculated during the unbiased dynamics for the two
methyl-chloride distances. A gaussian fit is overlapped with the distribution calcu-
lated. The σ=0.11 bohr for the black profile and σ=0.440 bohr for the red profile.
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Generally metadynamics is to be preferred for multidimensional
problems that require no more than 3/4 CVs. The reason is that in
metadynamics one does not need to explore all the space in CV to have
an estimate of the free-energy landscape in a region of interest since
metadynamics start exploring and filling with potential the regions at
low free energy, which are the most interesting. In other methods, like
WHAM combined with e.g. umbrella sampling, one has to define a
priori the grid and the systematic exploration becomes cumbersome
in a high-dimensional space.

For the usual case of the SN2 reaction one could think that, instead
of exploring the difference of distances, one could be interested in
exploring independently the two methyl-chloride distances (so that
we show how to set up a multidimensional calculation). Nevertheless,
we expect that we are not really interested in unbound states where
the methyl-Cl distance is above 6.5 Bohr. This require to introduce
an artificial soft wall to prevent the system from visiting nonreactive
regions which might be trivially low in energy.

A possible input therefore reads:

DISTANCE LIST 1 <g1> SIGMA 0.11

g1->

3 4 5 6

g1<-

DISTANCE LIST 2 <g1> SIGMA 0.11

UWALL CV 1 LIMIT 7. KAPPA 0.5

UWALL CV 2 LIMIT 7. KAPPA 0.5

HILLS HEIGHT 0.00047 W_STRIDE 50

PRINT W_STRIDE 2

ENDMETA

which present a SIGMA value for each of the CVs on which the meta-
dynamics is active (it could be a subset of all the CVs) and a specific
line starting with HILLS that specify the height and the deposition
time. Additionally we included the confining potential, denoted by
UWALL (upper wall) which impose a quartic wall in order to prevent
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the system to escape from the reactive region.
The typical COLVAR files that one obtains is similar to this:

#! FIELDS time cv1 cv2 vbias vwall

0.8240 3.723740474 6.868711550 0.000029924 0.000000000

0.8280 3.691187802 6.931429351 0.000013739 0.000000000

0.8320 3.639273674 6.998560142 0.000004823 0.000000000

0.8360 3.558399168 7.083118628 0.000000000 0.000023865

0.8400 3.478637841 7.159044915 0.000000000 0.000319926

0.8440 3.424739803 7.208958444 0.000000000 0.000953256

0.8480 3.428390769 7.207133491 0.000000000 0.000920389

0.8520 3.493585587 7.155388196 0.000000000 0.000291502

0.8560 3.601809461 7.072873461 0.000000000 0.000014101

0.8600 3.707646538 6.990032405 0.000002236 0.000000000

0.8640 3.779941165 6.922057261 0.000001894 0.000000000

0.8680 3.815026536 6.863783677 0.000004640 0.000000000

0.8840 3.708208013 6.668182930 0.000348923 0.000000000

in which two additional fields are present vbias which is the potential
energy due to the hills potentials of metadynamics and vwall which
is the potential exerted by the quartic wall (in fact is acting only for
values of the second CV larger than 7).

In addition to this, PLUMED produces a HILLS. For two-dimensional
Gaussian potentials each line consists of time, the position of the cen-
ters in the two dimension, the width of the Gaussian potential in the
two dimensions (in bohr since distances are used as CVs), the height
(in hartree) and a multiplicative factor that is only useful when well-
temperered metadynamics[14] is enabled.

0.100 3.797 5.972 0.110 0.110 0.00047 0.000

0.200 3.731 6.191 0.110 0.110 0.00047 0.000

0.300 3.668 5.823 0.110 0.110 0.00047 0.000

0.400 3.769 5.619 0.110 0.110 0.00047 0.000
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Figure 5.2: The partial 2-dimensional free energy surface after 15 ps of metadynam-
ics. Each isosurface represents kcal/mol.

During the simulation one can inspect the instantaneous estimate
of the free energy by using the sum hills program included in PLUMED.
which integrate the HILLS file over a domain and produce a surface
called fes.dat. This is invoked with

sum_hills -ndim 2 -ndw 1 2 -file HILLS

Note that, after 15 ps of metadynamics, the system has still not
crossed the transition state that should be located at 4.5 bohr in both
dimensions. This reflects the intrinsic difficulty of a multidimensional
calculation that should be taken into account whenever setting a mul-
tidimensional free-energy calculation (the same holds also for methods
other than metadynamics, as WHAM). In this case a better choice of
CVs, like the difference of distances shown before, allow to reduce the
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dimensionality of the problem and allow a faster exploration.
Another important fact that should be taken into account when

running a metadynamics run is that it allows for a ”prior”, which
means that at the beginning the free-energy landscape is assumed flat
(no hills). With the evolution of the bias potential, the estimate of free
energy landscape is progressively revised and improved. Nevertheless,
those regions for which the potential is zero means that they are not
sampled by metadynamics and therefore should not be interpreted.
For other methods based on the logarithm of probabilities this would
turn into the negative logarithm of zero which is infinite and therefore
cannot be interpreted.

After more than 20 ps of metadynamics the transition state is
crossed and the system spends other more than 20 ps to fill the sec-
ond basin. After that point the system spends considerable less time
for each transition and the transition state is repeatedly recrossed.
Within this regime the metadynamics can be considered to provide a
valid representation of the free energy. Additionally it is worth remem-
bering that metadynamics samples the lowest basin first, therefore it
scales with a computational effort which is less then a power law of
the dimensionality used in the metadynamics itself if the landscape is
not too complex.
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Figure 5.3: The timeline of the two distances during metadynamics. The two main
basins are filled and then the dynamics proceeds in an almost diffusive regime.
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Chapter 6

Other features and conclusions

This brief summary is intended only to give a first approach to the free-
energy calculation problem with PLUMED. We recommend, before em-
barking any serious project, to devote time to read the literature and
in particular the classic books [10, 11, 12] to acquire a solid background
in both simulation techniques and statistical mechanics. PLUMED itself
includes many more techniques than those outlined here. Among all
it is worth citing multiple walkers metadynamics [13], well-tempered
metadynamics [14], d-AFED [15],well-tempered ensemble[16] recon-
naissance metadynamics [17] to name a few that are implemented
an ready to use in conjuction with FHI-aims (other replica-exchange-
based methods will be available soon on a script based method as
the plain replica exchange MD already available for FHI-aims, see
manual). Additionally, flexible steering schedules are available via
STEERPLAN directives. More than this, PLUMED allows to have plenty
of CVs available: from angles to torsion to coordination number up to
path collective variables [18]. The investigation of the optimal space
for projection of the free energy is a very active field indeed.

This is rather central every time one wants to perform a free-energy
calculation and should be carefully explored and analyzed. Literature
very often helps a lot in this respect.
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