Self-consistent $\boldsymbol{G} W$ in FHI-aims

Fabio Caruso

Fritz-Haber-Institut, Berlin

FHI-aims Developers' and Users' Meeting

Berlin,
29 August 2012

Outline

- The $G W$ approximation (why self-consistency?)
- Implementation of sc-GW in FHI-aims
- Application to atoms, molecules and molecular interfaces

The one-body Green function

$$
G_{\sigma \sigma^{\prime}}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=-i\left\langle\Psi_{0}\right| \hat{T}\left[\psi_{\sigma}(\mathbf{r} t) \psi_{\sigma^{\prime}}^{\dagger}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle
$$

Lehmann representation:

$G_{\sigma \sigma^{\prime}}^{\mathrm{R}}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)=\sum_{s} \frac{f_{s, \sigma}(\mathbf{r}) f_{s, \sigma^{\prime}}^{*}\left(\mathbf{r}^{\prime}\right)}{\omega-\varepsilon_{s}+i \eta}$
where $\quad \varepsilon_{s} \equiv E_{s}^{N+1}-E_{0}$
G : contains information on charged excitations
G : an ideal for calculating band-structures and photoemission spectra

Q.Yan, P. Rinke, et al. Semicond.

Sci. Technol. 26, 014037 (2011)

Green's function is solution to Hedin's equations

Hedin's equations - exact
L. Hedin, Phys. Rev. 139, A796 (1965)

$$
\begin{aligned}
P(1,2) & =-i \int G(2,3) G\left(4,2^{+}\right) \Gamma(3,4,1) d(3,4) \\
W(1,2) & =v(1,2)+\int v(1,3) P(3,4) W(4,2) d(3,4) \\
\Sigma(1,2) & =i \int G(1,4) W\left(1^{+}, 3\right) \Gamma(4,2,3) d(3,4) \\
\Gamma(1,2,3) & =\delta(1,2) \delta(1,3)+\int \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(4,6) G(7,5) \Gamma(6,7,3) d(4,5,6,7)
\end{aligned}
$$

Dyson's equations

$$
G^{-1}(1,2)=G_{0}^{-1}(1,2)-\Sigma(1,2)
$$

- links non-interacting $\left(G_{0}\right)$ with interacting (G) system

Green's function is solution to Hedin's equations

Hedin's equations - exact

 notation: $1=\left(\mathbf{r}_{1}, \sigma_{1}, t_{1}\right)$L. Hedin, Phys. Rev. 139, A796 (1965)

$\boldsymbol{G W}$ approx.

$$
\begin{aligned}
P(1,2) & =-i \int G(2,3) G\left(4,2^{+}\right. \\
W(1,2) & =v(1,2)+\int v(1,3) P(3,4) W(4,2) d(3,4) \\
\Sigma(1,2) & =i \int G(1,4) W\left(1^{+}, 3\right)
\end{aligned}
$$

$$
\Gamma(1,2,3)=\delta(1,2) \delta(1,3)+\int \frac{\int \frac{\delta \Gamma(1,2)}{\delta G(1,5)} \hat{(1,6) C(7,5) \Gamma(6,7,0) d(4,5,6,7)}}{}
$$

Dyson's equations

$$
G^{-1}(1,2)=G_{0}^{-1}(1,2)-\Sigma(1,2)
$$

- links non-interacting $\left(G_{0}\right)$ with interacting (G) system

The $\boldsymbol{G W}$ approximation

The self-energy
$\Sigma=-i G W$

First order perturbation theory:

$$
\epsilon_{i}^{\mathrm{QP}}=\epsilon_{i}^{\mathrm{KS}}+\left\langle\phi_{0}\right| \Sigma\left(\epsilon_{i}^{\mathrm{QP}}\right)-v_{\mathrm{xc}}\left|\phi_{0}\right\rangle
$$

molecules

Good correlation with experiments, but:

there are undesirable problems

- results depend on starting point
- ground-state is treated at the DFT/HF level
- violation of conservation laws

The $\boldsymbol{G W}$ approximation

The self-energy
$\Sigma=-i G W$

First order perturbation theory:

molecules

Good correlation with experiments, but:
there are undesirable problems

- results depend on starting point
- ground-state is treated at the DFT/HF level
- violation of conservation laws

How to go beyond 1st order PT

 (within the $G W$ approximation)?- Self-consistency in the eigenvalues Hybertsen and Louie, Phys. Rev. B 34, 5390 (1986)
- Optimization of the perturbed Hamiltonian (Quasi-particle self-consistent GW)

Faleev et al. , Phys. Rev. Lett. 93, 126406 (2004)

- Iteration of Dyson equation with fixed W
- Fully self-consistent $G W$

Hedin, Phys. Rev. 139, A796 (1965)

Outline

- The $G W$ approximation (why self-consistency?)
- Implementation of sc-GW in FHI-aims
- Application to atoms, molecules and molecular interfaces

Self-Consistent $\boldsymbol{G W}$ in practice

$$
\chi_{0}(i \tau)=-i G(i \tau) G(-i \tau)
$$

Self-Consistent $\boldsymbol{G W}$ in practice

$$
W(i \omega)=\frac{v}{1-v \chi_{0}(i \omega)}
$$

Self-Consistent $\boldsymbol{G W}$ in practice

$$
\Sigma(i \tau)=-i G(i \tau) W(i \tau)
$$

Self-Consistent $\boldsymbol{G W}$ in practice

$$
G^{-1}=G_{0}^{-1}-\left(\Sigma-v^{x c}+\delta v_{H}\right)
$$

Self-Consistent $\boldsymbol{G W}$ in practice

$$
G^{-1}=G_{0}^{-1}-\left(\Sigma-v^{x c}+\delta v_{H}\right)
$$

FC, P. Rinke, X. Ren, M. Scheffler and A. Rubio, PRB, 2012

Resolution of the identity

$$
(i j \mid k l)=\iint \frac{\varphi_{i}(\mathbf{r}) \varphi_{j}(\mathbf{r}) \varphi_{k}\left(\mathbf{r}^{\prime}\right) \varphi_{l}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathrm{d} \mathbf{r} \mathrm{~d} \mathbf{r}^{\prime} \quad \begin{aligned}
& \text { matrix elements of the } \\
& \text { Coulomb operator (or any } \\
& \text { 2-particle operator) }
\end{aligned}
$$

very demanding to compute and store (large number of NAO pairs)

The idea: $\quad \varphi_{i}(\mathbf{r}) \varphi_{j}(\mathbf{r}) \approx \sum_{\mu} C_{i j}^{\mu} P_{\mu}(\mathbf{r}) \Longrightarrow V_{\mu \nu}=\int \frac{P_{\mu}(\mathbf{r}) P_{\nu}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathrm{d} \mathbf{r} \mathrm{d} \mathbf{r}^{\prime}$
How to determine the expansion coefficients?

Minimize the error of the expansion

$$
\begin{aligned}
& \text { RI-SVS } \delta \rho_{i j}(\mathbf{r})=\sum_{\mu} C_{i j}^{\mu} P_{\mu}(\mathbf{r})-\varphi_{i}(\mathbf{r}) \varphi_{j}(\mathbf{r}) \\
& R_{l-V}>\delta I_{i j, k l}=\left(\tilde{\rho}_{i j} \mid \tilde{\rho}_{k l}\right)-\left(\rho_{i j} \mid \rho_{k l}\right)
\end{aligned}
$$

Representation of the Green's function

Numerical FT avoided

A basis for the frequency dependence of G
$G(i \omega)=\sum_{n=1}^{N_{\text {poles }}} \alpha_{n} f_{n}(i \omega)$
$\left\{f_{n}(i \omega)\right\} \quad f_{n}(i \omega)=\frac{1}{b_{n}+i \omega}$
The Fourier transform can be done analytically!

$$
\begin{array}{r}
N_{\text {poles }} \sim 50 \\
\\
N_{\omega}<100
\end{array}
$$

Representation of the Green's function

Numerical FT avoided

A basis for the frequency dependence of G

$$
G(i \omega)=\sum_{n=1}^{N_{\text {poles }}} \alpha_{n} f_{n}(i \omega)
$$

$\left\{f_{n}(i \omega)\right\} \quad f_{n}(i \omega)=\frac{1}{b_{n}+i \omega}$
The Fourier transform can be done analytically!

$$
\begin{array}{r}
N_{\text {poles }} \sim 50 \\
\\
N_{\omega}<100
\end{array}
$$

Numeric atom-centered orbitals + resolution of the identity map sc- $G W$ into a linear algebra problem

Outline

- The $G W$ approximation (why self-consistency?)
- Implementation of sc-GW in FHI-aims
- Application to atoms, molecules and molecular interfaces

Spectral function from scGW

Spectral function: $\quad A(\omega)=-\frac{1}{\pi} \int \mathbf{d r} \lim _{\mathbf{r}^{\prime} \rightarrow \mathbf{r}} \operatorname{Im} G\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)$

Comparison of several self-consistent approaches

Comparison of several self-consistent approaches

Ground-state properties from sc-GW

$G^{-1}=G_{0}^{-1}-\Sigma$ from the self-consistent Green function
Example of quantities we can calculate:

$$
\text { Total energy } \quad E_{\mathrm{GM}}=-i \int \frac{d \omega}{2 \pi} \operatorname{Tr}\left\{\left[\omega+h_{0}\right] G(\omega)\right\}
$$

structural prop., binding energies, vibrations
Density matrix $\quad n\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-2 i G\left(\mathbf{r}, \mathbf{r}^{\prime}, \tau=0^{-}\right)$
natural orbitals, natural occupation

Density

$$
n(\mathbf{r})=-2 i G\left(\mathbf{r}, \mathbf{r}, \tau=0^{-}\right)
$$

Total energy of atoms

The Galitskii-Migdal formula: $E_{\mathrm{GM}}=-i \int \frac{d \omega}{2 \pi} \operatorname{Tr}\left\{\left[\omega+h_{0}\right] G(\omega)\right\}$

full configuration interaction from:
vertex Γ

Chakravorty et al., Phys. Rev. A 47, 3649 (1993).

Density from sc-GW: the CO dimer

$$
\rho(\mathbf{r})=-2 i G\left(\mathbf{r}, \mathbf{r}, \tau=0^{-}\right) \quad \rho(s c G W)-\rho(H F)
$$

Changes in the density reflect the effect of $G W$ correlation

Improvement in the dipole moment:

Debye	Exp.	sc-GW	HF
μ	0.11	0.07	-0.13

0

$$
\begin{aligned}
& 0.08 \\
& 0.04 \\
& 0 \\
& 0 \\
& 0 \\
& -0.04 \\
& -0.07 \\
& \hline
\end{aligned}
$$

sc- $G W$ provides a new electronic structure

sc- $G W$ for charge transfer: donor-acceptor compounds

OCC.

Viktor Atalla et al., submitted

sc- $G W$ for charge transfer: donor-acceptor compounds

OCC. rearrangement in sc-GW!

Small charge

Viktor Atalla et al., submitted

Summary

- Implementation based on NAO and RI
- Poles expansion of G, for an efficient and accurate evaluation of Fourier integrals
- sc- $G W$ is independent of the starting point and incorporate many-body effects in the ground-state
- Accurate excitation spectrum for molecules
- A promising framework for describing changetransfer at (molecular) interfaces

Acknowledgements

Fritz-Haber-Institute, Berlin
Patrick Rinke
Xinguo Ren
Angel Rubio
Matthias Scheffler

Viktor Atalla

University of Texas Austin
Noa Marom

Thank you!

