Graphine on SiO2, Transport in FHI-aims

Paula Havu, Mari Ijäs and Ari Harju COMP Department of Applied Physics, Aalto University, Espoo, Finland

Outline

- Weight Strange Stra
 - Electron transport with FHI-aims

Graphene: 2D Carbon

- Perfect semi-metal with linear dispersion
- Carbon atomic configuration $(Is)^2(2s)^2(2p)^2$
- Graphene: sp² from 2s and two p-orbitals, pz remains

Hydrogenated graphene - Graphane

- Free-standing graphene hydrogenated on both sides is stable.
- Free-standing graphene hydrogenated only on single side is not theoretically stable.
- Graphane is an insulator

Hydrogenated graphene in experiments Doable in experiment? • Typically placed on surfaces

Hydrogenated graphene and hydrogens removed by STM.

Paolo Sessi et al., Nano Lett, 9, 4343 (2009).

Hydrogenated graphene in experiments

• Writable graphene circuit board?

Drawing graphene

Paolo Sessi et al., Nano Lett, 9, 4343 (2009)

Graphene on SiO2

• In our study we use 4 different surfaces

OH Terminated

O Terminated

Si Terminated

Reconstructed O Terminated

Graphene on SiO2

Bands are close to isolated graphene

OH Terminated

O Terminated

Reconstructed

Graphane on SiO2

Graphane on SiO2 - OH terminated surface

• 3 stable geometries with OH terminated surface.

Graphane on SiO2

 O, Si and reconstructed surfaces are most stable at 1/4 filling of H.

Graphene nanoribbons

Two basic types:

Graphene nanoribbons

Different electronic structures:

Simple Tight-binding and Density-functional theory

Edge magnetism: longer range hopping and interaction needed

Graphane nanoribbons on SiO2

Electronic structure

• Spin-dependent bands (up and down)

Summary of graphene

• The substrate has a big effect on the properties of one side hydrogenated graphene.

Transport in FHI-aims

- Electron tunneling through the nano structure with semi-infinite leads
- Zero-bias transport limit
- Use of gate voltage possible (adding or removing electrons)

$$T(\omega) = \int_{\partial\Omega_L} \int_{\partial\Omega_L} \int_{\partial\Omega_R} \int_{\partial\Omega_R} \Gamma_L(r_L, r'_L; \omega) G^r(r'_L, r_R; \omega)$$

 $\times \Gamma_R(r_R, r'_R; \omega) G^{r*}(r'_R, r_L; \omega) dr_L dr'_L dr_R dr'_R,$

$$I = \int_{-\infty}^{\infty} T(\omega) \left(f_L(\omega) - f_R(\omega) \right) d\omega$$

Electron transport calculations with FHI-aims

- Possibility to compare to other results from FHI-aims
- Local basis functions (Important to test that there is enough.)
- Radii of the basis functions are large
- All electron \Rightarrow a lot of basis functions (core states projection)
- 2-4 leads, flexible boundary conditions
- Parallelization: lapack and scalapack.
 - boundary conditions: lapack over leads
 - center region lapack / scalapack
- Reference potential level is smallest eigenvalue of atoms

Example: Transport properties of junctions

First: Semi-infinite leads

Put in to control.in: transport lead_calculation

Lattice vector 3. points "outside" direction

- Lead calculation with periodic boundary conditions
- One lead calculation for each boundary
- As many k-points as it is needed (as many as in normal calculation) in transport direction
- k-points in perpendicular direction not implemented

Transport in FHI-aims

- Actual transport calculation starts with normal periodic boundary calculation.
- Parts of leads need to be in the geometry

- Computational work depends on
 - number of basis functions
 - how many basis functions are sharing leads and center region
- Boundary conditions are iterated to every energy point, T(E) separately

Au geometry examples

 The part of lead in the geometry needs to be large enough so that the potential is close to leads potential at the boundary.

- Au geometries with different lengths:
- 33Å, 49Å, 66Å and 83Å

What to put in control.in in order to get T(E)

transport transport_calculation

Results file:transport tunneling_file_name res_file_nameT(E) range:transport energy_range -3.1 1.5 5000Leadtransport lead_1 1definitions:transport lead_2 17

Parameters for the boundary condition iterations transport number_of_boundary_iterations 100
transport boundary_treshold 0.5
transport epsilon_end 0.0001
transport epsilon_start 0.0001
transport boundary_mix 0.5

Summary Transport

• Landauer-Büttiker electron transport formula is implemented in FHI-aims.

