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& Graphene on SiO2

& Hydrogenated graphene on SiO2

& Electron transport with FHI-aims




Graphene: 2D Carbon

* Perfect semi-metal with linear dispersion
e Carbon atomic configuration (1s)*(2s)*(2p)?
* Graphene: sp? from 2s and two p-orbitals, pz remains
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Hydrogenated graphene - Graphane

® Free-standing graphene
hydrogenated on both sides is
stable.

® Free-standing graphene
hydrogenated only on single side
is not theoretically stable.
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® Graphane is an insulator




Hydrogenated graphene in experiments

® Typically placed on surfaces

Hydrogenated graphene and hydrogens removed by STM.

Paolo Sessi et al., Nano Lett, 9,4343 (2009).
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Hydrogenated graphene

® Writable graphene circuit board?
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Graphene on SiO?2

® |[n our study we use 4 different surfaces

OH Terminated O Terminated




Graphene on SiO?2

® Bands are close to isolated graphene

OH Terminated O Terminated

Si Terminated




Graphane

—@®- O terminated
—— Si terminated
—— OH terminated
+ Reconstructed
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Graphane on SiO2 - OH terminated surface
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® 3 stable geometries with OH
terminated surface.
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Graphane on SiO2
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® O, Si and reconstructed surfaces are most
stable at 1/4 filling of H.
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Graphene nanoribbons

Two basic types:

Armchair




Graphene nanoribbons

Different electronic structures:

Zigzag Armchair
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Simple and Density-functional theory

Edge magnetism:
longer range hopping and
interaction needed




Graphane nanoribbons on SiO?2
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Electronic structure

® Spin-dependent bands (up and down)

"4 6 8
Width, atom rows




Summary of graphene

® The substrate has a big effect on the properties of one side
hydrogenated graphene.




Transport in FHI-aims

® Electron tunneling through
the nano structure with
semi-infinite leads

Nanostructure

® /ero-bias transport limit

® Use of gate voltage possible
(adding or removing
electrons)
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Electron transport calculations with FHI-aims

® Possibility to compare to other results from FHI-aims

® | ocal basis functions (Important to test that there is enough.)

® Radii of the basis functions are large

® All electron = a lot of basis functions (core states projection)

® )-4 |leads, flexible boundary conditions
® Parallelization: lapack and scalapack.
® boundary conditions: lapack - over leads

® center region lapack / scalapack

® Reference potential level is smallest eigenvalue of atoms




Example: Transport properties of junctions
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First: Semi-infinite leads

Put in to control.in:  transport lead calculation

I
«+— Yacuum

Lattice vector 3. points
“outside” direction

® |ead calculation with periodic
boundary conditions

® One lead calculation for each
boundary

® As many k-points as it is
needed (as many as in normal
calculation) in transport
direction

® k-points in perpendicular
direction not implemented




Transport in FHI-aims

Semi infinite leads

® Actual transport
calculation starts with
normal periodic boundary
calculation.

® Parts of leads need to be in
the geometry

® Computational work depends on
® humber of basis functions

® how many basis functions are
sharing leads and center region

® Boundary conditions are iterated
to every energy point, T(E)
separately




Au geometry examples

® The part of lead in the
geometry needs to be
large enough so that the
potential is close to
leads potential at the
boundary.

different lengths:

® Au geometries with W, il W
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® 33A, 49A 66A and 83A




What to put in control.in in order to get T(E)

transport

Results file: transport
T(E) range: transport

Lead transport
definitions: transport

transport
transport
transport
transport
transport

Parameters for
the boundary
condition
iterations

transport calculation

tunneling file name res file name
energy range -3.1 1.5 5000
lead 1 1 1lead 1 file name
lead 2 17 lead 2 file name

number of boundary iterations 100
boundary treshold 0.5

epsilon_end 0.0001

epsilon_ start 0.0001

boundary mix 0.5




Summary Transport

® [ andauer-Buttiker electron transport formula is implemented
in FHI-aims.
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