Eigenvalue Solvers – The ELPA Project and Beyond

Bruno Lang

Bergische Universität Wuppertal

August 29, 2012

Overview

[The ELPA project](#page-2-0) [The project](#page-3-0) [Algorithmic paths for eigenproblems](#page-6-0) [Improvements with ELPA](#page-10-0) [Efficient tridiagonalization](#page-22-0)

[Beyond the basic ELPA-Lib](#page-26-0) [Blocked reduction of banded matrices](#page-27-0) [Out-of-core reduction](#page-28-0) [Split reduction](#page-29-0) [Iterative solvers](#page-30-0)

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

The ELPA project

[Eigenvalue Solvers—The ELPA Project and Beyond,](#page-0-0) Bruno Lang 3/31 (31) 2012 12:31 (31) 3/31 (31) 3/31

[The project](#page-3-0) [Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

The project I

Hoch-skalierbare Eigenwert-Löser für PetaFlop-Anwendungen

Highly Scalable **E**igenso**l**vers for **P**etaFlop **A**pplications

GEFÖRDERT VOM

Bundesministerium Für Bildung
und Forschung

[The project](#page-3-0) [Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

The project II

Situation:

 \triangleright Large-scale eigenproblems are often a computational bottleneck

(e.g., electronic structure calculations, network analysis)

 \triangleright Limited scaling of ScaLAPACK routines

Goals:

- ► Develop a **direct** solver with
	- \triangleright improved scaling and overall performance
	- \rightarrow ability to compute partial eigensystems
- \blacktriangleright Provide methods for large matrices

[The project](#page-3-0) [Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

The project III

Fritz-Haber-Institut Max-Planck-Gesellschaft

Electronic structure computations

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Network analysis

Algorithmic development

Parallelization

Optimization, project coordination

State-of-the-art hardware and tools

[Algorithmic paths for eigenproblems](#page-6-0) [Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Algorithmic paths for eigenproblems I

Standard approach for solving generalized EPs $Hc = \epsilon Sc$:

- **(A)** Reduce to standard EP (Cholesky decomp) \rightsquigarrow $Aq = \lambda q$
- (B) Tridiagonalize A (Householder reflections) \rightsquigarrow T
- (C) Solve tridiagonal EP (e.g., divide and conquer) $\rightsquigarrow \lambda$, q_T
- (D) (Orthogonal) Back transformation of *k* eigenvectors $\rightsquigarrow q_A$
- **(E)** (Non-orthogonal) Back transformation \rightsquigarrow c

[Algorithmic paths for eigenproblems](#page-6-0) [Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Algorithmic paths for eigenproblems II

Standard approach for standard symmetric EPs:

[Algorithmic paths for eigenproblems](#page-6-0) [Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Algorithmic paths for eigenproblems III

Problems with this approach:

[Algorithmic paths for eigenproblems](#page-6-0) [Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Algorithmic paths for eigenproblems IV

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA I

Optimized one-step tridiagonalization:

- + Substantially streamlined to reduce overhead
- + Improved memory accesses

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA II

Optimized D & C:

- + Improved parallelization approach
- + Partial eigensystems at reduced cost
- + Streamlined

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA III

Optimized one-step back transformation:

+ Substantially streamlined

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA IV

Two-step reduction I: full → **banded:**

- + Extended to complex
- + Optimized data distribution

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA V

Two-step reduction II: banded → **tridiagonal:**

- + Extended to complex
- + Improved parallelization

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA VI

Two-step back transformation I: tridiagonal → **banded:**

- + Extended to complex and to partial eigensystems
- + Variants with 1D and 2D data distribution
- Optimized kernels instead of WY for higher performance

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA VII

Two-step back transformation II: banded → **full:**

- + Extended to complex and to partial eigensystems
- + Substantially streamlined

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA VIII

MRRR:

- + Much better understanding of the algorithm
- + Improved robustness with new representations and block decompositions
- Often improved performance with optimized bisection strategy, etc.

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA IX

Hybrid D & C / MRRR:

+ Replace the lowest D & C recursion levels

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA X

Overall performance improvement:

ScaLAPACK pdsyevd: One-step reduction/back transform

+ (slightly) improved D & C

One-step ELPA one-step red/back transform + ELPA D & C

Two-step ELPA two-step red/back transform + ELPA D & C

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA XI

Scaling to very large numbers of cores:

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) **Angeles Information**

Improvements with ELPA XII

Status of the methods:

More information and software:

http://elpa.rzg.mpg.de/

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) Angeles A

Efficient tridiagonalization I

One-step reduction, step *j* **(i)**

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) Angeles A

Efficient tridiagonalization II

One-step reduction, step *j* **(ii)**

$$
\widetilde{A} := H_V^T \cdot \widetilde{A} \cdot H_V = (I - v \delta v^T)^T \cdot \widetilde{A} \cdot (I - v \delta v^T) = \widetilde{A} - v w^T - w v^T
$$

with

$$
w=z-\frac{1}{2}v\,\underset{\in\mathbb{R}}{\underbrace{\delta v^T z}},\quad z=\widetilde{A}v\delta.
$$

Therefore

- 1. Determine *v* and δ
- 2. Compute $z := \widetilde{A}v\delta$
- 3. Compute $w := z \frac{1}{2} v \delta v^T z$
- 4. Replace \widetilde{A} with $\widetilde{A} \nu \nu^T \nu \nu^T$ (can be blocked)

Reduces 1 column/row at a time, 50% BLAS 3, 50% **BLAS 2**.

[Eigenvalue Solvers—The ELPA Project and Beyond,](#page-0-0) Bruno Lang 24/31

[The ELPA project](#page-2-0)

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) Angeles A

Efficient tridiagonalization III

Reduction to banded form, step *j* **(i)**

*A*_{*j*−1} *A*_{*j*} $A_j = H_V^T A_{j-1} H_V$

[Improvements with ELPA](#page-10-0)
Efficient tridiagonalization The project
Algorithmic paths for eigenproblems
[Efficient tridiagonalization](#page-22-0) Angeles A

Efficient tridiagonalization IV

Reduction to banded form, step *j* **(ii)**

$$
\widetilde{A} := \mathcal{H}_{V}^{T} \cdot \widetilde{A} \cdot \mathcal{H}_{V} = (I - V \Delta V^{T})^{T} \cdot \widetilde{A} \cdot (I - V \Delta V^{T}) = \widetilde{A} - V W^{T} - W V^{T}
$$

with

$$
W = Z - \frac{1}{2} V \underbrace{\Delta^T V^T Z}_{\in \mathbb{R}^{k \times k}}, \quad Z = \widetilde{A} V \Delta.
$$

Therefore

- 1. Determine *V* and ∆ (QR decomp of *j*-th block column)
- 2. Compute $Z := \widetilde{A}V\Delta$
- 3. Compute $W := Z \frac{1}{2}V\Delta^TV^TZ$
- 4. Replace \widetilde{A} with $\widetilde{A} VW^T WV^T$

Reduces *k* columns/row at a time, almost completely BLAS 3.

[Split reduction](#page-29-0)
Iterative solvers Blocked reduction of banded matrices
Out-of-core reduction
Isplit reduction
[Iterative solvers](#page-30-0)

Beyond the basic ELPA-Lib

[Eigenvalue Solvers—The ELPA Project and Beyond,](#page-0-0) Bruno Lang 27/31

[Blocked reduction of banded matrice](#page-27-0)s [Split reduction](#page-29-0)
Iterative solvers Blocked reduction of banded matrices
Out-of-core reduction
Isplit reduction
[Iterative solvers](#page-30-0)

Blocked reduction of banded matrices

- ► Reduction $b_1 \rightarrow b_2$ eliminates $n_b \leq b_2$ columns per sweep
- Allows using BLAS 3 \Rightarrow much faster than direct tridiagonalization

[Out-of-core reduction](#page-28-0) [Split reduction](#page-29-0)
Iterative solvers Blocked reduction of banded matrices
Out-of-coore reduction
Isplit reduction
[Iterative solvers](#page-30-0)

Out-of-core reduction

- ^I Allows reducing of matrices of size *n* ∼ 100 k on standard workstations (4 GB main memory),
- ^I *n* ∼ 500 k on workgroup shared-memory server.
- \triangleright Performance at least competitive with in-core LAPACK, but complexity remains $\mathcal{O}(n^3)$.
- \triangleright Similar technique also available for banded matrices (*n* ∼ 2 M on workgroup server), complexity $\mathcal{O}(n^2b)$.

[Split reduction](#page-29-0)
Iterative solvers Blocked reduction of banded matrices
Out-of-core reduction
Isplit reduction
[Iterative solvers](#page-30-0)

Split reduction

Substantial savings for **sparse** matrices if they can be reordered as

[Split reduction](#page-29-0)
Iterative solvers Blocked reduction of banded matrices
Out-of-core reduction
[Iterative solvers](#page-30-0)
Iterative solvers

Iterative solvers

- \blacktriangleright Under investigation
- \triangleright Not yet [?] competitive in the situations considered