Eigenvalue Solvers — The ELPA Project and Beyond

Bruno Lang

Bergische Universität Wuppertal

August 29, 2012

Overview

The ELPA project The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Beyond the basic ELPA-Lib Blocked reduction of banded matrices Out-of-core reduction Split reduction Iterative solvers

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

The ELPA project

Eigenvalue Solvers-The ELPA Project and Beyond, Bruno Lang

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

The project I

Hoch-skalierbare Eigenwert-Löser für PetaFlop-Anwendungen

Highly Scalable Eigensolvers for PetaFlop Applications

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

The project II

Situation:

 Large-scale eigenproblems are often a computational bottleneck

(e.g., electronic structure calculations, network analysis)

Limited scaling of ScaLAPACK routines

Goals:

- Develop a direct solver with
 - improved scaling and overall performance
 - ability to compute partial eigensystems
- Provide methods for large matrices

The ELPA project

The project

The project III

Fritz-Haber-Institut Max-Planck-Gesellschaft

Electronic structure computations

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Network analysis

Algorithmic development

Parallelization

Optimization, project coordination

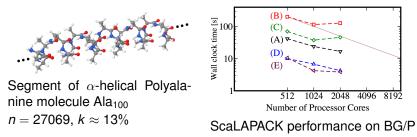
State-of-the-art hardware and tools

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Algorithmic paths for eigenproblems I

Standard approach for solving generalized EPs $Hc = \epsilon Sc$:

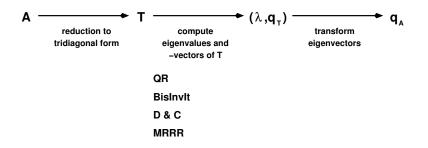
- (A) Reduce to standard EP (Cholesky decomp) $\rightsquigarrow Aq = \lambda q$
- (B) Tridiagonalize A (Householder reflections) $\rightsquigarrow T$
- (C) Solve tridiagonal EP (e.g., divide and conquer) $\rightsquigarrow \lambda, q_T$
- (D) (Orthogonal) Back transformation of k eigenvectors $\rightsquigarrow q_A$
- (E) (Non-orthogonal) Back transformation ~~ c



The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Algorithmic paths for eigenproblems II

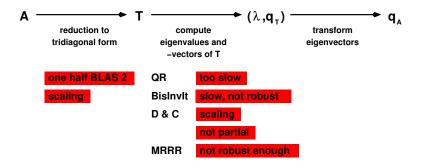
Standard approach for standard symmetric EPs:



The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

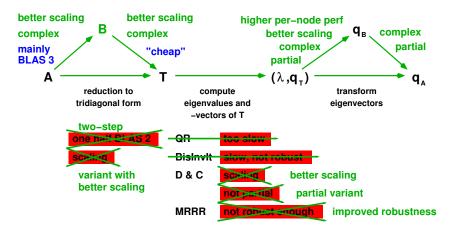
Algorithmic paths for eigenproblems III

Problems with this approach:



The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

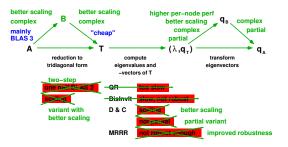
Algorithmic paths for eigenproblems IV



The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA I

Optimized one-step tridiagonalization:

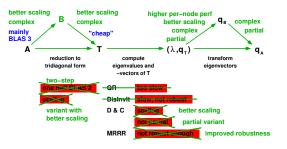


- + Substantially streamlined to reduce overhead
- + Improved memory accesses

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA II

Optimized D & C:

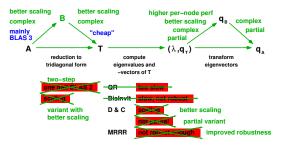


- + Improved parallelization approach
- + Partial eigensystems at reduced cost
- + Streamlined

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA III

Optimized one-step back transformation:

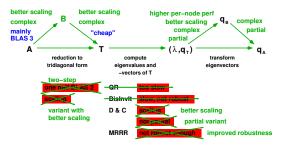


+ Substantially streamlined

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA IV

Two-step reduction I: full \rightarrow banded:

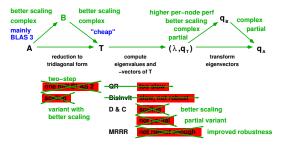


- + Extended to complex
- + Optimized data distribution

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA V

Two-step reduction II: banded \rightarrow tridiagonal:

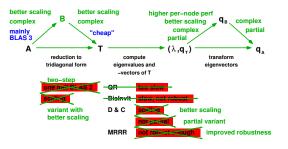


- + Extended to complex
- + Improved parallelization

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA VI

Two-step back transformation I: tridiagonal \rightarrow banded:

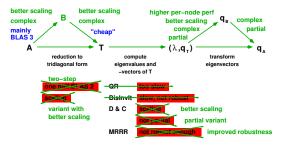


- + Extended to complex and to partial eigensystems
- + Variants with 1D and 2D data distribution
- + Optimized kernels instead of WY for higher performance

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA VII

Two-step back transformation II: banded \rightarrow full:

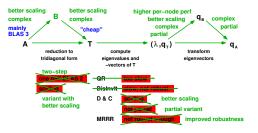


- + Extended to complex and to partial eigensystems
- + Substantially streamlined

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA VIII

MRRR:

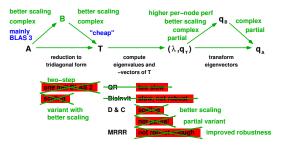


- + Much better understanding of the algorithm
- + Improved robustness with new representations and block decompositions
- + Often improved performance with optimized bisection strategy, etc.

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA IX

Hybrid D & C / MRRR:



+ Replace the lowest D & C recursion levels

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA X

Overall performance improvement:



ScaLAPACK pdsyevd: One-step reduction/back transform

+ (slightly) improved D & C

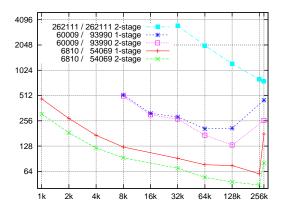
One-step ELPA one-step red/back transform + ELPA D & C

Two-step ELPA two-step red/back transform + ELPA D & C

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA XI

Scaling to very large numbers of cores:



The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Improvements with ELPA XII

Status of the methods:

	parallel	ELPA-Lib	FHI-aims
ELPA one-step red + back transform		×	auto
reduction full-banded + back		×	auto
reduction banded-tridiag + back		×	auto
ELPA D&C partial		×	×
MRRR	×		

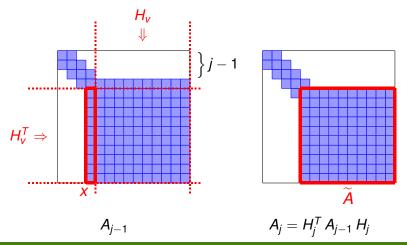
More information and software:

http://elpa.rzg.mpg.de/

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Efficient tridiagonalization I

One-step reduction, step *j* (i)



The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Efficient tridiagonalization II

One-step reduction, step *j* (ii)

$$\widetilde{A} := H_v^T \cdot \widetilde{A} \cdot H_v = (I - v \delta v^T)^T \cdot \widetilde{A} \cdot (I - v \delta v^T) = \widetilde{A} - v w^T - w v^T$$

with

$$w = z - \frac{1}{2} v \underbrace{\delta v^T z}_{\in \mathbb{R}}, \quad z = \widetilde{A} v \delta.$$

Therefore

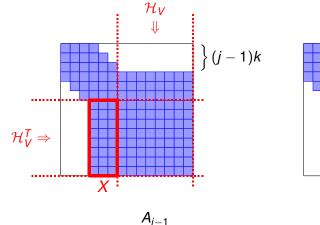
- 1. Determine v and δ
- 2. Compute $z := \widetilde{A}v\delta$
- 3. Compute $w := z \frac{1}{2} v \delta v^T z$
- 4. Replace \widetilde{A} with $\widetilde{A} vw^T wv^T$ (can be blocked)

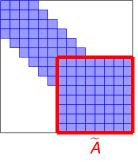
Reduces 1 column/row at a time, 50% BLAS 3, 50% BLAS 2.

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Efficient tridiagonalization III

Reduction to banded form, step *j* (i)





 $A_j = \mathcal{H}_V^T A_{j-1} \mathcal{H}_V$

The project Algorithmic paths for eigenproblems Improvements with ELPA Efficient tridiagonalization

Efficient tridiagonalization IV

Reduction to banded form, step *j* (ii)

$$\widetilde{A} := \mathcal{H}_{V}^{T} \cdot \widetilde{A} \cdot \mathcal{H}_{V} = (I - V \Delta V^{T})^{T} \cdot \widetilde{A} \cdot (I - V \Delta V^{T}) = \widetilde{A} - V W^{T} - W V^{T}$$

with

$$W = Z - \frac{1}{2}V \underbrace{\Delta^T V^T Z}_{\in \mathbb{R}^{k \times k}}, \quad Z = \widetilde{A}V\Delta.$$

Therefore

- 1. Determine V and Δ (QR decomp of *j*-th block column)
- 2. Compute $Z := \widetilde{A}V\Delta$
- 3. Compute $W := Z \frac{1}{2} V \Delta^T V^T Z$
- 4. Replace \widetilde{A} with $\widetilde{A} VW^{T} WV^{T}$

Reduces k columns/row at a time, almost completely BLAS 3.

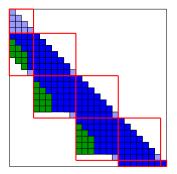
Blocked reduction of banded matrices Out-of-core reduction Split reduction Iterative solvers

Beyond the basic ELPA-Lib

Eigenvalue Solvers-The ELPA Project and Beyond, Bruno Lang

Blocked reduction of banded matrices Out-of-core reduction Split reduction Iterative solvers

Blocked reduction of banded matrices



- ▶ Reduction $b_1 \rightarrow b_2$ eliminates $n_b \le b_2$ columns per sweep
- ► Allows using BLAS 3 ⇒ much faster than direct tridiagonalization

Blocked reduction of banded matrices Out-of-core reduction Split reduction Iterative solvers

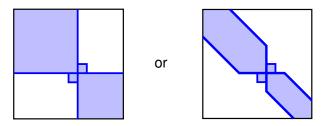
Out-of-core reduction

- Allows reducing of matrices of size n ~ 100 k on standard workstations (4 GB main memory),
- $n \sim 500$ k on workgroup shared-memory server.
- ► Performance at least competitive with in-core LAPACK, but complexity remains O(n³).
- Similar technique also available for banded matrices (*n* ∼ 2 M on workgroup server), complexity *O*(*n*²*b*).

Blocked reduction of banded matrices Out-of-core reduction Split reduction Iterative solvers

Split reduction

Substantial savings for **sparse** matrices if they can be reordered as



Blocked reduction of banded matrices Out-of-core reduction Split reduction Iterative solvers

Iterative solvers

- Under investigation
- Not yet [?] competitive in the situations considered