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Outline

First principles molecular dynamics: basic ideas

e Electrons, nuclei and the Born-Oppenheimer approximation
e First-principles molecular dynamics on the Born-Oppenheimer surface
e Car-Parrinello molecular dynamics of electrons and nuclei

e Statistical mechanics and molecular dynamics
Applications and special techniques in molecular dynamics

e Solvents: structure and electronic properties
e Phase transitions: thermodynamic quantities

e Diffusion in semiconductors: microscopic picture and transport coefficients



Born-Oppenheimer approximation revisited

Many particle Hamiltonian

.1 2125 ! i
N y 4 o

7 7

Ar A ({R})
Many particle wave function: ¥ ({R;},{r;})

Adiabatic motion of electrons

e Mass of nuclei and electrons: Mj;/me ~ 1830 (hydrogen) 10000 (semiconductors)
fast motion of electrons compared to nuclei

e Ansatz for ¥ reflects that electrons adiabatically follow the nuclei

W ({Rr},{ri}) = x {Rr}) - ({ri}; {R1})

NV . NV
nuclei electrons




The Born-Oppenheimer surface

Schrodinger equations within the adiabatic approximation

A, ({(R}) o, ({r} i {Ra}) = B ((Re}) v, ({ri} s {Ra))
v {Hr+ B (RD | X (IR = {Buw 1} X (R 9 (1} {R1D)

In most cases the non-adiabatic coupling H,, is negligible

Born-Oppenheimer surface

Potential energy surface of the nuclei
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Molecular dynamics on the Born-Oppenheimer surface

First principles molecular dynamics

e Full quantum mechanical treatment of nuclei is expensive

e Nuclei are treated as classical particles

e Forces are obtained from the instantaneous many electron ground state
e Many electron ground state is described by density functional theory

Equations of motion

MRy = 2 EBO ((ng), (Ry})
fixs ({Rr}) ¢55(x) = &, 55 (x)
where ng(r) = 37, . [6:°(r)|* and with [ ¢;°(r)* ¢35 (r) dr = &y
Literature:

e M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias and J. D. Joannopoulos, Rev. Mod.Phys., 64
(1992) 1045



Molecular dynamics on the Born-Oppenheimer surface

Constant of motion

1 .
Eiot = 2 ;MIR% T E(])BO ([nO]a {RI})

Forces between nuclei

_d %, 3, 055" Ono(r)
Fr =~ BB (ol {R.) = 50 ES ﬂno]a{Rz}Z‘f T Snr) ORs
F}ﬁF F?’ula}:_F}/ar

e straight forward evaluation in plane wave basis set for semiconductors (F;, " = ()

e as FY % ~ o(dn(r)), when §EEC ~ o(dn(r)?) a high accuracy for n(r) is needed.

e for metallic systems due to Fermi occupation additional forces appear (usually
small if T is small), which are in most cases computationally expensive. When
using FJ'F alone Eyo — 2T¢1Sel is the constant of motion.

Literature:

e F. Wagner, T. Laloyaux, and M. Scheffler, Phys. Rev. B, 57 (1998) 2102.



Molecular dynamics on the Born-Oppenheimer surface

Numerical task: solve the initial value problem for a system of Newtonian equations

Computational scheme

0. start with initial set of positions {R(to)} and velocities {V(to)}

for each time tg + m 6t during the simulation
1. solve the Kohn-Sham equations for {R(to + (n — 1) 6t)} and calculate forces
2. integrate the equation of motion for nuclei to obtain {R;} and {V} at to + n dt

repeat 1. and 2. till the end of the simulation

Common integration schemes:

e Verlet algorithm and predictor-corrector schemes
e one evaluation of forces per time step 0t is sufficient

Literature:

e M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, Claredon Press, Oxford, 1987.
e M. E. Tuckerman et al., J. Chem. Phys., 97 (1992) 1990.



Molecular dynamics on the Born-Oppenheimer surface

Verlet algorithm

Fj(t)
M
3Rj(t) — 4R1(t — 5t) -+ RI(t — 2 5t)
20t

Ri(t + 6t) = 2R;(t) — Ry(t — 8t) + 5t* 4+ O(8tY)

Vi(t) = + O(5t°)

obtained by Taylor series expansion of R;(t 4+ dt) and R;(¢t — 6t) at ¢.

Velocity Verlet algorithm

Fi(t F(t F(t+ 5t
®) 5t and Vi(t+6t) = Vi(t)+ 1) 5y EIEF D) o)

I
R, (t+5t) = R/ (¢)+ V(¢
1(t+9t) 1(t)+ I()+2MI 2 M; 2 M,

Properties of the Verlet algorithm:

e time reversible second order scheme
e for large time steps ot strong fluctuations in the constants of motion appear



Molecular dynamics on the Born-Oppenheimer surface in

practice
Choosing the time step
Example: vibration of a Asy dimer
A52
E .t = 30Ry, vgqr = 12.225THz, ag = 3.969 Bohr
Verlet pc 4th./6th. order
ot [ period | || 0.029 | 0.089 0.18 0.029 | 0.089 | 0.18
Viyn [THZ] 12.16 | 1229 | ~ 12457 | 12.18 | 12.11 | 11.96

Trajectory as obtained with Verlet algorithm is less accurate for large time steps

Efficiency vs. time step

Asy-dimer Verlet pc 4th./6th. order

ot [ period | 0.029 | 0.089 | 0.18 || 0.029 | 0.089 | 0.18
el.lter. /ionic step | 12.4 13.3 | 13.9 19.6 29.4 32.2
el.lter/period 4275 | 149.4 | 77.2 || 675.8 | 341.8 | 178.8




Molecular dynamics on the Born-Oppenheimer surface in

Drift in the constant of motion

e convergence of Forces |0F;|/|F|

e time step ot

e behaviour of integration schemes
— Verlet: fluctuations + small drift
— Predictor-Corrector: drift only
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Car-Parrinello molecular dynamics
Key idea

e Introduction of an artificial coupling between electrons and nuclei
e Kohn-Sham orbitals ¢;(r) are treated as classical degrees of freedom
e Kinetic energy of the new degrees is defined using an arbitrarily chosen mass u

Extended lagrangian

Lor =5 MR+ Y [ 165P d*r — Bis ({61 {Ra)

+ Z Aij (/ gb,fis*qbiis d3’l“ — (51])

1,0CC
orthogonality constraint: [ gb,f{S*qb;{S dr = &;;
Literature:

e D. K. Remler and P. A. Madden, Mol. Phys., 70 (1990) 921.
e G. Pastore, E. Samargiassi and F. Buda, Phys. Rev. A, 44 (1991) 6334.



Car-Parrinello molecular dynamics: equations of motion

Equations of motion

MRy = _9Bks (11971 {Ra)) and S = 9Bk ([ 4L (Rab) > AdkS

OR KS
HF -
Fi Hygg X5 (r)

Constant of motion in CP dynamics

Econst — %;MIR% T X Z / |¢£{S‘2 d37“ +EKS ([{gbf{S}]? {RI}>

7,0CC
_J/

additional kinetic energy

|dea:

e for small 1 adiabatic decoupling is achieved = true MD trajectories are obtained



Car-Parrinello molecular dynamics: interpretation

Interpretation of CP molecular dynamics

assume nuclei are at rest, i.e. Ry =0

Es{Wi]

no damping Yo Y

Full dynamics

Evolution of

H Zi,occ / |¢£<S|2 d’r
and

% ZI MIR% +
Exs ([{¢£<S}] , {R1})

0.00015

0.0001 |

Es[{®l]

LHBO " with damping

Classical and fictitious kinetic energy

kinetic energy - i




Car-Parrinello molecular dynamics: adiabaticity

Restrictions for mass u

e Oscillatory motion of Kohn-Sham orbitals is given by i and egap (adiabatic limit)

€Gap
14

EGap 15 the Kohn-Sham energy gap between highest occupied and lowest unoccupied state

e Adiabatic decoupling between nuclei and Kohn-Sham orbitals
— Electrons are close to the BO-surface:

y Z/Mﬁ(sf d’r < %ZM&@?—I— Fxs ([{¢£<S}] ’{RI})

1,0CC

— Kohn-Sham orbitals should oscillate faster than nuclei (phonons)
wfb,lfs > Whuclei

— No energy transfer between nuclei and Kohn-Sham orbitals:

m Z/|g.b£<s|2d3r ~ const

2,0CC



Car-Parrinello molecular dynamics in practice

choice of the time step:
Systems with a large energy gap cgap allow for a larger mass p1 and time step

At ~ 1/w¢£<5 ~ 11/ €Gap

Low drift in constants of motion:
oscillatory motion of electrons allows for a small drift in Ecp.

system with a small gap:
A small gap requires a small mass 1 and hence a small time step

However, a failure in adiabaticity is reduced by thermostats (P. Blochl and
M. Parrinello Phys. Rev. B, 45).

Metallic systems:

Kohn-Sham orbitals {¢£<S} do not correspond to eigenstates, hence occupation by
a Fermi-distribution is not suitable.



Comparing the first principles approaches

Molecular dynamics on the Born-Oppenheimer surface

efficient as it allows for a large time step
no additional parameters to guarantee adiabaticity

+ 4+ +

efficient even for small gap systems, metallic systems
drift in the constant of motion (i.e. Eq¢)
inefficient, when convergence is an issue

Car-Parrinello molecular dynamics

+ negligible drift in the constants of motion

+ efficient when force evaluation is inexpensive

- less suited for metallic systems

- inefficient for small gap systems and when level crossings occur



The Nose-Hoover thermostat

Microcanonical ensemble

* closed system

* constant energy

Canonical ensemble

* energy exchange with a reservoir

* constant tem perature

e®0 00 _o0 00
REARIRETY;
P :_._._._._ 9?. ...:.I

000,00 0 000,°
09,0 %040 00,0
® 0 0% 000,

Small systems:

e microcanonical ensemble averages # canonical ensemble averages

Nosé-Hoover thermostat:

e allows for simulations within the canonical ensemble

e corrects for a drift in the energy as a side effect



Nose-Hoover thermostat: The extended system

Additional degree of freedom xR simulates heat bath:

d? 0 d

Mr—R; = ———FEo(1R — MrVri—
T R, o({Rs}N) I Idt-?UR
d? 5
Q—dt2a:R = §I M V37— gkpTey

and the constant of motion

1 1 d 2
Et,;ot = Z ) M V? + Eo({RJ}n) +§ Q <E$R> + g kBT oxt TR
I

\ . 7

~—
Etot

e Nose-Hoover thermostat simulates a canonical ensemble
e Choice for the extended system is unique
e Thermostat parameters () (thermostat mass) and g = 3 N (degrees of freedom)

Literature:

e S. Nosé, J. Chem Phys., 81 (1984) 511.
e W.G. Hoover, Phys. Rev. A, 31 (1985) 1695.



Statistical averages from the ergodic hypothesis

Calculation of averages (Ergodic hypothesis):

(A{P1, Rrin)) = lim TA({PI(t),RI(t)}N)dt

T—00 T 0

! / AP, Ra()} ) dt

7

Q

for a sufficiently long simulation time 7.
Example: Average kinetic energy and higher order moments:

<Ekm>—<2—vf>—ﬂkBT and (Bf)e = (Biin — (Baa))™) = = (knT)"

used to test the choice of the thermostat mass () and the simulation time 7



The thermostat mass ()

e () determines motion of the thermostat and coupling to the system
e characteristic time in the weak coupling:

B Q
T = 27 | ———
6N kgT

Example: GaAs 64 atoms at T=1400 K

phonon time scale: vro = 8.8 THz — 0.1ps and vx7a = 2.5THz — 0.4 ps
Simulations for different Q):
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Statistical ensemble techniques: overview

General approach

e additional degrees of freedom simulate heat bath or applied pressure

e modified equations of motion are solved for given external variables

e thermodynamic quantities in the desired ensemble are obtained from time averages

e but: actual trajectories are only relevant on a time scale below the interaction time
with additional degrees of freedom

Examples:

e constant pressure dynamics: H. C. Andersen, J. Chem. Phys., 72 (1980) 2384.
e Parrinello-Rahman method: M. Parrinello and A. Rahman, Phys. Rev. Lett., 45

(1980) 1196.
e canonical ensemble: Nosé-Hoover thermostat



Application of Molecular dynamics

Applications

e Structural properties of liquids
e Phase transitions
e Diffusion in semiconductors

Special simulation techniques
e Spatial and time correlation functions

e Free energies and thermodynamic integration
e Rare events and the blue moon ensemble



Example: Structure and properties of liquids

Water above the critical point

(M. Boreo et al. Phys. Rev. Lett., 85 (2000) 3245)

Critical point:

T =647TK P =22.1MPa and p=0.32g/cm’

Structure

e pair correlation function

1 N _ 3.
() = — / (n(B)n(r — 7)) d*F

e Coordination number

N, = 4r / g(r)r’dr
0




Example: Structure and properties of liquids

Local bonding 'Y | A—

o
r

e Liquid water: only linear H bonds (a) form
e sc water: a large fraction of unbonded molecules (a) (b)
e 1%-3% of H bonds are of type (b)-(d)

Distribution of dipole moments

local dipole moments are calculated by maximally
localised Wannier function and Wannier function

centres technique (N. Mazari and D. Vanderbilt,

Phys. Rev. B, 56 (1997) 12847)

3.0

(a) p=0.32g/cm’ 5200
(b) p =0.73 g/cm’ =
(c) liquid water ?‘:1_0_

0.3 2.0 2.5 30 35 4.0

molecular dipole moment (D)




Example: Structure and properties of liquids
IR-spectra of liquid water

(P. L. Silvestrelli et al. Chem. Phys. Lett., 277 (1997) 478)

Infrared adsorbtion coefficient

_ 4mtanh(hw/2 ET)

o(w) = T R / dt exp (—uwt) (M(£) - M(0))

where M is the total dipole moment, n(w) the refractive index, ¢ the speed of light and V' is the
volume.

Electronic contribution to dipole moment from berry phase R. D. King-Smith
D. Vanderbilt, Phys. Rev. B, 47 (1993) 1651

and

2
Mfl = % (b;) with ¢(b;) =SIndetS and S, = (Y| exp —1b; - r|1)y,)

where b; are the reciprocal basis vectors and : = 1,2, 3



Example: Structure and properties of liquids

Calculated IR-spectrum

@ 5000

afo)n(w) ccm™h

0 e e e ek ; R . TR 1
0 200 400 600 800 1000
w (em™)



Example: First order phase transtion
Melting of silicon
(O. Sugino and R. Car, Phys. Rev. Lett., 74 (1995) 1823)

First order phase transition occurs if chemical potentials coincide

A,usolid(T'a P) — A,uliquid(T'a P)

reservoir
Task: p~—kT In [ dQdP exp (—H/EkT)

Thermodynamic integration:

H()\) — >\H1 + (1 — )\)Hreservoir

1 1 H 1
A,LL = 8—’u d)\ = / <8 ()\)>)\ d\ = / <H1 - Hreservoir>)\ d\
0 0

O\



Calculated properties of the phase transition

Example: First order phase transtion

e simulation in a canonical ensemble with constant pressure (Nosé-Hoover and Andersen techniques)

e ensemble averages are obtained as time averages by slowly switching from A =0to A =1

Chemical Potential (eV/atom)

-0.9

0 Salid
A Liquid

'0.0020406081.01.21.4 16 1.8 2.0

Temperature (X 1000K)

Ay — 1/T(H = )dA
H = T 0 1 reservoir dt

dt

TABLE I. Thermodynamic properties at the theoretical and at
the experimental melting point.

This work (LDA)

- Experiment

T (K)
Ss
Si
H, (eV/atom)

1.35(10) X 10°
6.9(1)kp

9.9(2)kz

H,(0 K) + 0.33(2)

1.685(2) X 10°2
7.4kg

11.0kg’, 10.7kg
H,(0 K) + 0.41°

AH,, (eV/atom) 0.35(2) 0.52°, 0.47¢
C, (eV/K atom) 3.0(4) X 107* 3.03 X 10744
C; (eV/K atom) 2.7(4) x 10™* 3.03 X 1074
V, [(a.u.)?/atom] 1.350(5) X 10? 1.380 X 10%2
AV )V, 10(1)% 11.9%°, 9.5%°
a, (K71 0.3(1) X 1075 0.44 X 1075
o (K1) 4.8(5) X 1073 5.2 X 10734
dT,,/dp (K/GPa) —50(5) -38*

*Ref. [23].

bRef. [24].

°Ref. [25].

4From Ref. [4].
¢Ref. [26].



Example: Diffusion in semiconductors

Gallium self diffusion mediated by vacancies

(M. Bockstedte and M. Scheffler, Z. Phys. Chem.,200 (1997) 195)

Microscopic picture of diffusion:
e Mechanism of vacancy diffusion

(1) nearest-neighbour hops
(2) second-nearest-neighbour hops

e Contribution to the gallium self diffusion

Molecular dynamics simulations (T=1700 K)

(1) nearest-neighbour hops (2) attempted second-nearest-neighbour hop

ey . 8D

® . F2




Example: Diffusion in semiconductors

Diffusion and rate processes

Migration barrier E,,, determines timescale of diffusion:
E, < 4kBT Em ~ 10 kBT

ey NN

Diffusion constant:

1 2 —ln 2
D = —((R(1) - Ro)*) D=_nTd

Em

for a large simulation time t with the hopping rate I' ~ ¢ *BT



Example: Diffusion in semiconductors
Reaction coordinates and potential energy surfaces

e potential energy surface depends on many coordinates { R; } n
e only a few coordinates discribe the hop

Reaction coordinate ¢ (c.f. C H Bennett 1975 and 1977):

e reaction coordinate determines the migration path
Ri(A) = R(&a) and  Ri(B) = R({B)
e potential energy has a local minimum for each value of £ is at the path

E@) = p,min | PAR}N)



Example: Diffusion in semiconductors

Transition state theory (Vineyard 1957):

_U({R;})

I . IA—>B . k‘BT fSPe "B 1 dS
ST o, Vx| _UdR)

fAe kBT dBNR

Blue moon ensemble for the calculation of rare events (Carter et al 1989):

e probability density P(&) = (§(& — £T)) is the key quantity:

=

P(§) = (5(6 — €0) = Cexp ( - and [ P& dg =1

e P(¢) and V(&) do not represent an ensemble average, but

((OE(&,{R, V})/0& — kgT 91n|J|/0€) (€ — £7))

O ey — 1o 5o ety —
56V (©) = —knT g (5(¢—€h) o)



Example: Diffusion in semiconductors

Blue Moon Ensemble for Calculation of Rare Events

e P(£) and V(&) are calculated from 9V (£)/0& by integration

e Evaluate OV (&)/0¢ by molecular dynamics with constraint:
Problem: constraint §(¢ — £T) implies 06 /0t = 0
Solution: introduce statistical weights to exactly compensate for 9¢/0t = 0

(A6, {R, V)£ —€) _ (1Z]7% A(€, {R,, Vi}))et
(6(6 —€1)) (1Z]72) 1

Statistical weights |Z|: |Z| = ZZMLZ 8¢ /OR,;|?



Example: Diffusion in semiconductors

Gallium self-diffusion constant

Q(pr) — AM(T)))

DGa = DO exp (— kBT

1
Dy = gnlatd2f(] F%Ga exp (Sp/ks)
Reservoir Asy-Gas: Ap = Aeag — T Asas

b=y (52) () ()
0= F0 P T latm 208 K

typically P ~ 1 atm and T' ~ 800 K — 1500 K

VOGa: l~70 = 0.8 —1.0cm?s~!
Vé_a: Doy =2.5—3cm?2s™ !




Example: Diffusion in semiconductors

Self diffsuion constant: as calculated from rate constant and free formation energy

e Calculation

__Q
Dga = (0.8 —3)cm?s te BT i
with Q = 4.0eV-3.0eV 10 °F
F
e GaAs/GaAlAs-heterostructures: 10 °F

T'l_l
— Tan and Gosele (1988): >
S 3
_6eV. o, 10
Dga =2.910% e *8T cm?®s™! E:
— Bracht et al (1999): -

_3.7eV . 10 1 .
AloGaiAs: Dg, = 0.6 ¢ "BT cm®s | Bracht et al 1999 \.\
10—24 F Wang et al 1996 R\
e |sotope-heterostructures Tan und Gosele 1988
] ! ] ! ] ! ]
— Wang et al 1996: 0.6 0.8 {-10 1.2
426V 1000/T [K 7]

Dg, = 48 e F#BT cm?s !



Summary

First principles molecular dynamics
Molecular dynamics on the Born-Oppenheimer surface

Car-Parrinello molecular dynamics

Simulation techniques

— Canonical ensemble: Nosé-Hoover thermostat
— Thermodynamic properties: phase space averages and free energies
— Rare events: blue-moon ensemble

Applications of MD-techniques

— Solvents: pair correlation and adsorbtion spectra
— Phase transitions: thermodynamic properties
— Diffusion in semi conductors: diffusion mechanisms and transport coefficients



