

(Atomistic) Challenges in Predictive Process Simulation

innovations for high performance microelectronics

Jarek Dąbrowski IHP, Im Technologiepark 25, 15236 Frankfurt(Oder), Germany

(Figure from Asen Asenov's lecture, ChiPPS'2000)

SUBJECTS

• Technologies:

Mainstream technology is CMOS Other (III-V, SiC...) not covered here

• Main issues:

Dopant profile Life time of transistors Gate oxide material CONTEXT: Miniaturization and power consumption

- Introduction to CMOS MOS transistor and its key parameters CMOS technology The Roadmap: how CMOS will evolve
- Atoms in front-end process simulation Granular distribution of charges Mechanism of dopant segregation (FHImd example)
- Atoms in reliability simulation Gate leakage and predictions of MOS life time Mechanism of SiO₂ breakdown (FHImd example)
- Atoms in new materials for CMOS High-K dielectrics for gate oxides TMO/Si(001) and REO/Si(001) interfaces (FHImd example)
- Summary and conclusions

MOS TRANSISTOR: WORKING PRINCIPLE

Each technology generation has the same relative dimensions

CMOS (CMOMPLEMENTARY MOS) PROCESS

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com cmos-process.ps

© – All rights reserved

CMOS MATERIALS

• Substrate

Silicon, because it's cheap and it works Si(001), because they know how to handle it

•Front end (active device)

Donors: P, As, maybe Sb Acceptors: B, maybe In Gate oxide: SiO₂ (nitridized), soon high-K (unspecified) Gate: poly-Si, maybe poly-SiGe, metal stack for high-K

•Back end (interconnects)

Contacts: TiSi₂, CoSi₂, WSi₂ (gate) Interconnects: AI:Cu, Cu Interlevel insulator: SiO₂ doped with F, H, or/and C Diffusion barriers / etch stops: TiN, WN

• Thermal budget

Materials and structures must survive high temperatures: Front-end processing: some seconds around 1000°C (RTA) Back-end processing: stays below 600°C

SHRINKING DIMENSIONS

[1] International Technology Roadmap for Semiconductors (2000 update), http://public.itrs.net

SPEEDING ON THE ROAD

- Dopant activation: concentrations above solubility How to achieve maximum concentration? NEEDED: understanding of the activation process
- Dopant profile formation: short annealing times How to simulate nonequilibrium processes? NEEDED: Atomistic reaction paths
- Statistics of dopant distribution: few dopants in channel How to compute statistical variations of transistor parematers? NEEDED: Interaction of dopants on atomistic level
- SiO₂ gate dielectric: few atomic layers only Does high leakage current kill the oxide? NEEDED: Mechanism of oxide breakdown
- SiO₂ gate dielectric: t_{ox} cannot be reduced below ~2nm Suitable replacement needed (TM or RE oxide) NEEDED: General understanding of high-K dielectrics

- Old thinking: continuous distribution of charges Detailed atomistic mechanisms needed occasionally Good if dimensions are larger than about 100 nm
- New thinking: granular distribution of charges Detailed atomistic mechanisms will be needed Necessary if dimensions smaller than about 50 nm
- Agenda
 - Effects of granularity on transistor parameters [1] Mechanism of dopant segregation [2]

[1] A. Asenov, in "Challenges in Predictive Process Simulation", Springer (to be published) [2] J. Dąbrowski, V. Zavodinsky, R. Baierle, M. J. Caldas, in preparation

FLUCTUATION OF MOSFET PARAMTERES

• 50nm \times 50nm transistors: "identical" devices are very different

A. Asenov, in "Challenges in Predictive Process Simulation", Springer (to be published)

HOW ATOMS CHANGE THRESHOLD VOLTAGE

50 nm x 50 nm transistors, 170 dopant atoms

A. Asenov, in "Challenges in Predictive Process Simulation", Springer (to be published)

SEGREGATION: DOPANT STATISTICS UNDER OXIDE

hp

J. Dąbrowski, H.-J. Müssig, R. Baierle, M. J. Caldas, V. Zavodinsky, JVSTB 18, 2160 (2000)

• Most of the segregation is due to imperfect oxidation

• Now we have:

Atomic-scale description of the segregation process Boundary conditions for simulation of dopant distribution

• Valid for all concentrations of donor atoms

DIFFUSION OF DANGLING BONDS

DOPANT PROFILES: SUMMARY

• "Decanano" regime: Charge granularity counts Atomistic simulators exist [1] Microscopic data incomplete

- Example 1: MOSFET parameter fluctuations, 50nm x 50nm device Drain current fluctuations reach 200% Threshold voltage fluctuations reach 10% Consequences: Non-uniform leakage, local failures, power loss
- Example 2: Dopant segregation to SiO₂/Si(001) interfaces Most of segregation due to imperfect oxidation Surface steps are natural segregation sites Consequence: Dopant distribution affected by local roughness Remark: Dangling bonds are quite mobile in SiO₂

^[1] M. Jaraiz et al, "DADOS simulator", Mat. Res. Soc. Symp. Proc. 532 (1998) p.43

RELIABILITY: HOW LONG CAN AN OXIDE WORK?

- Leakage changes exponentially with t_{ox} Supply voltage cannot be too low Electrons create damage in SiO₂ Is this a problem or not?
- Reliability predictions

In 10 years, only 100 parts in a million may fail Life time cannot be measured under MOFSET working conditions! Measurement: test oxides are electrically overstressed Extrapolations over orders of magnitude must be done Breakdown models needed, the existing ones are uncertain

• Example:

Conteporary predictions of reliability SILC concept Breakdown mechanism Which defects may be responsible? (FHImd, [1])

J. Dabrowski, P. Gaworzewski, T. Guminskaya, A. Huber, in preparation

RELIABILITY OF GATE DIELECTRICS

•State-of-the-art SiO₂ gate oxides may fail too early...

[1] Stathis and DiMaria, 1998 IEDM Technical Digest, p. 167

STRESS INDUCED LEAKAGE CURRENT

J. Dąbrowski, P. Gaworzewski, T. Guminskaya, A. Huber, in preparation

MECHANISM OF OXIDE BREAKDOWN

CAN DAMAGE PROCEED IN THIS WAY?

Step 0: SiH bond, neutral

Step 1: released H builds OH, DB⁺

 $E_{A} + 2.6 \, \mathrm{eV}$

- Gate leakage increases exponentially with decreasing t_{ox} New CMOS generations may suffer from reliability problems [1]
- Reliability is difficult to predict Physical models of dielectric breakdown are needed [2]
- Example: Microscopic sequence of breakdown process [3] SILC measurements and FHImd calculations Hydrogen + current + high electric field = mixing of Si and SiO₂: 1. AHI activates hydrogen to Si-H⁺
 2. tunneling electron + Si-H⁺ = Si-OH + Si_{DB} (TAT)
 3. AHI activates OH to Si-OH⁺
 4. tunneling electron + SiSi-OH⁺ = Si-H + O-O
 5. Si_{DB} recombine, forming Si-Si paths for current (or TAT)
 6. O⁻ diffuses into the anode and oxidizes the substrate CONCLUSION: Reduce Si_{DF}/O⁻ mobility = increase oxide lifetime

^[1] J. H. Stathis, Proc. IEEE 39'th Annual Internat. Reliability Phys. Symp, p. 132 (2001)
[2] International Technology Roadmap for Semiconductors (2000 update), http://public.itrs.net
[3] J. Dąbrowski, P. Gaworzewski, T. Guminskaya, A. Huber, in preparation

NEW MATERIAL: ALTERNATIVE GATE DIELECTRIC

- SiO₂/Si₃ N₄ phased out around year 2005 Growing reliability problems Unacceptable leakage SiO₂ interface layer tolerated till year 2014
- Solution?

Design rules $\Rightarrow C_{ox} \Rightarrow$ (film thickness) ~ (dielectric constant K) SiO₂ has K ~4 Gate dielectric with 20 < K < 40 is optimal Leading candidates: TM and RE oxides (ionic compounds)

• Requirements:

Thermal stability (must survive some secs at 900°C) Good growth on Si(001); CVD strongly preferred No strange chemistry! Reasonably etchable, insoluble in water Band offsets sufficient to block leakage Interface state density comparable to SiO₂/Si(001) HIGH-K MATERIALS AND AB INITIO CALCULATIONS

- Ab initio studies are expected to: Provide insight needed in design of deposition techniques Give early warning about reliability problems
- Several groups are active Motorola, Phoenix, AZ Stanford University, Stanford, CA IHP, Frankfurt(Oder), DE
- Example: Hf and Pr oxides on Si(001) surfaces (FHImd, [1]) Bulk oxides: atomic and electronic structure Interfaces to Si(001) and bonding incompatibility

^[1] J. Dąbrowski, V. Zavodinsky, H.-J. Osten, A. Fissel, in preparation

TM and RE dioxides: fluorite structure

J. Dąbrowski, V. Zavodinsky, A. Fleszar, Microelectronics Reliability 7, 1093 (2001)

SUBSTRATE RECONSTRUCTION

Si(001) 3x1 substrate

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com highk-MO2ideal.ps

BONDING INCOMPATIBILITY

Stoichiometric dioxide surface: ionic, no electrons to share

Si(001) 3x1 surface: covalent, many electrons to share

DIOXIDES: INTERFACE CHARGE TRANSFER

•Thumb rules for oxygen charge collected from metal atoms: The charge is -2 when all O neighbors are metal The charge tends to be -1 when one O neighbor is silicon

Fundamental structure of the interface Each interface O collected 1 electron Excess electrons forced into CB

Interface enriched in oxygen Some interface O collected 2 electrons Excess charge trapped

Pr OXIDES: CUBIC STRUCTURES

SEQUIOXIDES: INTERFACE CHARGE TRANSFER

O vacancy at the interface filled 2 electrons in CB Charge transfer from Pr to O: -4

Si dimer oxidized, O_V in film filled Energy gap Charge transfer from Pr to O: -6

NITROGEN: INTERFACE DIPOLE CONTROL

HEXAGONAL Pr₂O₃: WEAK DIPOLE MOMENT

- •Thumb rules for oxygen charge collected from metal atoms: O⁻² when all neighbors are Pr O⁻¹ when one neighbor is Si

Bulk dipoles and surface charge

Interfacial O can compensate charge loss

-2

- •Two different phases observed in XRD: Cubic (red lines) Hexagonal (black lines)
- •Core level peaks of Pr and O shift from hexagonal to cubic Shift in the same direction Shift by the same amount The shift is consistent with the interface models

- Gate leakage increases exponentially with decreasing t_{ox} SiO₂ gate oxide phased out by the year 2005 (L=65nm) [1] SiO₂ interface layer tolerated till the year 2014 (L=35nm) [1] New gate dielectric will have high dielectric constant K (30-40) [1]
- Industry DOES NOT KNOW what high-K material will be used Intensive materials science research is needed [1]
 - Dielectric properties of thin films? (K, reliability)
 - Electrical properties of interfaces? (charge traps, band offsets)
 - Interface SiO₂ layer formation?
 - Thermal stability?
- Example: Hf and Pr oxides on Si(001) substrates (FHImd, [2]) Ionic/covalent interface ⇒ stoichiometric interface is metallic Composition changes ⇒ dipole changes ⇒ band offsets changes Understanding the interface allows process control (in-situ XPS)

^[1] International Technology Roadmap for Semiconductors (2000 update), http://public.itrs.net[2] J. Dąbrowski, V. Zavodinsky, H.-J. Osten, A. Fissel, in preparation

SUMMARY AND OUTLOOK

• Ab initio studies may contribute to CMOS miniaturization efforts Atomistic FEOL proces simulator with ab initio input already works

•We considered three groups of examples:

- 1. FEOL process simulation
- Charge granularity strongly affects MOSFET parameters (50 nm) FHImd example: Donor segregation to SiO₂/Si(001) interfaces
- 2. Oxide reliability predictions
- Breakdown mechanism needed for reasonable predictions FHImd example: Microscopic sequence of breakdown process
- 3. New material will soon replace SiO₂ as gate oxide Intensive materials science research is needed FHImd example: interfaces between Si(001) and Pr and Hf oxides
- 2000 IRTS on Modelling and Simulation Technology Requirements:
 - 2000: Model alternate dielectrics, gate oxide reliability
 - 2003: Interface interactions, extended defects, dislocations
 - **2003:** Reliability of interconnects (stress, electromigration)
 - **2008:** Mestastable activation, doping from solid sources
 - **2008:** Ab initio simulation of deposited material properties
 - **2011:** Computer egineered materials and process recipes

CREDITS

R. Baierle	Uni Santa Maria, Brasil; ab initio
E. Bugiel	IHP; TEM measurements
M. Caldas	Uni Sao Paulo, Brasil; ab initio
R. A. Casali	Uni Corrientes, Argentina; ab initio
A. Fissel	IHP; MBE deposition of Pr oxides, XPS
A. Fleszar	Uni Würzburg; GW and ab initio
P. Gaworzewski	IHP; SILC measurements
A. Goryachko	IHP; SIMS measurements
T. Grabola	IHP; Si oxidation
T. Guminskaya	IHP; SILC simulation and measurements
A. Huber	Wacker Siltronic; Si oxidation
K. Ignatovich	IHP; STM and AES measurements
D. Krüger	IHP; SIMS measurements
JP. Liu	IHP; MBE deposition of Pr oxides, XPS
HJ. Müssig	IHP; STM and AES measurements
HJ. Osten	IHP; MBE deposition of Pr oxides, XPS
P. Zaumsail	IHP; X-ray diffraction
V. Zavodinsky	IHP and IACP Vladivostok, Russia; ab initio
Calculations done	on Crav 13E cluster in Julich, project hfo06

Part of this work was sponsored by the DFG, project DA308