Application of Density-Functional Theory in Condensed Matter Physics, Surface Physics, Chemistry, Engineering and Biology, Berlin, 23 July - 1 August 2001

L4

Pseudopotentials for ab initio **electronic structure calculations**

Martin Fuchs

Unité PCPM, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

Key words & ideas

"Good news:" Chemical bonding, . . . determined by valence electrons

- core electrons matter only indirectly
 - removed within frozen core approximation

effect on valence electrons can be described by a potential

- ➡ "linearization" of core-valence interactions
- orthogonalization wiggles can be eliminated
 - \rightarrow smooth pseudo wavefunctions
 - \rightarrow weak pseudopotential
 - ➡ good efficiency with plane waves
- "pseudoization" should be independent of system atom → molecule → solid
 - ➡ transferable pseudopotentials

Norm-conserving pseudopotentials \Leftrightarrow approximate electron-ion interaction potentials

. . . work accurately & effectively (almost) for all elements, because

- bonding happens outside the core region of ions
- norm conservation constraint leads to physical electron density & valence band energies
- clever "recipes" achieve smooth potentials , fully separable potentials , . . . improved efficiency!

... are well controlled by proper construction and testing of the pseudopotentials

From full potentials to pseudopotentials

Atom- Calculate eigenstates \rightarrow solve the (radial) Schrödinger equation: $\hat{T} + \hat{V}^{AE} |\phi_i^{AE}\rangle = \epsilon_i |\phi_i^{AE}\rangle$

• pick an energy
$$\epsilon < 0$$
 and integrate
outward $rR^{\text{out}}(\epsilon; 0) = 0 \longrightarrow R^{\text{out}}(\epsilon; r) | r_{<} = 0 \dots r^{\text{match}}$
inward $R^{\text{in}}(\epsilon; \infty) = 0 \longrightarrow R^{\text{in}}(\epsilon; r) | r_{>} = \infty \dots r^{\text{match}}$
....outside classical turning point

• if logarithmic derivatives match . . . iterate ϵ until they do,

$$rac{1}{R^{ ext{out}}(\epsilon;r)} rac{d}{dr} R^{ ext{out}}(\epsilon;r) igg|_{r^{ ext{match}}} = rac{1}{R^{ ext{in}}(\epsilon;r)} rac{d}{dr} R^{ ext{in}}(\epsilon;r) igg|_{r^{ ext{match}}}$$

we get an eigenstate $R_{
u l}$ with eigenvalue $\epsilon_{
u l}$.

• Any potential $V^{\text{PS}}(r < r^{\text{match}})$ giving the <u>same</u> logarithmic derivative outside r^{match} gives the <u>same</u> eigenvalue

Pseudopotential = exact transformation of full potential

$$\hat{T} + \hat{V}^{\rm PS} |\phi_i^{\rm PS}\rangle = \epsilon_i |\phi_i^{\rm PS}\rangle$$

• $r>r^{ ext{match}}: \phi_i^{ ext{PS}}(\mathbf{r}) \propto \phi_i^{ ext{AE}}(\mathbf{r})$ what normalization ?

Solid: logarithmic derivatives ↔ boundary conditions

$$\begin{array}{ll} \underline{\text{core}} & \phi^{\text{core}} \to \sum c_{lm} R_l(r) Y_{lm}(\Omega) \\ \\ \underline{\text{interstitial}} & \phi^{\text{inter}} \to \sum c_{klm} j_l(kr) Y_{lm}(\Omega) \\ \\ \\ \text{Match} & \left. \frac{\frac{d}{dr} R_l(r)}{R_l(r)} \right|_{\substack{\epsilon \\ r^{\text{core}}}} = \left. \frac{\frac{d}{dr} \phi_l^{\text{inter}}(r)}{\phi_l^{\text{inter}}(r)} \right|_{\substack{\epsilon \\ r^{\text{core}}}} \end{array}$$

The pseudopotential is "weak" - cancellation theorem

- can bind valence states, but not core states
- in the core region the <u>potential</u> and <u>kinetic energy</u> contributions nearly <u>cancel</u>:

$$\int_{0}^{r^{\text{core}}} \bar{\phi}_{i}^{\text{AE}} \left[T + V^{\text{AE}} \right] \phi_{i}^{\text{AE}} d\tau \ll \epsilon_{i}$$

• the pseudopotential acts like¹

$$\hat{V}^{ ext{PS}} | \phi^{ ext{PS}}
angle = \hat{V}^{ ext{AE}} | \phi^{ ext{PS}}
angle - \sum_{ ext{core}} | \phi_c
angle \langle \phi_c | \hat{V}^{ ext{AE}} | \phi^{ ext{PS}}
angle ~pprox 0$$

¹ Philips, Kleinman, Phys Rev 116, 287 (1959); Heine, in *Solid State Physics*, Vol 24 (Academic, 1970)

Accuracy aspect: Norm-conservation

• Pseudopotential must be transferable, i.e. perform correctly in different environments

- \Re PS \simeq AE eigenvalues \leftrightarrow band structure & one-particle energy $\sum_{i}^{occ} \epsilon_i$
- \circledast electron density $\leftrightarrow~V^{\scriptscriptstyle\mathrm{eff}}\left[{\color{black} n};\mathbf{r}\right]$ and total energy
- If we impose

$$\phi^{ ext{PS}}_i(\mathbf{r}) = \phi^{ ext{AE}}_i(\mathbf{r}) \, | \, r > r^{ ext{core}}$$

proper electron density outside core

and norm conservation

$$\int_{0}^{r^{\text{core}}} |\phi_{i}^{\text{AE}}(\mathbf{r})|^{2} d\tau = \int_{0}^{r^{\text{core}}} |\phi_{i}^{\text{PS}}(\mathbf{r})|^{2} d\tau \quad \Leftrightarrow \quad \langle \phi_{i}^{\text{PS}} |\phi_{i}^{\text{PS}} \rangle = \langle \phi_{i}^{\text{AE}} |\phi_{i}^{\text{AE}} \rangle \equiv 1$$

• correct "total charge inside core radius" \Leftrightarrow proper electrostatic potential for $r > r^{\text{core}}$ • boundary conditions of AE and PS wavefunctions change in the same way with energy $\epsilon_i \pm \delta \epsilon$

 \Leftrightarrow

$$-\frac{1}{2}|\phi(\epsilon;\mathbf{r})|^{2}\frac{d}{d\epsilon}\left[\frac{\partial}{\partial r}ln\phi(\epsilon;\mathbf{r})\right]\Big|_{r^{\text{core}},\epsilon_{i}} = \int_{0}^{r^{\text{core}}}|\phi_{i}(\epsilon_{i};\mathbf{r})|^{2}d\tau$$

 \ldots over the width of the valence bands \rightarrow correct scattering properties

➡ PS wavefunctions change similar to AE wavefunctions

 $\circ~$ separately for each valence state $\rightarrow~l\text{-dependence}$

An example ...

Pseudopotential for aluminum ...

Accuracy aspect: Frozen-core approximation

core orbitals change with chemical environment too! Effect on total energy?

Total energy:

$$E^{\text{tot}}[n] \rightarrow E^{\text{core}}[n^{c}] + E^{\text{valence}}[n^{v}] + E^{\text{valence}-\text{core}}[n^{c}; n^{v}]$$

two step view: change valence density \rightarrow change effective potential \rightarrow change core density

- \blacktriangleright second order error $\int \Delta V^{c, \mathrm{eff}} \Delta n^c d au$
 - \ldots cancels out in total energy differences 1

¹von Barth, Gelatt, Phys Rev B 21, 2222 (1980).

Pseudopotential construction

Free atom: all-electron full potential \longrightarrow pseudo valence orbitals & pseudopotential

• Kohn-Sham equations for full potential \rightarrow eigenstates $\phi_i^{AE}(\mathbf{r}) = \frac{u_{\nu l}^{AE}(r)}{r} Y_{lm}(\Omega) \dots$ central field

$$\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V^{\text{AE}}[n^{\text{AE}};r] \right] u^{\text{AE}}_{\nu l}(r) = \epsilon^{\text{AE}}_{\nu l} u^{\text{AE}}_{\nu l}(r), \quad n^{\text{AE}}(r) = \sum_{\text{occ}} f_i |\phi^{\text{AE}}_i(\mathbf{r})|^2$$

▲ Relativity: Dirac → scalar relativistic → non-relativistic

▲ Full potential
$$V^{AE}[n^{AE}; r] = -\frac{Z}{r} + V^{H}[n^{AE}; r] + V^{XC}[n^{AE}; r]$$

.... XC in LDA or GGA: take same as in solid etc.

• Pseudo atom \rightarrow pseudo valence orbitals $\phi_i(\mathbf{r}) = \frac{u_l(r)}{r} Y_{lm}(\Omega)$

$$\left[-\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + \frac{V_l^{scr}[n;r]}{2r^2}\right]u_l(r) = \epsilon_l u_l(r), \quad n(r) = \sum_{occ} f_i |\phi_i(\mathbf{r})|^2$$

- . . . formally non-relativistic Schrödinger eq.
- . . . different for each valence state ightarrow l-dependent
 - → screened pseudopotentials $V_l^{\text{scr}}[n;r] = V_l^{\text{ion}}(r) + V^{\text{H}}[n;r] + V^{\text{XC}}[n;r]$

... pseudopotential construction

 $\begin{array}{lll} u_l(r) & \dots & \text{nodeless radial pseudo wavefunctions} \rightarrow \text{must} & \text{meet conditions} & \dots \\ \hline 0 & \text{same valence energy levels} & \hline \epsilon_l = \epsilon_{\nu l} \\ \hline 0 & \text{outside cutoff radius} & r_l^{cut} & \text{orbitals match} & u_l(r > r^{cut}) = u_{\nu l}^{\text{AE}}(r) \\ \hline 0 & \dots & \text{implies matching of logarithmic derivatives} & \hline \frac{1}{u(r)} \frac{d}{dr} u(r) \\ \hline 0 & \text{norm-conserving} & \langle \phi_l | \phi_l \rangle = \langle \phi_l^{\text{AE}} | \phi_l^{\text{AE}} \rangle = 1 \\ + & \text{constraints for good convergence} \\ V_l^{\text{scr}}(r) & \dots & \text{angular momentum dependent potential, regular for } r \rightarrow 0 \\ & n(r) & \dots & \text{pseudo valence density, what are } E^{\text{H}}[n], E^{\text{XC}}[n]? \end{array}$

→ pararametrize $u_l(r)$ and invert Schrödinger eq. $V_l^{\rm scr}(r) = \epsilon_l - \frac{l(l+1)}{2r^2} + \frac{d^2/dr^2 u_l(r)}{2u_l(r)}$

 \blacktriangleright final ionic pseudopotentials \rightarrow unscreening

$$V_{l}^{\text{ion}}(r) = V_{l}^{\text{src}}(r) - V^{\text{H}}[n;r] - V^{\text{XC}}[n;r]$$

Transferability

- compromise with needed <u>smoothness</u>
- needed accuracy $\sim \mathcal{O}(0.1 \dots 0.01 \text{ eV})$
 - electronic structure
 - cohesive properties
 - atomic structure, relaxation, phonons
 - formation enthalpies, activation energies, ...
- modifications
 - separable potentials (computational)
 - core corrections (methodic)
- \blacktriangle <u>new materials</u> \rightarrow GaN (with 3d or not), ...
- $\blacktriangle \text{ <u>new XC functionals } \rightarrow \text{GGA, } \dots$ </u>

Characteristic tests of PP at atomic level?

Test: Logarithmic derivatives

$$\left. D_l(r^{ ext{diag}},\epsilon) = rac{1}{R_l(\epsilon)} rac{d}{dr} R_l(r,\epsilon)
ight|_{r^{ ext{diag}} > r^{ ext{core}}}$$

norm conservation $\rightarrow D_l(\epsilon_l \pm \delta \epsilon) = D_l^{AE}(\epsilon_l \pm \delta \epsilon)$ in practice: over range of valence bands?

Monitoring transferability

¹ Grinberg, Ramer, Rappe, Phys Rev B 63, 201102 (2001); Filipetti et al, Phys Rev B 52, 11793 (1995); Teter, Phys Rev B 48, 5031 (1993).

"Hardness tests" in practice

Nonlinear core-valence XC (nlcv XC)

total energy & electronic structure depend just on valence electron density

$$E[n^{v}] = \sum_{i} \langle \psi_{i} | \hat{T} + \delta \hat{V}_{l}^{\text{PS}} | \psi_{i} \rangle + \int V^{\text{PS,loc}}(\mathbf{r}) n^{v}(\mathbf{r}) d\tau + E^{\text{H}}[n^{v}] + E^{\text{XC}}[n^{v}]$$

- electronic core-valence interactions mimicked by pseudoptential \rightarrow different in GGA & LDA! ¹
 - \checkmark electrostatic part linear in n^v
 - **X** exchange-correlation **nonlinear**, terms like $(n^c + n^v)^{4/3}$...

• pseudopotential
$$\rightarrow$$
 linearized core-valence XC

$$E^{\text{XC}} = E^{\text{XC}}[n^{v}] + \int n^{v}(\mathbf{r}) \sum_{\alpha} \Delta V^{\text{XC}}[\mathbf{n}_{\alpha}^{c} + n_{\alpha}^{v}; \mathbf{r}] d\tau \quad \text{XC functional}$$

$$V_{l}^{\text{PS},\alpha}(r) = V_{l}^{\text{scr},\alpha}[\mathbf{n}_{\alpha}; r] - V^{\text{H}}[n_{\alpha}^{v}; r] - V^{\text{XC}}[n_{\alpha}^{v}; r] \quad \text{PP unscreening, consistent in LDA or GGA}$$

• restoring nonlinear core-valence XC ²

$$\begin{split} E^{\text{XC}} &= E^{\text{XC}}[n^v + n^c_{\{\alpha\}}]\\ V_l^{\text{PS},\alpha}(r) &= V_l^{\text{scr},\alpha}[n_{\alpha};r] - V^{\text{H}}[n^v_{\alpha};r] - V^{\text{XC}}[n^v_{\alpha} + n^c_{\alpha};r] \end{split}$$

¹Fuchs, Bockstedte, Pehlke, Scheffler, Phys Rev B 57, 2134 (1998).

²Louie, Froyen, Cohen, Phys Rev B 26, 1738 (1982).

Partial core density for nlcv XC

Overlap matters only around core edge . . .

can smoothen full core density inside the core "partial core corrections"

$$n^{c}_{lpha}(r)
ightarrow \left[1 - g(r) heta(r^{
m nlc} - r)
ight] n^{c}_{lpha}(r)$$

- where $0 < g(r) < 1 \ {\rm e.g.}$ a polynomial
- $r^{
 m nlcv}$ is the core cutoff radius

... where nonlinear core-valence XC makes a difference Rocksalt (NaCl): ¹

- \mathbf{X} semi-metal with linearized CV XC (a)
- \checkmark insulator with nonlinear CV XC (b)

¹Hebenstreit, Scheffler, Phys Rev B 46, 10134 (1992).

... and where linearized core-valence XC is fine

Transferability tests for K:

- Inearized nlcv XC mostly sufficient!
 - $1^{\rm st}$ & $2^{\rm nd}$ row, As, Se, ...
 - "two shell" cases \rightarrow all transition metals, see Cu: 3-4 XC valence-valence interaction

A test calculation helps...

- Inlcv XC needed:
 - "soft" valence shells (alkali's!)
 - − extended core states (Zn, Cd, ...)
 ↔ varying core-valence overlap
 - spin-density functional calculations
- # turning semi-core into valence states?
 - Zn 3d, Ca 3d, Rb 4p, ...
 - Ga 3d, In 4d in III-nitrides
 (but not GaP, GaAs, ...)

... a bit system dependent

... core-valence interactions

Group-III nitrides: N 2s resonant with Ga 3d

- o o all-electron
- pseudopotential

→ satisfactory only with cation 3, 4d states

Beware of frozen core approximation!

Need for nlcv XC in GGA?

nlcv XC not more important in GGA than in LDA!

Plane-wave convergence – "smoothness"

 $\forall \text{ Nearly free electrons \& perturbed plane-waves: } \psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} + \sum_{\mathbf{G}} \frac{V^{\mathrm{PS}}(\mathbf{G})}{(\mathbf{k} + \mathbf{G})^2 - \mathbf{k}^2} e^{i(\mathbf{k} + \mathbf{G})\mathbf{r}}$

- \blacktriangleright for fast convergence reduce high Fourier components of $\psi^{_{\mathrm{PS}}}(\mathbf{G})$ and $\langle \mathbf{G} | \hat{V}^{_{\mathrm{PS}}} | \mathbf{G}' \rangle$
- modern norm-conserving schemes are good already 1
- ... not perfect: "coreless" 2p & 3d states still somewhat hard

Choose right scheme & (dare to) increase cutoff radii

- 1st-row & 3, 4, 5d elements <u>Troullier-Martins</u> scheme (flat potential for $r \to 0$)
- Al, Si, Ga(4d), As, ... Troullier-Martins & <u>Hamann</u> scheme, ... perform much alike
- loss in accuracy \Leftrightarrow upper bound for r_l^{cut}

- poor scattering properties, \rightarrow atomic transferability tests tell

- artificial overlap with neighbor "cores" ... total energy error $\Delta E \propto \int n(\mathbf{r}) \Delta V(\mathbf{r}) d\tau$, N₂ dimer: $r_l^{\text{cut}} = 1.5$ a.u., bondlength d/2 = 1.0 a.u. \rightarrow binding energy error $\mathcal{O}(0.1 \text{ eV})$... may be acceptable

¹Rappe, Raabe, Kaxiras, Joannopoulos, Phys Rev B 41, 1227 (1990); Troullier, Martins, Phys Rev B 43, 1993 (1991); Lin, Qteish, Payne, Heine, Phys Rev B 47, 4174 (1993).

Plane-wave cutoff in practice

Kinetic energy of valence electrons as measure for plane-wave cutoff energy $E^{PW} = G_{PW}^2$ (Ry): For the free pseudo atom:

$$\Delta_{l}(G_{\rm PW}) = \int_{0}^{G_{\rm PW}} |u_{l}^{\rm PS}(G)|^{2} \frac{G^{2}}{2} dG - \int_{0}^{\infty} \dots$$

 \dots for s, p, d electrons

Corresponding total energy convergence deficit:

$$\Delta E(m{G}_{ ext{PW}}) = \sum_{i}^{ ext{electrons}} w_i \Delta_{l_i}(m{G}_{ ext{PW}})$$

... for atom pprox same as in real system

gives useful estimate .. too high/ too low?

can't tell how much errors cancel out
 Perform convergence tests on your system!

→ typically we see converged properties for Δ_l . 0.1 eV

How to represent the pseudopotential operator

Atom: radial & angular momentum representation

$$\langle \mathbf{r} | \hat{V} | \mathbf{r}' \rangle = \sum_{lm,l'm'} \langle \mathbf{r} | rlm \rangle \langle rlm | \hat{V} | r'l'm' \rangle \langle r'l'm' | \mathbf{r}' \rangle = \sum_{lm,l'm'} \bar{Y}_{lm}(\Omega) \overline{V_{ll'mm'}(r,r')} Y_{lm}(\Omega')$$

$$\rightarrow \overline{V(r) \frac{\delta(r-r')}{r^2}} \sum_{lm} \bar{Y}_{lm}(\Omega) Y_{lm}(\Omega') = \overline{V(r) \frac{\delta(r-\mathbf{r}')}{r^2}} \cdots \frac{\text{local potential}}{\bullet \quad \text{Coulomb, atomic, } \dots \bullet \text{ same for all } l}$$

$$\rightarrow \sum_{lm} \bar{Y}_{lm}(\Omega) \overline{V_{l}(r) \frac{\delta(r-r')}{r^2}} Y_{lm}(\Omega') \cdots \frac{\text{semilocal pseudopotential}}{\bullet \quad l\text{-dependent/ angularly nonlocal, radially local} \bullet [T_l + V_l(r) - \epsilon] u_{nl}(r) = 0 \\ \bullet \quad \text{nodeless } u_{nl} \leftrightarrow \text{ ground level for } l \text{ (no core!)} \bullet \text{ strict norm-conservation for ground state}$$

Solid: reciprocal space representation, need $\langle {\bf G} | \hat{V} | {\bf G}' \rangle \rightarrow$ form factor \rightarrow like in atom

pseudopotential = local potential $V^{ ext{loc}}(r)$ + short-range corrections $\delta V_l(r) = V_l(r) - V^{ ext{loc}}(r)$

$$\rightarrow \overline{V^{\text{loc}}(r)} \delta(\mathbf{r} - \mathbf{r}') + \sum_{l=0}^{l_{\text{max}}} \sum_{m=-l}^{l} \overline{Y_{lm}}(\Omega) \overline{\delta V_{l}(r)} \frac{\delta(r - r')}{r^{2}} Y_{lm}(\Omega') , \text{ arbitrary } V^{\text{loc}}(r) \text{ but...}$$

... semilocal pseudopotentials

<u>Truncation of *l*-sum</u> for $l > l_{max}$ natural:

- ullet $r > r^{ ext{core}}$: $V_l(r) \propto -rac{Z^{ ext{ion}}}{r}$, all l
- high l: repulsive $+\frac{l(l+1)}{r^2}$ angular momentum barrier

 \Rightarrow high-l partial waves see mostly local potential

➡ allows to save projections by local component

$$V^{ ext{loc}}(r) = V_{l_{ ext{loc}}}(r)$$
 with $l_{ ext{loc}} = l_{ ext{max}}$

- ✓ $l \leq l_{\max}$ see same $V_l(r)$ as before
- ▲ local potential \leftrightarrow scattering for $l > l_{max}$ (norm-conservation not imposed)
- ▲ transferability of separable representation

typically l=0,1,2,(3) s,p,d,(f)

Fully separable potentials

Semilocal potentials:

Separable potentials \leftrightarrow factorization:

 $\rightarrow \left[\int j_l(Gr) \chi_l(r) r^2 dr \right] \left[\int \chi_l(r) j_l(G'r) r^2 dr \right]$ only scalar products
size $N \approx \mathcal{O}(10^{3...})$

• nonlocal, fully separable pseudopotential

$$egin{aligned} &\langle \mathbf{r} | \hat{V} | \mathbf{r}'
angle &= \langle \mathbf{r} | \hat{V}^{ ext{loc}} + \delta \hat{V}^{ ext{NL}} | \mathbf{r}'
angle \ &= V^{ ext{loc}}(r) \delta(\mathbf{r} - \mathbf{r}') + \sum_{lm}^{l_{ ext{max}}} \langle \mathbf{r} | \chi_l lm
angle E_l^{ ext{KB}} \langle lm \chi_l | \mathbf{r}'
angle \end{aligned}$$

 separable Kleinman-Bylander pseudopotential ↔ transformation of semilocal form

$$\delta \hat{V}_l^{ ext{NL}} = rac{|\delta V_l u_l
angle \langle u_l \delta V_l|}{\langle u_l | \delta V_l u_l
angle}$$

 $|\chi_l
angle = rac{|\delta V_l u_l
angle}{\langle u_l \delta V_l | \delta V_l u_l
angle^{1/2}}, \ \delta \hat{V}_l^{ ext{NL}} |\chi_l
angle = E_l^{ ext{KB}} |\chi_l
angle$

• KB-energy: strength of nonlocal vs. local part

$$E_l^{ ext{KB}} = rac{\langle u_l | \delta V_l^2 | u_l
angle^{1/2}}{\langle u_l | \chi_l
angle} = rac{ ext{average}}{ ext{KB-cosine}}$$

• $|u_l
angle$ eigenstates of semilocal & nonlocal Hamiltonian $\hat{H}_l = \hat{T}_l + \hat{V}^{
m loc} + |\chi_l
angle E_l^{
m KB}\langle\chi_l|$

$$\langle r | \delta \hat{V}_l^{ ext{NL}} | u_l
angle = \delta V_l(r) u_l(r) =: \langle r | ilde{\chi}_l
angle$$

\Rightarrow KB-potentials norm-conserving!

 $\circ~$ note: $~|\tilde{\chi}_l\rangle~=~\epsilon_l~-~\hat{T}_l~-~\hat{V}^{\scriptscriptstyle \rm loc}~|u_l\rangle~$ could be calculated directly from a chosen local potential

Kleinman-Bylander pseudopotentials at work

- ✓ Price: full nonlocality → spectral order of states by radial nodes not guaranteed
- ghost states above/below physical valence levels possible

Example: KB-pseudopotential for As \rightarrow ZB GaAs bandstructure

- Ghost states detectable in free atom ...
- inspect logarithmic derivatives
- do spectral analysis
- ... readily avoided by proper choice of local & nonlocal components

$$V_l(r)
ightarrow \left\{ V^{ ext{loc}}(r), \delta V_l(r)
ight\}$$

Analysis of the spectrum of nonlocal Hamiltonians $\hat{H}_l = \hat{T}_l + \hat{V}^{\text{loc}} + |\chi_l \rangle \lambda \langle \chi_l |$

Ghost states

Seen in logarithmic derivatives . . .

where they occur, how to avoid them?

 \checkmark local potential $l_{
m loc} = l_{
m max} = 2$ saves computing

 \checkmark unproblematic: $1^{
m st}$ & $2^{
m nd}$ row, (earth-) alkali's

 $\Diamond \quad \mathsf{can} \ \mathsf{cause} \ \mathsf{strong} \ \mathsf{nonlocality} \ (\mathsf{large} \ |E_l^{\mathrm{KB}}|)$

"artifically:" \approx zero denominator in E_l^{KB} (KB-cos) Ga, Ge, As, Se, ...

vary cutoff radii of local/ nonlocal components

"intrinsically:" numerator of E_l^{KB} large Cu: deep $V_{3d}(r) \Rightarrow E_l^{\text{KB}} \gg 0$ to get 4s right all 3,4,5d-metals: Cu, Pd, Ag, ...

make local potential repulsive $\rightarrow E_l^{\rm KB} < 0$ use to s - or p-component!

→ KB-potentials work well in practice

Other forms of pseudopotentials

Motivation - an exact transformation between AE and PS wavefunctions is¹

$$|\phi^{ ext{AE}}
angle = |\phi^{ ext{PS}}
angle + \sum_{n} \left\{ |R_{n}^{ ext{AE}}
angle - |R_{n}^{ ext{PS}}
angle
ight\} \langle \chi_{n}^{ ext{PS}} |\phi^{ ext{PS}}
angle$$

$$|\phi^{\mathrm{AE}}
angle = \left\{1 + \hat{\mathcal{T}}\right\} |\phi^{\mathrm{PS}}
angle$$

. . . PS operators (acting on pseudo wavefunctions) act as

$$\hat{O}^{\rm PS} = \hat{\mathcal{T}}^{\dagger} \hat{O} \hat{\mathcal{T}} = \hat{O} + \sum_{nn'} |\chi_i^{\rm PS}\rangle \left\{ \langle R_n^{\rm AE} | \hat{O} | R_{n'}^{\rm AE} \rangle - \langle R_n^{\rm PS} | \hat{O} | R_{n'}^{\rm PS} \rangle \right\} \langle \chi_{n'}^{\rm PS} | \hat{O} | R_{n'}^{\rm PS} \rangle$$

$$ightarrow$$
 { . . . } looks like $\sum_{nn'} |\chi^{
m PS}_n
angle V_{nn'} \langle \chi^{
m PS}_{n'}|$

 \blacktriangleright Can make ansatz for *separable* pseudopotential with multiple projectors²

$$\langle r|\hat{V}_{l}|r'
angle = \langle r|\hat{V}^{ ext{loc}}|r'
angle + \sum_{n,n'=1,2,...} \langle r|\chi_{il}
angle V_{l,nn'}\langle \chi_{n'l}|r'
angle$$

... χ_{nl} : e.g. atomic functions derived from $|\tilde{\chi}_{nl}\rangle = \epsilon_n - \hat{T}_l - \hat{V}^{\text{loc}} |u_{nl}\rangle$... n = n' = 1 like Kleinman-Bylander pseudopotentials

¹ Blöchl, Phys Rev B 50, 17953 (1994). ² Blöchl, Phys Rev B 41, 5414 (1990).

(1) Norm-conserving: $Q_{n n'} = \langle u_{nl}^{AE} | u_{n'l}^{AE} \rangle_{r^{\text{core}}} - \langle u_{nl} | u_{n'l} \rangle_{r^{\text{core}}} = 0$ $\dots \text{ several reference states possible!}$ (2) "Quasi" norm-conserving: $\langle u_{nl} | u_{n'l} \rangle_{r^{\text{core}}} + Q_{n n'} = \langle u_{nl}^{AE} | u_{n'l}^{AE} \rangle_{r^{\text{core}}}$

- → Ultrasoft pseudopotentials ¹
- ➡ logarithmic derivative match as in norm-conserving case
- \blacktriangleright density & wavefunction \rightarrow smooth part + augmentation
- \blacktriangleright gives generalized eigenvalue problem $\hat{H} \epsilon \hat{S} |\phi_i\rangle = 0$

reduced plane-wave basis for 1^{st} row & d-metal elements \leftrightarrow

increase in projections, added complexity

¹ Vanderbilt, Phys Rev B 41, 7892 (1990); Laasonen *et al*, Phys Rev B 47, 10142 (1993); Kresse, Hafner, J Phys Cond Mat 6, 8245 (1994); Dong, Phys Rev B 57, 4304 (1998).

Summary

Pseudopotential = electron-ion interaction

- nucleus' Coulomb attraction + core-valence interaction (orthogonality, electrostatic, XC)
 - work throughout periodic table (... almost)
 - ✓ physically motivated approximation
 - Valence electrons rule chemical bonding
 - Frozen-core approximation (depends on system)
 - Cancellation of potential and kinetic energy in core
 - ✓ <u>well controlled</u>
 - norm-conservation (built in)
 - nonlinear core-valence XC (depends on system)
 - ✓ Transferability properties & pseudopotential validation
 - logarithmic derivatives (scattering properties)
 - chemical hardness
 - plane-wave convergence
 - ✓ Fully separable, nonlocal potentials
 - analysis & removal of ghost states
 - generalizations