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General 'condensed-matter’ Hamiltonian
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Born-Oppenheimer approximation

separation of variables

parametric dependence on set of coord. {Ry}

U(ry,---rn; R, - Ru) = Z Ay({R1})®, rpy (i)

electronic Schrodinger equation
HfRI}(I)u,{RI}(I'k) = Es,{RI}(I)V,{RI}(rk)
¢ — T¢ 1 ye—e 4 je—ion

is obtained if we neglect

e non-adiabatic couplings (usually terms of order
m/M_r)

e clectron-phonon couplings A, between different
electronic states



Limitations of this approach

e doesn't account for correlated dynamics of ionic and
electronic coordinates
Example:
suprafluid He3, polaron-induced superconductivity

e breakdown of the restriction to a single ground-state
Born-Oppenheimer surface
Example: chemoluminescence

distance

e breakdown of the adiabatic approximation
Example:
excitation of surface plasmons during scattering of
an ion from a metal surface
— time-dependent theories (e.g. TD-DFT)



electronic many-particle Hamiltonian
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v O(r) = 3 0 (|Ry - x)

=1
still many (for a typical solid: 102°) degrees of freedom

The many-particle problem can be solved only for rather small systems (atoms,
molecules and clusters) using established methods of quantum chemistry (e.g.
configuration interaction).



Density Functional Theory

Kohn-Hohenberg theorem:

0), the wavefunctions can be

For a given external potential v
considered as functionals in the space of ground state densities,

n.
A 1
E,oln] = (@[n][T°+ W + o @[n] )

The energy functional is stationary at the ground state energy,
and the true ground state density ng coincides with n at the
stationary point. This allows for the definition of a universal

functional F with
Byolnl = Flnl + [dr o (x)n(r)
Kohn-Sham theorem:

Fn] = Ty[n] + %//dr dr' n(v)W(r,v")n(r") + Exc[n]

Th: kinetic energy of a system
of non-interacting particles

ch[n](r) 1= #r[)n] exchange-correlation

potential



Kohn-Sham (single particle) Hamiltonian
To find the stationary point, we do variations at fixed
N = [drn(r), which leads to

5Efv(0) B
on(r)

[ (Lagrange parameter)

If we write the density as a sum over single-particle
functions,

n(r) =3 > lepk®)?

j=1 keBZ

the variational principle dE (0)[¢*|/d¢*(r) = O leads
to the Kohn-Sham equations

2m

<—— + Veff[n](r)) Pjx(r) = €jkp;k(r)
with the effective potential
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The total energy (for static ions)

Eiotln] = \&w @AS \&. \&. )nlr’)
tot fﬂmo M_H. —r/
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AE®"¢n| = “res \&. \&. o — M\H\v = —FE°¢[n]
AExcn] = FExcoln] — .\&w Vxeln|(r)n(r)

FE;,; is stationary with resp. to variations of n around ng, but the individual terms are not !



How can we specify Ex¢

At this point, we need to make approximations to get further.
Example: local density approximation (LDA)

Excln(r)] = dr exc|n(r)] n(r)
~  [dr [ (n(r)) 4+ e (n(r))] n(r)
eem(n) = —(81/64m)Y3nt/3(r)

[ —0.1423(1 + 1.0529, /75 + 0.3334r,) "+ if 7y >1,

—0.0480 + 0.0311 Inry, — 0.01167r, + 0.002 r, Inr,
if ry <1.

\

re = (4mn(r)/3)~1/2  Wigner-Seitz radius
[see, e.g. Perdew & Zunger, PRB 23 5048 (1981)]



Periodic systems

crystal structure =

Bravais lattice & basis
translational symmetry symmetries of the basis compatible
with the Bravais lattice
group 7 point group P

Example: twodimensional honeycomb lattice
(Bravais lattice if a basis of two atoms is used)

s
S Za

* Brillouin zone (BZ)

lattice vectors ai, a9, as3 reciprocal lattice vectors by, bs, b3

—

g = Mﬁ.\@?@. X N«,\Av

({ijk}={123} & cyclic permutations of indices)



Bloch functions

Since H commutes with the elements of 7, the wave
functions must be of the form

pix(r+R) = eikRgpj,k(r), (Bloch’s theorem)
for any R = nloYl + 7125:2 + 7135:3.

The wavevector k is an index specified by a point in the
first Brillouin zone (elementary cell of the reciprocal
lattice), and the number of such points is equal to the
number of lattice sites in the crystal.

Due to Bloch's theorem, it suffices to calculate ¢ in
just one elementary cell,

tk

@ix(r) =e"u;(r)

where u is a lattice-periodic function.

In practice, sums over k are evaluated by summing
over a discrete set of (special) k-points.



Basic steps in an electronic structure
calculation

1. guess a starting charge density
(e.g. superposition of atomic densities)

2. set up the Hamiltonian for this charge density
(usually done in a small, preliminary basis set)

3. diagonalize this approximative Hamiltonian

4. use the eigenvalues and wavefunctions to set up a
new charge density

5. try to improve the wavefunctions using the
variational principle for E;,;, thereby simultaneously
approaching self-consistency
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Self-consistency cycle

Harris functional
2 . .
Eyoi[n MU Y e+ AETOTY] 4 ABxc[nl Y] + vaonten
j=1keBZ

update charge density

Nx np
n(r) =D fixlel@)?
2

with f; = [exp((ejx — €r)/kT) — 1)1 In principle, we are interested
in T" — 0, but finite T" helps to stabilize the SC loop.

Brofn V] = Tyl + [ drofd) 60w
+ mmlmT@QvAﬁzl_lmNQﬁ Av_lT ton—ion

Kohn-Sham functional: @SLS& = Fiot[no] with self-consistent density ng



Variational properties

At the stationary point, the Kohn-Sham equations lead us to

N
Toln| = M M gjx — [ drn(r)Vesn(r)
j=1keBZ
For the :o:-no:m_mﬁm:ﬁ case, we may introduce the generalization

ﬂo?ﬁ V m M M £;. w mdi dr SAHva\mmAHv
J=1keBZ
This can be used to define the 'double’ functional

m@oL ua\m_i = mﬁoTﬁ a\m_i + mmlmﬁ;_ 4 NNQT@_ 4 HMWSIN.QS

with the variational properties
Ejoilno + 6n, Vegelnol] — Eioulno, Veglnol] = ca(dn)?

E,[no, Vagelno) + 0v] — E2,[no, Vagelno)]
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Normally, one has ¢; > 0,co < 0. The Harris functional, in this notation,

Ef,n (i=1), a\mdizs.lc:.

IS



Total energy calculations and
thermodynamics

The thermodynamic ground state is determined by the
free energy of the system (for fixed volume)

F(T, V) — Etot(Ta V) - TSG(T, V)
+E(T) = TS (T, V)

Structural relaxation:

Minimize F'(T, V') (or Ey.;, respectively)

Caution: ionic contribution to the free energy,
important if, e.g., anharmonic effects come into play

or by the Gibbs free energy (for fixed pressure)
G(T,p) = F(T,V)+pV
Examples:

— equilibrium between two structural phases
— equilibrium between a solid and its vapor



Example: Thermal decay of GaAs

1
GaAs < Gametal + iASQ

GEA P (p, T) = Ggans(T) = Gas(p. T):

G as(p, T) from ideal two-atomic gas, S, and SE"
from Debye model of the solid.
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Free enthalpy per Ga atom in bulk GaAs in
thermodynamic equilibrium with As, vapor at two
pressures, compared to the free enthalpy per Ga atom
in elemental Ga.

[P. Kratzer et al., Phys. Rev. B 59, 15246 (1999)]



Finite electronic temperature

occupation numbers from Fermi distribution

fix = lexp((ejx — er)/KT) — 1]~
— The program actually computes the free energy F'!

entropy of the electronic system

S¢ = 2kp Z Z ixInfix+ (1 — fi)n(l — f;x)]

j=1kEBZ

For a (free-electron-like) metal, we have

F(T) = E(T=0)— %T2 +O(T?)
E(T) = E(T=0)+ %T2 +O(T?)

extrapolation to zero electronic temperature
E(T=0)~|F(T)+ E(T)]/2=E(T)— S°T/2

[see M. J. Gillan, J. Phys. Cond. Mat. 1, 689 (1989)]



How to compute observable quantities

A) energy differences
between different structures, formation energy of
defects, heat of adsorption, . . .

B) derivatives of the thermodynamic potentials F;,;,
ForG

For simplicity's sake, we consider a system with
constant volume at 7' = 0:

F(T' =0,V) = Eto(V)

. aEtot (V)

pressure p = 5

_ 1/ Bt (V)
bulk modulus B = V=325

forces F'; on atom I (in electronic ground state)

OF al
Fr=——="=> (p;jxl0H/0R|¢;x)

due to the Hellmann-Feynman theorem



C) second derivatives
Examples:

1. force constant matrix
8Etot

OR;OR;
— calculation of phonon spectrum, vibrational
entropy, . . .

2. particle number fluctuations
— chemical softness and hardness

w0 = (50, =/ ()
h(r) = %( ) . / 5n5 Etot n(I") e

Note: When calculating second derlvatlves, the
response of the density must be taken into account.
— Density Functional Perturbation Theory




What materials properties are accessable
to calculation ?

e structural properties
Examples: structural phase transitions, surface

reconstructions yes
e elastic properties
Examples: bulk modulus, C1, Ci2, Cy4, ...  yes

e chemical properties
Examples: thermochemical stability of compounds,
reactivity of surfaces yes

e transport properties
Examples: transport effective mass, magneto-
resistence developing field
e optical/spectroscopic properties
Examples: photoemission spectra, cross sections for
light absorption
topic beyond Kohn-Sham theory, encouraging
progress recently

many other applications



Transport theory based on first-principles

From the Kohn-Sham variational principle, we have

5Etot
on(r)

= = €r In a metal

However, there is no strict proof that the Fermi surface is
represented correctly in DFT. Further, in a Kohn-Sham theory, €;
cannot be identified with the excitation energy of quasiparticles
or quasiholes. One can only show

8E'tot

Ofjx

ej,k.

[supposing that Ex¢ is a continuously differentiable function of
particle number]

Still one may use

(5,082
0k,O0k,

as an approximation to the effective mass tensor.

=M D
€E=€ep

The transport cross section for impurity scattering can be
calculated from the 'golden rule’ expression,

do(k, k') = 27 /h(1 — kk")| Vi w|*p(err) dK’,

using p, the density of states at the Fermi energy, from a DFT
calculation as input.



Simulation techniques

In many materials science problems length scales much
larger than the atomic scale are involved (e.g. in
phase transitions, line defects, plastic deformation,
etc.). Further, one is interested in dynamic (rather
than static) properties, and evolution on time scales as
long as seconds.

These problems require simulation techniques which
build upon the reliability of the first-principles
approach, but extend its range of applicability.

molecular dynamics

e to follow dynamical processes in time, e.g. chemical reactions
scale: several hundred atoms, pico-seconds

e for calculation of vibrational properties & phonons
(Fourier transform of time correlation functions)

e as a way to calculate the free energy at finite T
(performing a time average)

statistical physics

statistical treatment of a discrete Hamiltonian with
parameters taken from DFT calculations

kinetics

description of 'rare’ events using rate laws



