Prerequisites for reliable modeling with first-principles methods

P. Kratzer

Fritz-Haber-Institut der MPG D-14195 Berlin-Dahlem, Germany

Prerequisites for modeling

Issues to consider when applying the plane wave/supercell method

- How appropriate is the model for your physical system ? e.g. cluster versus slab model for surfaces
- Is your model system big enough to avoid spurious interactions ? e.g. slab thickness, size of the unit cell
- Are there long-range (electrostatic or elastic) interactions? *e.g. charge defects*
- Is the k-point sampling appropriate to describe the dispersion of the bands and the Fermi surface ?
- Is the calculation converged with respect to technical parameters, like cut-off, $\rm T_{el},\,\ldots\,?$

Absolute versus relative convergence

Example 1: absolute convergence for GaAs, LDA, Hamann pseudopot., data points at $E_{cut} = 7, 8, 10, 20 \text{ Ry}$

empirical dependence on the number of plane waves: $E(N) - E_{conv} \approx a_1 \exp(-a_2N)$

The *G*+*k* plane-wave basis set

spheres with radius $(E_{cut})^{1/2}$ with origin in k: $N_{ideal} = (V/6\pi^{2}) (E_{cut})^{3/2} = 84.941$

$E_{cut} = 7 Ry$	y ₁₋₁₋₁₋₁₋₁		4x4x4	weight	plane waves
	ביילים - אין ליידים - אין ליידים		1	0.03125	77
V = 271.6	bohr ³		2	0.09375	84
			3	0.09375	83
	······································		4	0.09375	81
	-+ - -+ - -+ -++		5	0.03125	83
			6	0.09375	82
			7	0.09375	87
2x2x2	weight	plane waves	8	0.09375	87
1	0.25	83	9	0.18750	86
2	0.75	89	10	0.18750	89
weighted average		87.461	weighted average 85.0		85.01

Correction for the discreteness of the basis set

The calculated curve must show discontinuities because the N_{av} values are scattered around N_{ideal} .

Correcting for this effect gives much better agreement with the equation-of-state curve.

Rignanese *et al.*, Phys. Rev. B **52**, 8160 (1995); Francis and Payne, J. Phys. Cond. Mat., **17**, 1643 (1990)

 $\Delta E = N_{ideal} \ln(N_{av}/N_{ideal}) \left(\frac{\partial E_{tot}(N)}{\partial N}\right)|_{Nideal}$ $\approx N_{ideal} \ln(N_{av}/N_{ideal}) a_1 a_2 \exp(-a_2 N_{ideal})$

Example: GaAs bulk, 7 Ry cut-off, 2 x 2 x 2 k-points

Relative *versus* absolute convergence

Correction for finite T^{el}

 $E^{\text{zero}} = \frac{1}{2} (F(T) + E(T)) + \theta(T^3) = F(T) - \frac{1}{2} T^{\text{el}} S^{\text{el}}(T) + \theta(T^3)$

80

60

40

20

0

-20

-40

-60

0.01

E(T)

Indium adatom on GaAs(001) c(4x4) surface E. Penev, unpublished

extrapolated to 0

°.03

0.05

0.07

electronic temperature [eV]

0.09

substitutional adsorption of Na on Al(111) J. Neugebauer and M. Scheffler, Phys. Rev. B **46**, 16067 (1992)

k-points convergence for metals: Pd

For a good description of a metal, in particular the bulk modulus, it may be necessary to sample the Fermi surface in great detail !

a					
Netscape Hypertext					
Document					

0000

http://www.phy.tu-dresden.de/~fermisur/

k-point set	6x6x6	10x10x10	14x14x14
lattice constant [Å]	3.83	3.85	3.85
bulk modulus [Mbar]	2.32	2.26	2.23
B'	5.66	5.63	5.62
cohesive energy [eV]	5.09	5.08	5.06

LDA, LAPW calculation, r_{MT} =2.4, ecut=14 Ry, I_{max} =10

Juarez da Silva, unpublished

Convergence with k-points: In bulk

Topic: Surface Chemistry

• How well are (small) molecules described in DFT?

11 1 (1			\ <i>\</i>
dissociation	energies	IN	eV

	HF	LSD	GGA(PBE)	meta-GGA[1]	exp.
H_2	3.56	4.91	4.53	4.96	4.75
H_20	6.27	11.56	10.16	9.98	10.07
HF	3.80	7.04	6.16	6.01	6.10
CO	7.43	12.96	11.65	11.10	11.24
N_2	4.70	11.60	10.55	9.94	9.91
F_2	<0	3.39	2.32	1.87	1.67
O ₂	1.36	7.58	6.23	5.70	5.22

[1] J.Perdew et al, Phys. Rev. Lett. 82 (1999) 2544

- How well do we describe the surface structure?
- Can we identify reaction mechanisms and locate transition states for simple surface reactions (e.g. dissociation of a diatomic molecule) ?

Surface relaxation: GaAs(001)(2x4)

Quantum size effects: Al(110)

A. Kiejna, J. Peisert and P. Scharoch, Surf. Sci. 432 (1999) 54

Surface reconstruction of Si(001): (2x1)

Surface reconstruction: Si(001)

Cluster models for the Si(001) surface

Is it possible to describe the buckling of the surface Si dimers using a cluster models of the Si (001) surface ?

	angle [deg.]	bond length	$\Delta E [eV]$	HOMO-LUMO
		[Å]		gap[eV]
Si ₉	6.9	2.21	0.00	1.18
Si ₁₅	15.7	2.28	0.12	0.86
Si ₂₁	18.6	2.35	0.17	0.70
slab	18.9	2.36	0.20	0.00

The buckling only developes fully in a cluster containing 3 surface Si dimers. The failure to describe the buckling is related to differences in the electronic structure.

E. Penev, P. Kratzer and M. Scheffler, J. Chem. Phys. **110**, 3986 (1999) si₂

Electronic correlation effects at the surface

Since the symmetric dimer is a bi-radical, the buckling effect could be sensitive to subtle electronic correlation effects.

S. B. Healy, C. Filippi, P. Kratzer, E. Penev, M. Scheffler, Phys. Rev. Lett. 016105 (2001)

Arrangement of neighboring Si dimers

Periodicity of the reconstruction: effects of k-point sampling

Cluster models: H₂ associative desorption

Cluster models: size convergence

Cu(111): H₂ dissociative adsorption

atoms in cell	3	3	4	
layers	2	4	6	
k-points 1	dissociation barrier [eV] 5.48			
6	1.41			
18	0.35	0.73	0.48	
54	0.62	0.54	0.55	
162	0.61	0.60	0.51	

GGA(PW91), 50 Ry plane wave cut-off, P. Kratzer, B. Hammer and J.K. Nørskov, Surf. Sci. 359, 45 (1996)

Importance of surface relaxations

Example: CH_4 / Ir(111) slab calculations

G. Henkelman and H. Jonsson, Phys. Rev. Lett. 86 (2001), 664

Conclusions

- The quality of the Brillouin zone sampling ought to be tested carefully for each system, in particular for metals.
- If long-range effects are to be expected, it can be helpful to explore their size in advance, by using simple (e.g. elastic) models.
- (meta-)GGAs have brought us a good way closer to chemical accuracy for surface reactions.
- In the DFT approach, slabs are usually a more efficient model of the surface then clusters.
- When trying to model single isolated objects (e.g. defects, adsorbates ...), one needs to be aware of unwanted substrate-mediated interactions.

A few words of guidance

- When starting a new project, first repeat some bulk calculations for the chemical elements constituting your material under study. Compare to all-electron calculations, if available, to check the performance of the pseudopotentials !
- 'Design' your project:
 - For each critical parameter, find out a satisfactory 'production setting' and an improved 'check setting'.
 - Make sure that the checks are feasable with your computer hardware.
 - Complete all checks before going into the production phase.
- When producing thermochemical data, use various functionals to get an idea of the possible spread of results.

Closing remarks

- First-principles DFT calculations have evolved into a very powerful and versatile theoretical tool, useful for analysis and explanation or even prediction of a large variety of phenomena.
- However, one has to be aware of the principal limitations of the DFT approach and of the unavoidable approximations which enable us to do large-scale calculations for the systems of real interest.
- So far, this tool has high credibility. To maintain this high standard, the users ought to perform each individual project with utmost care. Please do all the necessary checks and convergence tests!