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Goal: Calculate total energy

Etljto ({Rz}) = rH)I}n Etot[{l_é[} ’{(I) 1}]

Questions:
* How to construct E, ,?
* How to find (efficiently) the electronic ground state?

[1 Solve Kohn-Sham Equations

H[”] o, =g, with nfr)= Z|L|Ji(’7)|2
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Outline

How to get to the Born-Oppenheimer surface?

* Direct diagonalization

e [terative diagonalization
* Method
* Scaling
* Improvements
 Self-consistency

How to move on the Born-Oppenheimer surface?

e Equilibrium geometry (T=0K)
* Molecular dynamics



Basis set representation

Basis set expansion: ‘¢z> = Z Cip‘u> <|-1|V> = 6p\) orthogonal
U

Z||J><|J| =1 complete
W

KS-equations: Hd)l- = Sl-(l)l- ‘ Z<V|H|p><p|¢i> :si<v|¢,->
KL

N

[1 Solve eigenvalue problem: / Y = 8)7

direct diagonalization: [/7 [J{] =18

Problems: ¢ N3 scaling
* complete Hamiltonian has to be saved




Discussion: Plane wave basis

Example: cubic cell with a=5A

Ecut Nax N PW
5 14 534
10 20 1510
15 25 21774
20 28 4271
40 40 12081
100 64 47752

Realistic systems have basis sets with 10*-¢ functions!

[ direct diagonalization inefficient/impossible



Iterative diagonalization

Basic idea:
Total energy gradient: tE ({(I) i} )

F} :_BE({(I)I}) with <¢1 ¢]>:6U
oJ} F

Residuum: |Fl> = (]—] —gl.)|(|)l.>

v

[] Find equation of motion (EOM) which minimizes total energy!

First order EOM: - Fl> =a | ¢l> a “friction” parameter

or: (=)o) =8,

interesting aspect: time dependent Schriodinger equation for O — i7i




Scaling of the iterative algorithm

: S _ ¢(n+1) _q)(n) — _S A (@)
Equat f motion: (/7 — V== N =— L L =— \
quation of motion ( g)‘¢l> a‘¢l> o o aAd;

0,)=~a(G|0o!")

O(N>M) operations
M number of states (<<N)

Plane wave basis set: Z <G ‘(H — 8)‘ G'><G'
G

Trick: Use locality of the contributions of the Hamiltonian in real
and reciprocal space!

Hamilton Operator: H = —0% 4+ (77 ) real space ULEN reciprocal space
Val o O(N In(N)) operations
local in reciprocal space local in real space
FGE o 0 %q)i(Gl) 0 | @) 0 %q)l(fl) ]
(1] O [
[ O %

O(N) operations O(N) operations




Construction of the initial wave functions

Iterative schema: ¢l,(”+1) — F({¢i(n) })

Problem: How to construct {¢l-(0)} ?

ground state

_\ =y H(C+R)F Hilbe}"t space
LIJ];(I")— FCE(G)e( )
G =
Solutions:
* Direct diagonalization (not possible for large systems)
* Random numbers
* Direct diagonalization in PW subset >

* Direct diagonalization in LCAQ basis set

\E



Diagonalization in LCAQO basis set

Expand atomic orbitals in plane waves: H; (17 ) = z M (G) PUCAL
G

H ... atomic s, p, d orbitals

Formally fully equivalent to wave functions: L|J]; (,7’ ) — Z c]; (é) ei(G+k)F

Vi)

G

Construct hamiltonian and overlap matrix: ff v (/; ) = < M [f[

S v (];): <'L’/€‘V/€>
Solve generalized eigenvalue problem: {]—] " (]; )— £; S,uv (;}’ } < H; ‘¢l> =0

Number of atomic orbitals << Number of plane waves (approx. 1:100)

=) Eigenvalue problem can be easily solved!



Convergence Criteria (I)

iterative solution: (I)(”+1) — (I)(”) — (H _ 8)‘ q)(n) >At €= <¢(n)

o)

exact solution: (H - 8)

Xz’>:O

representation of the trial wave function in the X; set:
‘¢(”)>:Zqi Xi> ‘¢(n+l)>:ZBi Xi>
7 7

=) B,=a,-(e-¢)o

Before iteration step: After “ideal” iteration step:
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£
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Convergence Criteria (11)

Before iteration step: (073 EOM: BI, =q; - (g — gl.)Az

&1 €y
After iteration step:

B optimum time step:
‘ | | € JAVA = =

€1 ES | g Ev "€ Emax T Emin

After orthogonalization: 3 , spectral radius
£
€1 £ |

* Orthogonalization essential for each iteration step
* Convergence rate decreases with increasing number of PW



Preconditioning

Residual error:  (H —€) X +A0) = (H —€) A0) =|AF)
=| ) / AN

we need this we get this

=) (H-¢)|AF) =|00)

A G2
Hamiltonian in PW basis:
, eff
Hoor = -G8 +V (G- G) VEIG)
Kinetic energy dominates for high wave numbers!:
>
. L " e G|
Partition Hamiltonian: H=D+]
X
diagonal matrix all diagonal elements are zero

~ ~

For high wave numbers: H =D m—) (ZA) — e)_lA$ = A



Preconditioning:Geometric interpretation

Without preconditioning:

With preconditioning:



Williams-Soler Algorithm

Equation of motion: (]—[ — gl,)| ¢z> = —a| ¢l>

In plane-wave basis set:

ac [G2 +V (G - G)] e, z (G -G')e,(G)
_ 4
| G'2G M
dlagonal part off-diagonal part

EOM for a single state: éi (G) = (0(2; C; (G) — BG

Assumption: B not time dependent

= ¢ (G,r=NAr)= —B—g + %z,. (Gt = O)+B—(2}Eexp(— ooéAt)
W O We O

Improves significantly the convergence rate for high PW energy cutoffs!




Higher order EOM’s

Goal: Find total-energy minimum more efficiently

Strategies:
e minimize number of iterations

* minimize computational effort for each step

Two approaches

tL ({(I) i} )

/

Use higher derivatives

_9%E({o})
700,00

high computational effort!

Use higher order in time
P, :F(¢i’¢i’---)
equivalent:

NGe :ﬁ(q)l(n),q)l(n—l)’...)

no additional computational effort!



Second order equation of motion

Finite differences: (I)(”+1) = (I)(n) - (H - 8)‘ ¢(n) >Atl - (H - 8)‘ (I)(n_l) >Al‘2
Expansion with respect to eigenfunctions X.:
¢(n_l)>: ZO(Z' Xi> ¢(n)>: ZB;

mm) ;=[5 _Bi(e_gi)Atl_ui(e_ei)AtZ

Two possible scenarios

— T

)

)

¢(n+1)> = Z Yi

.

i a; —>
\/acceleration damping U
™N—" ! {1
12 ?l b, 1 o) 39,



Direct vs iterative methods

Self-consistency: ([—[ — 8i)| ¢l> =0 with H=H ({q) l})

(H ~¢,)0,

Improved convergence rate by enforcing self-consistency at each iteration step!




Instabilities: Charge sloshing

Hartree potential:  Hartree (G) = 4T|[er|)2(G) A Hartree
Change in Hartree potential: AVH‘"’ free (G) — 4T[TAF(G) /\/
G

>

AL ({qh} ) z
Instability increases with

\ increasing system size:

1
Gmin U l—

max

(H —€; )(I)l How to overcome the instabilities?
e Use higher order algorithms
e Mixing of the charge density, e.g.

p(’_;) = }\mixpOId (’_;)+ (1_)\mix )pnew (;:)



Instabilities: Metallic systems (1)

Fractionally occupied states:

Consider two degenerate states close to the Fermi level:

€

q q stability against € qg+0g  q-Dq
—o— —o— — —o— —o—

charge fluctuations

?_‘I.“L_Aq q4-Dg ¥

i 4
q fbcc



Instabilities: Metallic systems (I1I)

High electronic temperatures: Low electronic temperatures:

>

. : ‘l\ ' : |
AV q+Aqs\ foee -0q 4 qtlq foee
Fermi distribution Fermi distribution
Stable against charge fluctuations! Unstable against charge fluctuations!

How can we avoid these instabilities?
e Improve k-point sampling
e damp occupation numbers



How to get down to the BO surface

Construct external potential: Vio"

Choose initial Waée functions:{ ¢,}©
Calculate p(r), VVHartree \/xc
Construct Ké Hamiltonian
Integrate equzjti ons of motion
Orthogonali z: wave functions
Are wave functions stationary?

i

Compute total energy and forces




Hellmann-Feynman forces

Hellmann-Feynman theorem: F’v — _ OF ({Rl } )
, =

aié]
2<

This theorem is valid only when: (H — €, )| () i> =0

/)

Forces are not variational with respect to the wave functions
[1 good convergence required



Tonic motion

Basic idea: Simultaneous motion of electrons and ions per iteration step
fictitious dynamics for electrons keeps wave functions on BO surface

Car-Parrinello Lagrangian: [ — Z %u@)i |(l)l> + Z %M ]l_élz -k [{(I) i} ’{El}]
. T

M, R, :—aE{{q)"l’{ﬁf}] ud. :_OEH(PZ-}’{EI}J
OR, l 0,

Equations of motions:

First order EOM: <_@
Second order EOM: 4—@ 4_@



How do we move the atoms

Two schemes

/\

Molecular dynamics Structure optimization
Integrate equations of motion: 2nd order EOM with damping
MR, = F, W R, +\,R, = F,

N

effective mass damping/friction



