Algorithms: Total Energy Minimization

Jörg Neugebauer Fritz-Haber-Institut, Berlin

Goal: Calculate total energy

$$E_{tot}^{BO}(\{\vec{R}_i\}) = \min_{\{\varphi_i\}} E_{tot}[\{\vec{R}_I\}, \{\varphi_i\}]$$

Questions:

- How to construct E_{tot} ?
- How to find (efficiently) the electronic ground state?
 - ⇒ Solve Kohn-Sham Equations

$$H[n]\varphi_i = \varepsilon_i \varphi_i$$
 with $n(\vec{r}) = \sum_i |\Psi_i(\vec{r})|^2$

Outline

How to get to the Born-Oppenheimer surface?

- Direct diagonalization
- Iterative diagonalization
 - Method
 - Scaling
 - Improvements
 - Self-consistency

How to move on the Born-Oppenheimer surface?

- Equilibrium geometry (T=0K)
- Molecular dynamics

Basis set representation

Basis set expansion:
$$|\phi_i\rangle = \sum_{\mu} c_{i\mu} |\mu\rangle$$
 $\langle \mu | \nu \rangle = \delta_{\mu\nu}$ orthogonal
$$\sum_{\mu} |\mu\rangle\langle\mu| = \hat{1}$$
 complete

KS-equations:

$$H \varphi_i = \varepsilon_i \varphi_i \longrightarrow \sum_{\mu} \langle \nu | H | \mu \rangle \langle \mu | \varphi_i \rangle = \varepsilon_i \langle \nu | \varphi_i \rangle$$

 \Rightarrow Solve eigenvalue problem: $\hat{H} \vec{Y} = \varepsilon \vec{Y}$

Problems: • N³ scaling

• complete Hamiltonian has to be saved

Discussion: Plane wave basis

Example: cubic cell with a=5Å

E _{cut}	n _{max}	N_{PW}
5	14	534
10	20	1510
15	25	2774
20	28	4271
40	40	12081
100	64	47752

Realistic systems have basis sets with 104...6 functions!

⇒ direct diagonalization inefficient/impossible

Iterative diagonalization

Basic idea:

Total energy gradient:

otal energy gradient:
$$F_i = -\frac{\delta E(\{\phi_i\})}{\delta \phi_i} \quad \text{with} \quad \left\langle \phi_i \middle| \phi_j \right\rangle = \delta_{ij}$$

Residuum: $|F_i\rangle = (H - \varepsilon_i)|\phi_i\rangle$

⇒ Find equation of motion (EOM) which minimizes total energy!

First order EOM: $-|F_i\rangle = \alpha |\dot{\phi}_i\rangle$

α "friction" parameter

or: $(H-\varepsilon)|\phi_i\rangle = -\alpha|\dot{\phi}_i\rangle$

interesting aspect: time dependent Schrödinger equation for $\alpha \rightarrow i\hbar$

Scaling of the iterative algorithm

Equation of motion:
$$(H - \varepsilon) |\phi_i\rangle = -\alpha |\dot{\phi}_i\rangle = -\alpha \frac{\phi_i^{(n+1)} - \phi_i^{(n)}}{\Delta t} = -\tilde{\alpha}\Delta\phi_i^{(n)}$$

Plane wave basis set:
$$\sum_{G'} \langle G | (H - \varepsilon) | G' \rangle \langle G' | \varphi_i \rangle = -\widetilde{\alpha} \langle G | \Delta \varphi_i^{(n)} \rangle$$

$$\begin{array}{c} O(N^2M) \text{ operations} \\ M \text{ number of states (<$$

Trick: Use locality of the contributions of the Hamiltonian in real and reciprocal space!

Hamilton Operator:
$$H = -\nabla^2 + V^{eff}(\vec{r})$$
 real space reciprocal space $O(N \ln(N))$ operations

local in reciprocal space
$$\begin{pmatrix} -G_1^2 & \cdots & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & & -G_N^2 \end{pmatrix} \begin{pmatrix} \varphi_i(G_1) \\ \vdots \\ \varphi_i(G_N) \end{pmatrix}$$

$$O(N) operations$$

Construction of the initial wave functions

Iterative schema:

$$\boldsymbol{\varphi}_i^{(n+1)} = F\left\{\left\{\boldsymbol{\varphi}_i^{(n)}\right\}\right\}$$

Problem: How to construct $\{\varphi_i^{(0)}\}$?

$$\Psi_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} c_{\vec{k}}(\vec{G}) e^{i(\vec{G} + \vec{k})\vec{r}}$$

Solutions:

- Direct diagonalization (not possible for large systems)
- Random numbers
- Direct diagonalization in PW subset
- Direct diagonalization in LCAO basis set

Diagonalization in LCAO basis set

Expand atomic orbitals in plane waves:

$$\mu_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} \mu_{\vec{k}}(\vec{G}) e^{i(\vec{G} + \vec{k})\vec{r}}$$

 μ ... atomic s, p, d orbitals

Formally fully equivalent to wave functions: $\Psi_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} c_{\vec{k}}(\vec{G}) e^{i(\vec{G} + \vec{k})\vec{r}}$

Construct hamiltonian and overlap matrix:

$$H_{\mu\nu}(\vec{k}) = \langle \mu_{\vec{k}} | \hat{H} | \nu_{\vec{k}} \rangle$$

$$S_{\mu\nu}(\vec{k}) = \langle \mu_{\vec{k}} | \nu_{\vec{k}} \rangle$$

Solve generalized eigenvalue problem: $\left\{H_{\mu\nu}(\vec{k}) - \varepsilon_i S_{\mu\nu}(\vec{k})\right\} \left\langle \mu_{\vec{k}} | \psi_i \right\rangle = 0$

Number of atomic orbitals << Number of plane waves (approx. 1:100)

Eigenvalue problem can be easily solved!

Convergence Criteria (I)

iterative solution:
$$\varphi^{(n+1)} = \varphi^{(n)} - (H - \varepsilon) \varphi^{(n)} \Delta t$$
 $\varepsilon = \langle \varphi^{(n)} | H | \varphi^{(n)} \rangle$

$$\varepsilon = \left\langle \varphi^{(n)} \left| H \right| \varphi^{(n)} \right\rangle$$

$$(H-\varepsilon)|\chi_i\rangle=0$$

representation of the trial wave function in the χ_i set:

$$\left| \varphi^{(n)} \right\rangle = \sum_{i} \alpha_{i} \left| \chi_{i} \right\rangle$$

$$\left| \phi^{(n)} \right\rangle = \sum_{i} \alpha_{i} \left| \chi_{i} \right\rangle \qquad \left| \phi^{(n+1)} \right\rangle = \sum_{i} \beta_{i} \left| \chi_{i} \right\rangle$$

$$\beta_i = \alpha_i - (\varepsilon - \varepsilon_i) \Delta t$$

Before iteration step:

After "ideal" iteration step:

Convergence Criteria (II)

Before iteration step:

EOM: $\beta_i = \alpha_i - (\epsilon - \epsilon_i) \Delta t$

After iteration step:

optimum time step:

$$0 \le \beta_N = \alpha_N - (\varepsilon - \varepsilon_N) \Delta t_{\text{max}}$$

$$\Delta t_{\text{max}} = \frac{1}{\varepsilon_N - \varepsilon_1} = \frac{1}{\varepsilon_{\text{max}} - \varepsilon_{\text{min}}}$$
spectral radius

After orthogonalization: β_i

- Orthogonalization essential for each iteration step
- Convergence rate decreases with increasing number of PW

Preconditioning

Residual error:

$$(H - \varepsilon) \underbrace{\chi + \Delta \varphi}_{\text{exp}} = (H - \varepsilon) \Delta \varphi = |\Delta \widetilde{\varphi}\rangle$$

$$=: |\varphi\rangle$$
we need this we get this

$$(H - \varepsilon)^{-1} |\Delta \widetilde{\varphi}\rangle = |\Delta \varphi\rangle$$

Hamiltonian in PW basis:

$$H_{GG'} = -G^2 \delta_{GG'} + V^{eff} (G - G')$$

Kinetic energy dominates for high wave numbers!:

|G|

Partition Hamiltonian:

$$\hat{H} = \hat{D} + \hat{L}$$
 diagonal matrix all diagonal elements are zero

$$\hat{H} \approx \hat{D}$$

For high wave numbers:
$$\hat{H} \approx \hat{D}$$
 $(\hat{D} - \varepsilon)^{-1} \Delta \tilde{\varphi} = \Delta \varphi$

Preconditioning:Geometric interpretation

Without preconditioning:

With preconditioning:

Williams-Soler Algorithm

Equation of motion: $(H - \varepsilon_i) | \phi_i \rangle = -\alpha | \dot{\phi}_i \rangle$

In plane-wave basis set:

$$\alpha \, \dot{c}_i(G) = \underbrace{\left[G^2 + V^{eff}\left(G - G\right)\right]}_{\text{diagonal part}} c_i(G) - \underbrace{\sum_{G' \in G' \neq G}}_{\text{off-diagonal part}} V^{eff}\left(G - G'\right) c_i(G')$$

EOM for a single state: $\dot{c}_i(G) = \omega_G^2 c_i(G) - B_G$

Assumption: B_G not time dependent

$$c_i(G, t = \Delta t) = -\frac{B_G}{\omega_G^2} + \left[c_i(G, t = 0) + \frac{B_G}{\omega_G^2} \right] \exp\left(-\omega_G^2 \Delta t\right)$$

Improves significantly the convergence rate for high PW energy cutoffs!

Higher order EOM's

Goal: Find total-energy minimum more efficiently

Strategies:

- minimize number of iterations
- minimize computational effort for each step

Two approaches

Use higher derivatives

$$D_{ij} = \frac{\partial^2 E(\{\varphi_i\})}{\partial \varphi_i \partial \varphi_j} , \dots$$

Use higher order in time

$$\mathbf{\varphi}_i = F(\dot{\mathbf{\varphi}}_i, \ddot{\mathbf{\varphi}}_i, \dots)$$

equivalent:

$$\varphi_i^{(n+1)} = \widetilde{F}(\varphi_i^{(n)}, \varphi_i^{(n-1)}, ...)$$

high computational effort!

no additional computational effort!

Second order equation of motion

Finite differences:
$$\varphi^{(n+1)} = \varphi^{(n)} - (H - \varepsilon) \varphi^{(n)} \Delta t_1 - (H - \varepsilon) \varphi^{(n-1)} \Delta t_2$$

Expansion with respect to eigenfunctions χ_i :

$$\left| \varphi^{(n-1)} \right\rangle = \sum_{i} \alpha_{i} \left| \chi_{i} \right\rangle \qquad \left| \varphi^{(n)} \right\rangle = \sum_{i} \beta_{i} \left| \chi_{i} \right\rangle \qquad \left| \varphi^{(n+1)} \right\rangle = \sum_{i} \gamma_{i} \left| \chi_{i} \right\rangle$$

$$\gamma_i = \beta_i - \beta_i (\epsilon - \epsilon_i) \Delta t_1 - \alpha_i (\epsilon - \epsilon_i) \Delta t_2$$

Direct vs iterative methods

Self-consistency:

$$(H - \varepsilon_i) | \varphi_i \rangle = 0$$

with

$$H = H(\{\varphi_i\})$$

Improved convergence rate by enforcing self-consistency at each iteration step!

Instabilities: Charge sloshing

Hartree potential:

$$V^{Hartree}(G) = \frac{4\pi e \rho(G)}{|G|^2}$$

Change in Hartree potential:

$$\Delta V^{Hartree}(G) = \frac{4\pi e \Delta \rho(G)}{|G|^2}$$

Instability increases with increasing system size:

$$G_{\min} \propto \frac{1}{l_{\max}}$$

How to overcome the instabilities?

- Use higher order algorithms
- Mixing of the charge density, e.g.

$$\rho(\vec{r}) = \lambda_{mix} \rho^{old}(\vec{r}) + (1 - \lambda_{mix}) \rho^{new}(\vec{r})$$

Instabilities: Metallic systems (I)

Fractionally occupied states:

Consider two degenerate states close to the Fermi level:

Instabilities: Metallic systems (II)

High electronic temperatures:

Low electronic temperatures:

Fermi distribution

Stable against charge fluctuations!

Unstable against charge fluctuations!

How can we avoid these instabilities?

- Improve k-point sampling
- damp occupation numbers

How to get down to the BO surface

Hellmann-Feynman forces

Hellmann-Feynman theorem:

$$\vec{F}_{I} = -\frac{\partial E(\{\vec{R}_{I}\})}{\partial \vec{R}_{I}}$$

$$= -\sum_{i} \langle \phi_{i} | \frac{\partial H}{\partial \vec{R}_{I}} | \phi_{i} \rangle$$

This theorem is valid only when: $(H - \varepsilon_i) | \phi_i \rangle = 0$

Forces are not variational with respect to the wave functions ⇒ good convergence required

Ionic motion

Basic idea: Simultaneous motion of electrons <u>and</u> ions per iteration step fictitious dynamics for electrons keeps wave functions on BO surface

Car-Parrinello Lagrangian:
$$L = \sum_{i} \frac{1}{2} \mu \langle \dot{\varphi}_{i} | \dot{\varphi}_{i} \rangle + \sum_{I} \frac{1}{2} M_{I} \dot{\vec{R}}_{I}^{2} - E[\{\varphi_{i}\}, \{\vec{R}_{I}\}]$$

Equations of motions:
$$M_{I} \ddot{\vec{R}}_{I} = -\frac{\partial E\left[\left\{\phi_{i}\right\}, \left\{\vec{R}_{I}\right\}\right]}{\partial \vec{R}_{I}} \qquad \mu \ddot{\phi}_{i} = -\frac{\partial E\left[\left\{\phi_{i}\right\}, \left\{\vec{R}_{I}\right\}\right]}{\partial \phi_{i}}$$

First order EOM:

Second order EOM:

How do we move the atoms

Molecular dynamics

Structure optimization

Integrate equations of motion:

$$M_I \ddot{\vec{R}}_I = \vec{F}_I$$

2nd order EOM with damping

effective mass

damping/friction